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TWG3: Number Theory, Algebra, Discrete Mathematics, Logic 282

University Mathematics Didactic Research on Number Theory, Algebra, Discrete
Mathematics, Logic, Biehler Rolf [et al.] . . . . . . . . . . . . . . . . . . . . . . . 283

Analyse des effets d’un dispositif innovant sur l’évolution des représentations des
étudiants en première année de licence de mathématiques, Bloch Isabelle [et al.] . 288
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sité, Ghedamsi Imène [et al.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Programming as an artefact: what do we learn about university students’ activ-
ity?, Gueudet Ghislaine [et al.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Exploring the affordances of Numbas for mathematical learning: a case study, Had-
jerrouit Said . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Learning collaboratively with digital instructional media: Students’ communica-
tional behaviour and its influence on learning outcome, Heinrich Daniel C. [et
al.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Proof Teaching at the University Level: the case of a lecturer who is mathemati-
cian and mathematics educator, Karavi Thomais [et al.] . . . . . . . . . . . . . . 473

Course Coordinator Orientations Toward their Work, Martinez Antonio [et al.] . 483

The step from tertiary to secondary education in mathematics. In search of a
shared paradigm, Nicolas Pedro [et al.] . . . . . . . . . . . . . . . . . . . . . . . . 493

The relation between mathematics research activity and the design of resources
for teaching at the university, Sabra Hussein . . . . . . . . . . . . . . . . . . . . . 503

vi



A Student’s Complex Structure of Schemes Development for Authentic Programming-
Based Mathematical Investigation Projects, Buteau Chantal [et al.] . . . . . . . . 513

Promoting mathematics teacher reflection in online graduate problem solving
course through peer feedback and portfolios, Glassmeyer David . . . . . . . . . . 515

A novel application of the instrumental approach in research on mathematical
tasks, Topphol Vegard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Author Index 519

vii



  

INDRUM2020 Editorial 
Thomas Hausberger1, Marianna Bosch², and Faïza Chellougui3  

1IMAG, Université de Montpellier & CNRS, Montpellier, France, 
thomas.hausberger@umontpellier.fr; ²IQS School of Management, Universitat 

Ramon Llull, Barcelona, Spain, marianna.bosch@iqs.edu; 3Faculté des Sciences de 
Bizerte, Université de Carthage, Tunisie, chellouguifaiza@yahoo.fr. 

 
INDRUM2020 was the third conference of the International Network for Didactic 
Research in University Mathematics. Initiated by an international team of researchers 
in didactics of mathematics in 2014, INDRUM aims at contributing to the development 
of research in didactics of mathematics at all levels of tertiary education, with a 
particular concern for the development of new researchers in the field and the dialogue 
with mathematicians. After two very successful conferences in 2016 (Montpellier, 
France) and 2018 (Kristiansand, Norway), the INDRUM Network Scientific 
Committee (INSC) decided in Kristiansand to pursue the cycle of biennial conferences 
with a third INDRUM conference to be held on March 27-29 2020 in Bizerte, Tunisia, 
in association with a side event in honour of Viviane Durand-Guerrier, the INDRUM 
Network coordinator, for her retirement. This decision followed the application of 
Tunisia to host the next INDRUM, through the voice of its INSC members, and also 
considered Viviane Durand-Guerrier’s scientific involvement in the development of 
the Tunisian community of didactics of mathematics. 
The INSC nominated in Kristiansand the INDRUM2020 International Programme 
Committee (IPC) and the Local Organising Committee (LOC), with an intersection to 
facilitate the coordination of both committees. The IPC was composed of Thomas 
Hausberger (Montpellier, France) Chair; Marianna Bosch (Barcelona, Spain) Co-chair; 
Faïza Chellougui (Bizerte, Tunisia); Viviane Durand-Guerrier (Montpellier, France); 
Imène Ghedamsi (Tunis, Tunisia); Simon Goodchild (Kristiansand, Norway); 
Reinhard Hochmuth (Hannover, Germany); Elena Nardi (Norwich, United Kingdom); 
Chris Rasmussen (San Diego, United States); María Trigueros (Mexico City, Mexico). 
The LOC was composed of Faïza Chellougui (Bizerte, Tunisia) Chair; Rahim Kouki 
(Tunis, Tunisia) Co-chair; Mahdi Abdeljaouad (Tunis, Tunisia); Sonia Ben Nejma 
(Bizerte, Tunisia); Béchir Dali (Bizerte, Tunisia); Viviane Durand-Guerrier 
(Montpellier, France); Imène Ghedamsi (Tunis, Tunisia); Inès Jendoubi (Tunis, 
Tunisia); Faten Khalloufi (Bizerte, Tunisia); Mahel Mosbah (Tunis, Tunisia). 
The first announcement, published in February 2019, communicated the structure of 
the conference. Similarly, to the two previous INDRUM conferences, themes to be 
addressed at INDRUM2020 covered teacher and student practices and the teaching and 
learning of specific mathematical topics at undergraduate and post-graduate level as 
well as across disciplines. Accepted scientific contributions were to be discussed in 
four thematic working groups (4h each) after their presentation in two sessions of short 
communications in parallel (2h). The programme also comprised a poster exhibition 
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and, as a new feature, a workshop for early-career researchers. Last but not least, we 
were delighted to announce that Carl Winsløw (University of Copenhagen, Denmark) 
had accepted to give the plenary lecture and that an expert panel discussion on tertiary 
education in the “digital age” was in preparation. Although the primary language of the 
conference was English, the linguistic characteristics of the host country were 
considered, similarly to previous INDRUM conferences. Therefore, authors were 
offered the possibility to write and present a paper in French or Arabic provided the 
presenter considered how to address the conference audience in its linguistic diversity 
through slides or a handout in English. Besides, INDRUM2020 was the third INDRUM 
conference to be accepted as a Topic Conference by the European Society for Research 
in Mathematics Education (ERME). 
The second announcement was published at the end of April 2019, with further details 
for the submission. A list of 15 keywords was provided to authors as a means to classify 
their submission (using two keywords from the list and three optional other keywords) 
and also to help in the subsequent process of paper allocation to different working 
groups after the review process. 
In response to the call, 47 papers and 4 posters were received. The review process was 
organised by the chair and co-chair, following principles that were discussed among 
the IPC. Each paper was thus reviewed by a member of the INSC and by an author of 
another submission; posters were reviewed by the chair and co-chair. Final decisions 
in situations where both reviewers had diverging opinions were taken after discussion 
among the IPC. At the end of the reviewing process, 44 papers and 3 posters were 
accepted for presentation at the conference. Authors of rejected papers that fell in the 
scope of the conference were offered the opportunity to resubmit their contribution as 
a poster. This last step increased the number of accepted posters to 5 in total. 
Given the number of accepted contributions and the keywords provided by authors, it 
was deemed possible and relevant to organise four balanced thematic working groups 
(TWG). The allocation of papers and posters was proposed by the chair and co-chair, 
and approved by the IPC. The appointment of TWG co-leaders among INSC members 
was made by taking into consideration the representation of geographical diversity, 
gender balance, and the involvement of colleagues who have not yet or recently served 
as leaders. We were grateful that the appointed INSC members were able to accept our 
invitation. The third announcement was published in early March 2020 with the 
following list of groups and names of co-leaders: 

TWG1 – Calculus and Analysis: Laura Branchetti (Italy) & María Trigueiros 
(Mexico) 
TWG2 – Mathematics for engineers, Mathematical Modelling, Mathematics and 
other disciplines: Berta Barquero (Spain) & Nicolas Grenier-Boley (France) 
TWG3 – Number Theory, Algebra, Discrete Mathematics, Logic: Viviane 
Durand-Guerrier (France) & Rolf Biehler (Germany) 
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TWG4 – Students’ and teachers’ practices: Irene Biza (United Kingdom) & Imène 
Ghedamsi (Tunisia) 

The names of the panel chair and panellists, appointed by the IPC among conference 
participants in view of their expertise in the topic of the panel, were also communicated 
in the third announcement. Pedro Nicolas (Universidad de Murcia, Spain) accepted to 
chair the panel on tertiary education in the digital age, with Yael Fleischmann 
(Norwegian University of Science and Technology, Norway), Ghislaine Gueudet 
(Université de Brest, France) and Said Hadjerrouit (University of Agder, Norway) as 
speakers. Finally, Elena Nardi (University of East Anglia, United Kingdom) and Carl 
Winsløw (University of Copenhagen, Denmark) prepared a promising workshop about 
“starting to write journal articles” for INDRUM early career researchers around two 
papers published in the INDRUM2016 Special Issue of the International Journal for 
Research in Undergraduate Mathematics (IJRUME) for which they served as guest-
editors. The purpose of the workshop was to share experiences and trigger discussion 
on what constituted the challenges – and ways to overcome these – of preparing a 
manuscript for submission to a mathematics education research journal, with a special 
focus on university mathematics education. 
The third announcement included the conference timetable and the conference pre-
proceedings. In parallel, the LOC was getting ready to welcome delegates in Bizerte, 
Tunisia. What happened afterwards was quite unprecedented and led to numerous 
meetings of the IPC and LOC to take what seemed the best solutions to preserve the 
spirit of INDRUM in the context of the covid-19 pandemic that much impacted 
scientific activity and human lives in general. 
With the hope that sanitary conditions would allow the conference to be held in the 
near future, INDRUM2020 was thus first postponed to September 17-19, 2020. In view 
of the dynamic of the pandemic, it later became apparent that travel restrictions would 
make it impossible for numerous delegates to attend. A fourth announcement was then 
published in April 2020 to spread the news that INDRUM2020 will still be held, in the 
form of an online conference, in the middle of September (12-19). The decision to run 
INDRUM2020 online was not an easy one as so much effort was invested by the 
organising committee in Tunisia in preparing to welcome the delegates in Bizerte. We 
adjust the dates and timetable to take into consideration other academic duties and the 
delegates’ time-zones. In particular, TWG sessions were reduced in comparison with 
the initial schedule, and the training session for early career researchers was removed. 
We could then fit the conference in eight days with sessions of no more than two hours 
per day. We also welcomed newcomers to the online conference, which was accessible 
upon free registration online. 
INDRUM2020 thus took place as a conference in the cyberspace, virtually from 
Bizerte. 186 delegates from 36 countries (Table 1), going from time zone UTC-9 to 
UTC+9, registered to the online conference. Up to 120 participants attended the plenary 
sessions, and an average of 30 participants was present during the TWG discussion 
sessions. The opening and closing ceremonies were lively thanks to the work of the 
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LOC who gave delegates a flavour of Tunisia 
through a slideshow of beautiful landscapes and 
Tunisian music. Although scientific exchange 
online cannot reach the quality level of interactions 
in presence, feedback from delegates and from TWG 
co-leaders allowed us to conclude that the chosen 
format of the online conference, the richness of 
contents that were discussed and the reliability of the 
video-conference platform made INDRUM2020 a 
fruitful and enjoyable experience for most 
participants.  
Papers appear in these Proceedings in a version 
chosen by participants following the optional 
possibility to upload a final version of their paper 
after the conference. 
Very special thanks are due to the LOC, chaired by 
Faiza Chellougui, for their tireless work of many 
months to organise the conference and cope with the 
unexpected difficulties. We are also grateful for the 
support offered by Baptiste Chapuisat (IMAG, 
University of Montpellier) to solve technical aspects 
of the video-conference system, and to the whole 
“Tech-team” composed of colleagues from 
Barcelona and Montpellier who worked in the 
background to assist in case of technical difficulties. 
Finally, we are indebted to the University of 
Montpellier for offering us to use the video-
conference license purchased on an institutional 
basis to provide online courses and webinars for 
academic activities in the covid-19 context. In these 
conditions and with the work of all the colleagues 
who worked unstintingly before, during and after the 
conference to ensure that participants had a smooth, 
productive and enjoyable experience, 
INDRUM2020 was again a success despite of the 
exceptional circumstances. 
 

 
  

Table 1. Participants and countries 

COUNTRY Participants 
Andorra 1 
Argentina 2 
Belgium 5 
Brazil 4 
Cameroun 1 
Canada 3 
Chile 5 
Colombia 1 
Croatia 4 
Denmark 1 
Etiopia 1 
Finland 4 
France 40 
Germany 12 
Greece 1 
Indonesia 1 
Ireland 4 
Israel 3 
Italy 5 
Japan 5 
Lebanon 1 
Malta 1 
Marroco 1 
Mexico 12 
New Zeland 1 
Norway 8 
Peru 5 
Portugal 2 
Puerto Rico 1 
Spain 16 
Sweden 1 
Switzerland 1 
The Netherlands 1 
Tunisia 19 
UK 4 
US 9 

 186 
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Follow-up 
The INDRUM2020 closing ceremony was the occasion to report on the strengthening 
of the INDRUM Network with the enrolment of new colleagues to increase the 
geographical representation of the INSC and the creation of an INDRUM Network 
Coordination Group (INCG) to supervise the development of the network. It is now 
confirmed that ten colleagues from nine countries have joined the INSC to reach a total 
of 41 members. The INCG (an evolving group) is composed of 8 members: the three 
previous and the current IPC Chairs and co-Chairs. The composition of the INSC and 
INCG is published on the INDRUM website hosted by the open archive HAL where 
all INDRUM proceedings are posted: https://hal.archives-ouvertes.fr/INDRUM. 
The forthcoming availability (on April 13, 2021) of the so-called (first) “INDRUM 
ERME book” was also announced. Edited by Viviane Durand-Guerrier, Reinhard 
Hochmuth, Elena Nardi and Carl Winsløw, this volume entitled “Research and 
Development in University Mathematics Education: Overview Produced by the 
International Network for Research in Didactics of University Mathematics” provides 
a state-of-the-art synthesis of University Mathematics Education research as 
exemplified by the works presented and discussed at INDRUM2016 and 2018. A big 
thanks and congratulation to Viviane Durand-Guerrier who managed the project and 
to the whole group of editors. 
Following this publication and the previous INDRUM2016 Special Issue in IJRUME, 
we are now delighted to announce that authors of an accepted contribution (paper or 
poster) in the INDRUM2020 proceedings will be offered the opportunity to publish an 
expanded, updated or reworked version of their contribution to match the requirements 
of the following two journals in the context of production of two separate and 
complementary special issues: 
(1) an IJMEST (International Journal of Mathematical Education in Science and 
Technology) Special Issue guest-edited by the INDRUM2020 chair and co-Chair. We 
are very grateful to the IJMEST editor-in-chief Colin Foster and associate editor Greg 
Oates for initiating such a fruitful and promising cooperation with INDRUM for the 
diffusion of university mathematics education research. This journal will therefore be 
able to gather both DELTA (series of biennial southern hemisphere symposia on the 
teaching and learning of undergraduate mathematics and statistics) and INDRUM 
research papers. We will invite papers of 15-20 pages, written in English, with an aim 
to publishing approximately ten papers among the best research represented in the 
INDRUM2020 Proceedings. While aiming at reflecting the thematic richness of the 
INDRUM2020 programme, we will not commit to a strict representation of the 
conference structure. We particularly welcome proposals that elaborate and expand the 
INDRUM2020 submissions’ content substantially. 
(2) an EpiDEMES (Épijournal de Didactique et Epistémologie des Mathématiques 
pour l’Enseignement Supérieur) Special Issue. This open-access peer-reviewed online 
journal, founded in 2019, welcomes articles written either in English or French to the 
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attention of practitioners. It aims at providing a database for the initial and in-service 
training of higher-education teachers. This second call will therefore complement the 
first call and highlight the “interface” character of the journal between the community 
of mathematics education researchers and the community of mathematicians interested 
in issues related to teaching mathematics in higher education. We warmly thank the 
editors-in-chief Nicolas Grenier-Boley and Hussein Sabra for engaging this promising 
collaboration with INDRUM for the dissemination of practice-based INDRUM 
research. 
The deadlines for both Special Issues will be as follows: March 31, 2021: deadline to 
submit papers; June 15, 2021: decision letters sent to authors; September 1, 2021: 
deadline for revised manuscripts; October 15, 2021: final decisions. The target is to 
have both volumes produced in 2021. The official calls for contributions will be sent 
soon to the authors of INDRUM2020 accepted contributions through the INDRUM 
mailing list, separately for both projects. We would therefore advise authors who wish 
to prepare a proposal to select between both options by considering how their 
INDRUM2020 contribution may best reach the goals above to the best of its potential. 
Finally, we are delighted to spread the news that INDRUM2022 will be held in 
Germany, near Hanover, on a date to be confirmed closer to the time between mid-
September and mid-October. The final dates will be decided in June 2021. The local 
chair is Reinhard Hochmuth, with María Trigueros (Mexico) as chair of the IPC and 
Berta Barquero (Spain) as co-chair. The INDRUM2022 website 
https://indrum2022.sciencesconf.org/, which is currently under construction, will open 
with updated information as soon as possible. 
We now invite you to carry on reading this volume, and we hope that the promise of 
its content will encourage you to consider joining or continuing to be part of the 
ambitious and stimulating INDRUM enterprise! 
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Professional and academic bases of                                            
university mathematics teaching for the 21st century:                                                                     

the anthropological approach to practice-based research 
Carl Winsløw1  

1University of Copenhagen, winslow@ind.ku.dk 
Based on an anthropological approach to the notions of profession and métier within 
an institution, we show how the label “mathematics” could relate to both notions in 
the setting of universities. We also propose a finer characterization of segments of the 
métier. Finally, we revisit some examples of how our own research have addressed 
different segments so identified. We finally return to the question of how different forms 
of scholarship interact with the métier and its segments, and formulate a proposal for 
professionalizing the métier in view of current and future needs. 
Keywords: university mathematics teaching, ATD, practice-based research 
1. INTRODUCTION 
Mathematics as a university discipline has hugely expanded in the 20th century, both at 
the level of research and at the level of education. This development is inseparable 
from the interaction of mathematics with other – and equally evolving – disciplines, 
many of which have not only drawn on, but also contributed to the advances of 
mathematics both as a field of research and as a matter to be taught. It is neither possible 
nor helpful to try to draw sharp lines between mathematics and other disciplines. This 
is so not only for research but also in higher education contexts like Engineering and 
Natural Sciences.  
The growth of mathematics from an institutional point of view is visible in the 
existence and expansion of mathematics departments in virtually any university type 
institution. One informal, frequently implicit, characterization of a “university 
mathematician” is certainly an individual who works at such a department. In 
mathematics departments, we find a great variety of scholarly activities, often with 
labels such as “pure mathematics”, “applied mathematics”, “statistics” and so on, each 
with further subdivisions and overlaps; and sometimes also “mathematics education”, 
“history of mathematics”, “data science” and more. Another informal characterization 
of a “university mathematician” could be university faculty member with an advanced 
degree labeled “mathematics”, but in practice, this is quite similar as labels often result 
from the name of departments where they are obtained. In fact, people whose teaching 
or research are centered on mathematical contents may have other affiliations. We can 
think, for instance, of a specialist in mathematical education who teaches mathematics 
methods courses in an education department, or of a statistics researcher employed at 
a Medical school to teach statistics to future physicians. 
From the point of view of university mathematics education, the notion of a university 
mathematics teacher is more relevant than the departmental categorization. Here, 
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labels and descriptions of teaching units can be used to clarify more precisely what is 
being taught by a given university teacher. We shall pursue this delimitation in the next 
sections. We also return to the important co-existence and interaction of teaching and 
research in universities in the case of university mathematics teachers. 
2. THE NOTIONS OF PROFESSION AND OF MÉTIER IN THE 
FRAMEWORK OF THE ATD 
The English language offers many terms to designate a position within an institution 
that is characterized by a responsibility to carry out certain types of tasks. We shall 
define use and two of them, profession and métier, which both have their roots in Latin 
(via the French language). Our definitions may not correspond to dictionaries that 
explain common usage. However, they are, at least to some extent, consistent with 
distinctions made by Chevallard (2017) and Stigler and Hiebert (1999) to discuss the 
general status of teachers in Western and Asian societies, respectively. 
By a métier, we mean simply mean the set of positions within an institution defined by 
a family of types of tasks, as explained above. Members of the métier are individuals 
holding one of these positions. Naturally, to stay as member of a métier, one will 
normally need minimal capacity to carry out the involved types of task; there may be 
no further requirements. 
A profession is a special case of a métier, in which the praxis, and knowledge on the 
praxis, is made explicit and shared among its members. The resulting discourse is a 
logos Λ describing and justifying the use of certain methods or techniques, using a 
more or less specialized professional discourse. The combined praxis and logos P = 
(Π,Λ) is regulated and developed by the members of the profession (possibly by other 
agents too). Admission to the profession is strongly linked to sharing P at some level, 
obtained through formal training carried out by members of the profession (again, 
possibly by other agents as well).  
In terms of the anthropological theory of the didactic (see e.g. Chevallard, 2019 for 
details), P  is a collection of praxeologies, including both praxis blocks Πi (types of 
tasks, techniques) and logos blocks Λj (discourse about techniques, and theory to 
support and justify the discourse). If p belongs to the métier defined by Π = (Πi), we 
can assume some minimal relation RI(p, Π) of p within the institution I at which the 
métier is exercised. Meanwhile for p to belong to a profession we have further 
requirements on RI(p, P ), including the role of p in establishing  RI(p’, P ) for the 
position p’ of newcomer to the profession. 
Examples of professions, which are well established in most developed societies, 
include: lawyers, doctors and engineers. Scientific researchers within specific fields 
also constitute professions – certainly, disciplines of modern science have extensive 
and explicit logos blocks, and scientists are trained by other scientists of the same 
discipline and within the same institution. The case of teachers in, say, primary school 
is less clear – the development of explicit knowledge about teaching, as well as the 
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training that gives access to it, may only to a very small extent be carried out by primary 
school teachers. 
Considering now the case of university mathematics teachers, many of them do belong 
to professions of research (in a broad range of specialties, as we have seen), although 
not necessarily, and not necessarily the same. However, one can hardly call the set of 
university mathematics teachers a profession, as there is little shared and explicit 
knowledge about how to carry out the types of didactical tasks that characterize this 
métier, and even less training and development of such shared knowledge that is carried 
out by the members of the métier. Of course, individual members of the métier have 
shared their views and principles about the métier (e.g. Halmos, 1985; Krantz, 2015), 
and in some countries, conferences and committees on university mathematics teaching 
are being organized with and by members of the métier (e.g. Burn, Appleby & Maher, 
1998; Saxe & Braddy, 2025). Such works are usually written to push new agendas 
which are not widely shared in the profession, and may remain unknown to most 
members. On the other hand, the interest and willingness to share knowledge on 
teaching is growing among university mathematics teachers in many institutions and 
countries. In 1988, a mathematician noted that  

when a mathematician speaks about teaching, colleagues smile tolerantly to one another in 
the same way family members do when grandpa dribbles his soup down his shirt (Clemens, 
cited in Krantz, 2015, p. xi).  

This is certainly not universally true anymore. Still, university mathematics teaching is 
hardly a profession in the sense defined above. In the rest of this paper, we try to 
characterize the métier, and then consider if and how it might become a profession. 
3. THE UNIVERSITY MATHEMATICS TEACHER MÉTIER     
Mathematical practice and knowledge can itself be modelled in terms of praxeologies 
ω, and within university institutions U, didactical tasks are all about establishing 
certain relationships RU(σ, ω) for individual in a student position σ within U. If the 
university mathematics teacher position is called τ, a minimal requirement for RU(τ,ω) 
is certainly that RU(τ,ω) ⊇ RU(σ,ω). But more is required: σ must have practical 
knowledge about the didactical praxis of establishing RU(σ, ω), and if this praxis is 
called Π(ω), there are thus additional requirements for RU(τ,Π(ω)) which may be 
assessed by the extent the praxis of τ actually succeeds to establish RU(σ, ω). Indeed, 
university institutions usually have rather explicit and established ways to assess the 
latter kind of relation, and the observed student performance is frequently also used to 
assess RU(τ,Π(ω)). Newcomers to the métier will often have to develop RU(τ,Π(ω)) 
more or less through building up personal experience with Π(ω) and possibly drawing 
on their own experience as students. However, as the student position σ may be 
different from positions they have themselves held – for instance, in the case of a 
background as graduate of pure mathematics, who is faced with the praxis of teaching 
applied mathematics to populations of some other discipline. In this case, both 

10 sciencesconf.org:indrum2020:339218



  

RU(τ,Π(ω)) and RU(τ,ω) have to be developed based on RU(τ,ω’) where ω’ consists of 
mathematical praxeologies somewhat similar to ω. While all of this appears at first 
sight a bit theoretical, it all was eminently concrete to someone who, like the author of 
this paper, started out in the métier with a background as researcher in pure 
mathematics, faced from day one with the task of teaching mathematics and 
mathematical biology to future biologists. While the mathematical elements were all 
very familiar, the full praxeologies to be taught, as well as relevant didactical 
techniques to do so, were largely to be acquired by the teacher.     
One way to characterize the métier is thus in terms of the didactical tasks, closely 
related to the relationship RU(σ,ω) to be established, and in particular in terms of the 
student positions σ and the praxeologies ω concerned. Even when teaching students in 
positions that the teacher has actually occupied, RU(τ,ω) is evidently of central 
importance to RU(τ,Π(ω)). In the frequent absence of external support (specific 
training) to establish RU(τ,Π(ω)), and therefore also of shared logos blocks Λ(ω), we 
see the clear traits of a métier in the establishment and function of the position τ.   

Considering that the set of mathematical praxeologies ωσ to be taught to students in 
position σ depend largely on σ, a first rough “topology” of the métier can thus be given 
in terms of the student populations: a teacher is in position τσ if she must engage in 
Π(ωσ). In brief, the métier can be subdivided according to positions τσ for which 
RU(τσ,Π(ωσ)) must then satisfy some minimal requirements, more or less assessed 
trough RU(σ,ωσ). Still, formal training aiming to support entrance into the position τσ 
is often generic (see Winsløw, Biehler, Jaworski, Rønning & Wavro, to appear), 
corresponding to the assumption that RU(τσ,Π(ωσ)) is not only independent of σ, but 
also that Π(ω) is independent of ω. The techniques from Π(ω) assumed to be 
independent of ω are basically pedagogical and concern, for instance, how to prepare 
and conduct interactive lectures on a generic praxeology ω, relate to a generic student 
independently of her actual position σ, and so on. While any training on this generic 
practice Π will then also involve some form of logos block Λ, the relation RU(τσ,(Π,Λ)) 
may indeed fail to establish RU(τσ,Π(ωσ)), even when combined with the relationship  
RU(τσ,ω’) that τσ may hold to praxeologies ω’ that are somewhat similar to ωσ, or even 
include ωσ. 
The access to the métier is, nevertheless, to a large extent based on developing 
RU(τσ,ω’) through the mathematical training of τσ, which (in the case of researchers) 
may be assumed to largely guarantee that RU(τσ,ωσ) can be established satisfactorily 
by any person in position τσ, irrespectively of the student position σ concerned. This 
could seem justified at least in case where τσ has previously developed RU(σ,ωσ) 
successfully. Even in this case, the establishment of RU(τσ,Π(ωσ)) remains, and the 
assumption that some RU(τσ,(Π,Λ)) will suffice to complement RU(σ,ωσ) is hardly 
without raising concerns – especially in the frequent case where existing didactical 
practices Π(ωσ) appear, for students in position σ at large, in need of improvement in 
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some sense. Again, taking measures of RU(σ,ωσ) as measures of the quality of Π(ωσ) 
may at best help to realize such a need, while a logos block Λ(ωσ) is needed to identify 
possible shortcomings of Π(ωσ), to device innovations of Π(ωσ), and to conduct 
systematic experiments of these innovations – and finally, to share the results in a way 
that conveys the position τσ with professional traits. 
Considering again the variety of student populations that university mathematics 
teaching may address, and the idea that these somehow provide a structure on the 
métier as a whole, we will draw on an idea initially presented in the thesis of Kim 
(2015) and further developed by Chevallard (2019). They consider that a human 
population P at large can be subdivided as P1∪P2∪P3. Here, P1 consist of people who 
engage in production of new mathematical knowledge based on a postgraduate degree 
in some mathematically intense discipline (like physics, pure or applied mathematics, 
statistics etc.). Population P2 consist of people who do not engage in production of new 
mathematics, but whose work is nevertheless crucially based on a postsecondary study 
of mathematical disciplines (like most secondary level mathematics teachers, but also 
most engineers, business specialists etc.). Finally, P3 is “the rest” and certainly the 
largest portion of P. While there may be some grey zones left from these somewhat 
informal definitions, we can nevertheless identify corresponding positions σi (i = 1,2,3) 
of students at university, who are in some sense preparing for adult life in population 
Pi. These are not, in general disjoint, at least in early stages of university studies: 
especially σ1 and σ2 may be required to build the same relations to basic mathematical 
praxeologies from, say, linear algebra, and thus be taught together, depending on the 
institution U; and even future members of P3 may at some point face such requirements. 
At later stages, specializations may be more common. Nevertheless, university 
mathematics teachers may be roughly assumed to occupy positions τi (i = 1,2,3) 
corresponding to the students they face, with both overlaps (as mentioned) and with 
further specializations (e.g. τ2,t when the didactical tasks is specialized for the case of 
future secondary teachers t, τ1,µ when the public are future researchers µ in a field of 
pure mathematics, etc.).  
We note here that it is common for individuals at U to occupy certain positions, such 
as τ1,µ and µ, simultaneously. Indeed, the simultaneous occupation of positions as 
scholar or researcher, and as teacher, is both currently and traditionally considered a 
hallmark of university institutions – associated with the more radical Humboldtian 
ideal of Einheit von Lehre und Forschung (unity of teaching and scientific research, cf. 
Madsen & Winsløw, 2009).  Before delving further into research based on the 
subdivisions of university teaching métier that were introduced above, we shall dwell 
on research into how such double occupancy of teaching and research positions may 
influence and shape the métier, and in particular how the first position may lend and 
draw professional traits from the latter.                                                                                          
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4. RESEARCH ON THE TEACHING-RESEARCH NEXUS 
The position µ as researcher of mathematical sciences (including, for instance, statistics 
and various fields of applied mathematics), clearly is a profession which, from the19th 
century, has become firmly established at university institutions all over the world. 
Mathematical knowledge and expertise was of course of great societal important even 
before, but was often developed with and under the auspices of other disciplines such 
as astronomy, geodesy, mechanics and (from the 18th century) engineering. However, 
far into the 20th century most university mathematicians were primarily teachers. 
According to Tucker (2013, p. 699), who focuses on American universities: 

While in the early 1950’s most faculty at doctoral institutions still saw undergraduate 
teaching as their primary mission, by 1970 that mission had changed with research 
becoming the primary focus of these faculty. 

This reflects a more general development in many (not only American) university 
institutions over the 20th century (Cuban, 1999): the increasing priority of research over 
teaching both in the tasks characterizing university faculty positions, and in the 
selection of individuals to fill those positions. In particular, occupying position τ can 
be a mere corollary of occupying position µ. 

The position µ is clearly what Halmos (1985, p. 400) talks about in the following quote: 
I spent most of a lifetime trying to be a mathematician – and what did I learn? What does 
it take to be one? I think I know the answer: you have to be born right, you must continually 
strive to become perfect, you must love mathematics more than anything else, you must 
work at it hard and without stop, and you must never give up. 

The role of commitment and personal ability is evident also in similar descriptions of 
the research profession by other mathematicians. At first sight, it would look like being 
a mathematician is merely a personal affair. At the same time, the professional 
character of the research métier is evident for mathematics for the same reason as in 
other research areas (system of training and regulating access to position µ are both 
internal to the métier, as is the system for developing new explicit knowledge relative 
to the métier). 
Halmos, who was a famous textbook author and an eminent lecturer, feels guilty after 
a day where he taught well but did not do research (ibid., p. 322): 

Despite my great emotional involvement in work, I just hate to start doing it; it’s a battle 
and a wrench every time. Isn’t there something I can (must?) do first? Shouldn’t I sharpen 
my pencils, perhaps? (…) Yes, yes. I may not have proved any new theorems today, but at 
least I explained the law of sines pretty well, and I have earned my keep. 

Here, “work” is evidently research, and “sharpening pencils” becomes a metaphor for 
distractions from µ-tasks – including teaching (“the law of sines”). Certainly, filling τ 
well does not make up for failures to accomplish the tasks of µ. 
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Despite this competition for time, it is also a classical idea that teaching and research 
can somehow resource and inspire each other – in the higher education literature, one 
speaks of a teaching-research nexus (Neumann, 1992), reflecting that the link between 
the two is by no means simple or one-way. Of course, we often think about “research 
based teaching” as teaching that somehow draws on research, but to the extent 
knowledge is produced by research, this is somewhat trivial. It becomes less trivial if 
we think of the individual occupant of µ and τ - so that somehow the concrete research 
activity of the individual influences the same person’s teaching. In between, one could 
conceive of how the teaching of a larger or smaller institution (department or 
university) is affected by its research activity. Finally, there might be influences from 
teaching on research at both individual and institutional level, such as including 
students in research activities.  
For the case of mathematics, not many studies exist of the teaching-research nexus. 
Winsløw and Madsen (2009) modeled it in terms of praxeologies of research and 
teaching, PR and PT for short. Each of these centrally include mathematical 
praxeologies (used or developed during research and teaching) but not be limited to 
them – for instance, research praxeologies could be broadly conceived to include 
practices of publishing, funding, communication, etc. In the study, five researchers in 
pure mathematics were interviewed on teaching practice, their research practice and 
connections between them (in that order). Not surprisingly, the links between PR and 
PT turn out to be rather “indirect”, in the sense that the mathematical praxeologies 
involved in the two are normally quite distant. As one of the informants says (ibid., p. 
756): 

How long did it take me before I had an impression of what is going on in the research area 
that interests me? Well it took 5 years, after I had graduated.... You can’t tell a bachelor 
student what it is about can you? 

In other words, the mathematical praxis and logos in undergraduate teaching is very 
far from that involved in the research of the informant.  
At the same time, four out of five informants insist with considerable energy and many 
examples that considerable indirect links exist at the level of types of task. For instance, 
this involves the didactical task of constructing challenging assignments for students, 
and also the similarity between the activities aimed at for students (when working on 
the assignments) and the research task. While solving teaching tasks, one may discover 
points that later, maybe by association or further development, can be used in research. 
Many other links are mentioned to illustrate the experience expressed by one 
informant: “I feel that I can get things forth and back between the two parts.” We can 
say that the teaching-research nexus is largely implicit and indirect, and it concerns 
mainly the level of practices which are not the same but somehow similar, while it does 
reach the level of logos. 
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The fact that the experience of students in university mathematics is not always very 
close to mathematical research was emphasized as a motivation for Burton’s (2004, p. 
27) interview study with 70 researchers of mathematics:  

It was my hope that a gap, between how mathematicians themselves came to know and 
how they promoted learning in others, if confirmed in the study, would help to explain 
student disaffection with the discipline, their difficulties in learning it, and the gender bias 
in those who take it up as a career. 

The study itself considers mainly the creative part of research practices, the “enquiry”, 
through which the individual researchers are supposedly learning (new) mathematics. 
This activity is found to be quite different from what university students are asked to 
do, for instance because it involves intuition, room for different “thinking styles” and 
so on. The study does not investigate the experience of university students but relies, 
for this part, on the author’s personal experience. A main value of this study is the 
detailed analysis of a large and exciting survey of how PR is described by people in 
position µ. Direct observation of these praxeologies is obviously difficult to arrange, 
which explains the use of interview methods in both of the above-mentioned studies.  
Similar methods were used in Misfeldt’s (2006) study of the writing practices of 
researchers in pure and applied mathematics, also in view of informing didactical 
practices at university to enhance students’ learning in this area. However, in this study, 
interviews were carried out in the presence of material traces of current research of the 
informants, in the form of pieces of writing. In particular, three distinct modes of 
writing were found: exploratory writing (often involving more diagrams and the like, 
than linear text), “first drafts” (attempts to write out proofs etc. in a linear fashion, often 
by hand) and “article text” (produced with TeX or similar software).  
From all three studies, we can see that possible links between students’ and researchers’ 
praxeologies are quite indirect, and maybe even missing (Burton’s “gap”). The 
motivation of all three studies is that when university teachers are also researchers one 
could hope that those teachers could somehow produce a didactic practice that could 
make the link closer. In fact, much of recent didactical engineering research on 
university mathematics is more or less explicitly based on this idea: draw on teacher-
researchers’ experience with research to create a didactical practice that somehow 
enable students to do mathematics in ways that are similar to mathematical research. It 
could also be that students are to engage in mathematical activities close to what is 
found in another professional field or discipline that they will subsequently encounter. 
This brings us back to the different teacher positions (τ1,µ, etc.) in the university 
mathematics teaching métier, and research on controlled experiments with 
corresponding didactical practices. 
5. THE TEACHING MÉTIER BY STUDENT POPULATIONS 
We now return to take a closer look at experimental research involving cases of τi (i = 
1,2) and the didactical praxeologies undertaken by teachers in these positions. We note 
in passing that in some university type institutions, such as liberal arts colleges in the 
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US, there is a strong tradition for teaching mathematics to “all” students, including 
those whose study and professional aims do not strictly need postsecondary 
mathematics. Such teaching often focuses on historic and otherwise humanistic aspects 
of the discipline (Fried, 2018). At other universities (including, to my knowledge, most 
European universities) many students have no mathematics courses, and positions σi 
(and hence τi) may not exist at all. 
5.1 Research-like situations in undergraduate analysis 
A recent survey of undergraduate pure mathematics programmes (Bosch et al., to 
appear) confirms that their structure offers many similarities, and all programmes 
analyzed include a calculus-analysis sequence of modules as a central component. The 
calculus vs. analysis distinction is in general somewhat blurred and contingent upon 
local conditions. However, a quite common interpretation can be made precise in terms 
of praxeologies (Winsløw, 2008; Gyöngyösi, Solovej & Winsløw, 2011; Winsløw, 
2015; Kondratieva & Winsløw, 2018). Calculus praxeologies ω involve types of tasks 
concerning functions that are given in closed form, including functions of one or more 
real variables, real and complex valued sequences, and so on; differential and integral 
calculus are among the central sectors. In calculus courses, the student relationship 
RU(σ,ω) aimed at (and especially, assessed) is often focused on students’ mastery of 
techniques corresponding to a well-defined set of type of tasks. Thus, students will 
learn techniques to evaluate certain integrals, find extremum points of functions in 
certain situations, etc.; the logos block is on the other hand more informal, compared 
to analysis courses. These, on the other hand, focus on theory, and first analysis courses 
may merely complement calculus courses with formal theory, and thus in a sense 
extend RU(σ,ω); we call this type of extension a type I transition. In more advanced 
Analysis courses, students face type tasks that are formulated in terms of previous logos 
blocks (e.g. investigate whether this or that function is a complete metric on 𝑅𝑅n), thus 
working with entirely new and generally more “abstract” praxeologies. We call this 
kind of passage to new praxeologies, in which tasks concern logos from previously 
developed praxeologies, a type II transition. 
To support type I transitions, it is evidently crucial to create links between familiar 
praxis from Calculus, and the new theoretical superstructure. One strategy to do so, 
pursued by Gyöngyösi et al. (2011), is to design student assignments which involve 
new theoretical material which are explored based on computer supported experiments 
with objects from Calculus. An example was to “explore the convergence properties of 
the sequence of functions given by fn(x) = 1/[1+exp(n(2–x))]”. Based on plots in 
software like Maple, the students quickly see the pointwise convergence of (fn) to a 
non-continuous function, and infer that the convergence is not uniform. They can also, 
based on Maple calculations, verify that the limit function has the same integral over 
any interval as the limit of the integrals of fn, and hence that uniform convergence is 
only a sufficient but not a necessary condition for the interchanging limit and integral. 
Experiments with such designs in a first-year analysis course showed that a “middle 
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group” students effectively improved their results when such assignments were 
included, while it made no difference for high- and low-performing students. 
The transition of type II could be attacked with similar ideas for task design, but 
naturally going further than the mere illustration and application of new theory. 
Grønbæk and Winsløw (2007) experimented so-called thematic projects which are 
relatively long assignments that proceed from more closed tasks (of the type found at 
the end of chapters in text books) towards open questions that require students to device 
and prove a theoretical result, which is naturally supported by the first parts. Instead of 
an oral exam based on students’ presentation of material directly extracted from a 
textbook, the students should now present one of their thematic projects. 
Experimentations over several years with thematic projects in a real analysis course 
demonstrated a significant increase in students’ work, satisfaction and results, as 
measured by the standard exam; however, the increased work for the course teachers 
(both to create new assignments and to provide adequate supervision to students) made 
the format less viable outside of a funded project.  
Very similar experiments were made later in the context of a less advanced real analysis 
course (Gravesen, Grønbæk and Winsløw, 2017). In a project funded by a University 
of Copenhagen grant to further the connections between research and undergraduate 
teaching, we defined a number of research-like activities, and constructed a collection 
of exercises that would engage students in some of these (for each exercise). Of course, 
mathematical research is not limited to “prove that” activities, while these dominate 
end-of-chapter exercises in many post-calculus textbooks. Among the activities 
explicitly focused on in this design, students were to use special cases to investigate an 
abstract hypothesis or question, to formulate a hypothesis for a given question, to 
formalize relations between two or more results, to produce or validate ε−δ type 
definitions, etc.  
Another idea for more advanced courses, developed by Kondratieva et al. (2018) but 
yet to be tested at larger scale, is to link calculus praxis with proofs of major theoretical 
results in analysis. As an example, a student assignment was developed in which the 
so-called Basel problem (convergence and value of Σ(–1)n/n2) is solved by calculus 
techniques, and then the same sequence of techniques is used to give an elementary 
proof of Dirichlet’s theorem on Fourier series. The construction of assignments that 
relate different domains in mathematics, or (as here) basic and more advanced courses 
in the same domain, is proposed as a strategy for task design research linked to Klein’s 
idea of “Plan B” (cf. Klein, 2016, p. 83). 
Perhaps we can formulate two overall conclusions emerging from these and many other 
experiments with task design that aims to create “research like” situations for 
undergraduate students:  

1 The revised didactic practice Π(ω) can certainly be realized and as a result, more 
ambitious aims for RU(σ,ω) are in fact realized; 
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2 It is much less straightforward to establish RU(τ,Π(ω)) for the position τ as such 
(rather than for an individual teacher in privileged circumstances), like when 
Π(ω) requires time-consuming design (e.g. of new assignments). 

We close this section by briefly examining a more famous and generic parallel to (1), 
which offers in some sense also a counterexample to (2): the so-called Moore method 
(described, for instance, by Halmos, 1985, pp. 255 ff.) to teaching theoretical 
mathematics. Moore was a professor of mathematics at the University of Texas from 
1920 to 1969, and a legendary teacher and doctoral supervisor. Over the course of the 
past century, his methods of teaching expanded and developed several variations in 
several North American universities. According to the “Moore method” article on 
Wikipedia (as it looked in December 2020), dozens of professors and departments use 
some version of it even today.  
The core of Moore’s method is to let students (re)construct proofs of given theorems, 
with no use of books or other sources, but referring only to a handout with Definitions 
and Theorems carefully prepared by the teacher. The method apparently works for any 
specific mathematical praxeology or domain, except for the clear focus on formal proof 
(which is anyway common in almost any post-calculus course in pure mathematics). 
In that sense the method is a set of pedagogical techniques to teach proof, while the 
didactical practice Π(ω) comes with the concrete handout for a given set of 
praxeologies ω. It would be very interesting to investigate the institutional and historic 
conditions that enabled the success of this approach. It is a rather certain hypothesis 
that one important condition has been the existence of a well-developed “logos” on the 
didactical techniques, disseminated in several books written for and by members of the 
métier. The method has not only been transmitted but also further developed by some 
of these members (see for instance Chalice, 1995). It appears from some of these 
writings that not only descriptions of the pedagogical techniques, but also examples of 
handouts for concrete praxeologies ω, have been disseminated widely. It remains that 
the method also shares the challenge of design by the teacher, to the extent Π(ω) has 
to be constructed for a given unit of teaching, in view of concrete student populations 
and specific praxeologies ω. 
According to the literature referred to, the Moore method is found to offer an excellent 
experience for students in position σ1, as considered in this section. However, at the 
undergraduate level, such students usually mix with students in position σ2, for whom 
training to prove theorems may not be as important. Apparently, the method works best 
with advanced courses and hardworking students, who are more or less clearly in 
position σ1. It is still remarkable as a case of sustained, explicit development of shared 
didactical practice by the métier itself, which moreover connects clearly to an 
important aspect of mathematical research, the construction of formal proofs. It is a 
fair hypothesis that this implicit or even explicit link between PR and PT  contributed 
to the success of Moore’s way to organize PT. 
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We now turn to studies of the métier of teaching mathematics to students in position 
σ2, focusing on two variants of this type that are both more common than σ1 in most 
university institutions. 
5.2 Klein’s second discontinuity: the case of teacher students 
We first consider the case of σ2,t or, for short, σt : university students who prepare to 
become mathematics teachers outside of the university, generally at primary or 
secondary level. In some universities, the position σt is found in specialized programs 
apart from σ1. In other universities – including many universities in Europe, 
particularly when it comes to future secondary mathematics teachers – the two 
positions are indiscriminate at least in the first years of study. In other words, the same 
requirements are made for RU(σt,ω) and RU(σ1,ω), for a good deal of the mathematical 
praxeologies ω that are taught at U. In this situation, which appears common in many 
universities even today, Klein (2016, p. 1) identified a major problem as early as 1908: 

The young university student finds himself, at the outset, confronted with problems, which 
do not remember, in any particular, the things with which he had been concerned at school. 
Naturally he forgets all these things quickly and thoroughly. When, after finishing his 
course of study, he becomes a teacher, he suddenly finds himself expected to teach the 
traditional elementary mathematics according to school practice; and, since he will be 
scarcely able, unaided, to discern any connection between this task and his university 
mathematics, he will soon fell in with the time honoured way of teaching, and his university 
studies remain only a more or less pleasant memory which has no influence upon his 
teaching. 

Klein identifies these two phases of “forgetting previous mathematics” as the first and 
second discontinuity. The first is a general problem of transition from school to 
university that has been the subject of much (if not most!) research on university 
mathematics education, given the struggles in which many students σ find themselves 
in (irrespectively of future orientation). The second discontinuity, from university to 
school, is specific to σt, or rather to the passage 

RU(σt,ω) → RS(t,o) 
where S is naturally the school institution and t the position as teacher and where o   
designates school praxeologies. The change of praxeologies correspond to the fact that 
what Klein calls “traditional elementary mathematics according to school practice” is 
at best somehow related to mathematical praxeologies ω met at U, “his university 
mathematics”. In fact, Klein also emphasizes that the position t requires not only a 
relation to o but also the “task” to “teach” it “according to school practice”; a more 
accurate representation of this passage is thus 

RU(σt,ω) → RS(t, Π(o)). 
If we represent the full story of Klein’s unfortunate character, who starts out in the 
position as school student s, we then get 

19 sciencesconf.org:indrum2020:339218



  

RS(s,o) → RU(σt,ω) → RS(t, Π(o)) 
under the assumption that o, “elementary mathematics according to school practice” 
does not change too much while our friend is at university (which may, in fact, be 
somewhat incorrect in times of curriculum change).  
The point of Klein’s book is that universities need to take more responsibility when it 
comes to enrich RU(σt,ω) with explicit links between ω and o. In fact, most of the text 
consists of revisiting elements of o – especially within the domains of arithmetic, 
analysis and geometry – from the “higher standpoint” (as the title says) of ω. The text, 
indeed, resulted from Klein’s own lectures to future teachers during the preceding 
decades, following his inauguration as professor at the University of Erlangen in 1872. 
We could represent this effort as an attempt to “smoothen” the second discontinuity by 
adding a relation to be developed (cf. Barquero and Winsløw, in preparation): 

RS(s,o) → RU(σt,ω) → RU(σt, ω∪o) →  RS(t, Π(o)) 
where the subject matter of the “Klein course” is naturally not supposed to be a disjoint 
union ω∪o, but to emphasize links and overlaps.  
The emergence of Didactics of Mathematics (or mathematics education research, in 
Anglophone countries) as a scientific discipline, both results and departs from this 
project, particularly from the sixties onwards. On the one hand, Klein type courses 
were established at many universities (in Germany, often specialized in domains, 
labeled Didactics of Analysis and so on; in USA as so-called “capstone courses” which 
are also offered at the end of several other professional university degrees). Still, the 
last passage RU(σt, ω∪o) →  RS(t, Π(o)), may remain somewhat discontinuous, given 
that Π(o) is more than o. In many countries, official systems of “induction” into the 
teaching métier are offered (see e.g. Britton, Paine & Pimm, 2003) to take care of the 
passage to the praxis Π(o), with more or (often) less attention to the specificity of o. 
This, in fact, means, that yet another relationship is added to smoothen the second 
discontinuity, between RU(σt, ω∪o) and RS(t, Π(o)). This may involve both university 
course units, given by specialists of Didactics of Mathematics or Pedagogy, who may 
introduce more or less subject specific elements of logos Λ(o) related to elements of 
practice Π(o) in school. One could then pose the complete model of mathematics 
teacher education that exists today, with local variations (such as leaving out entire 
relations aimed at): 

RS(t,o) → RU(σt,ω) → RU(σt, ω∪o) → RU/S(σt/t, (Λ(o),Π(o))) → RS(t, Π(o)). 
More can be said about this last extension, and especially of the frequent absence of 
logos in the last relationship (see Miyakawa and Winsløw, 2019). However, from the 
point of university mathematics education, which is assumed in this paper, the second 
passage RU(σt,ω) → RU(σt, ω∪o) is of special interest, as it concerns university 
teaching of mathematics. It is still important to bear in mind that this passage is very 
often followed by training more directly related to Π(o).  
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In this vein, let us first recall the considerable body of research which, beginning with 
Begle’s (1972) first demonstrations that RU(σt,ω) → RS(t, Π(o)) does not succeed better 
(in terms of performance of the students of t) simply because ω (measured as numbers 
of advanced courses taken) was larger. Later studies refined his results and nuanced 
the view both from mere volume to a closer look at contents. Without going into details 
that are better explained elsewhere, the following recommendation seems still to be of 
current, consensual value, at least in the United States: 

Prospective high school teachers of mathematics should be required to complete the 
equivalent of an undergraduate major in mathematics that include three courses with a 
primary focus on high school mathematics from an advanced viewpoint (CBMS, 2012, p. 
18). 

We are thus faced essentially with the proposal of Klein, when it comes to the 
university responsibility to prepare RS(t, Π(o)), in the case of upper secondary school 
S: establish RU(σt, ω∪o) with a “primary focus” on o, but linking it to the “advanced 
standpoint” of ω. It is an important challenge for the university mathematics métier to 
identify what RU(σt, ω∪o) could best function as stepping stone towards RS(t, Π(o)), 
and to implement didactical practices that can establish such RU(σt, ω∪o). The 
complexity of this task is evident, and probably more acute that in the time of Klein, 
where very small minorities reached the position s.  

To solve this task evidently requires a teacher relation RU(τ, Π(ω∪o)) which is not 
immediately derived from  RU(τ,ω), although it also involves this relation. But in 
addition to that, to design Π(ω∪o), requires a relation RU(τ, RS(t, Π(o))), where the 
complexity is even more evident. Such expertise, on the other hand, is in principle held 
by the faction of the university mathematics métier who engage in empirical research 
not only on mathematics teaching in secondary school, but also on secondary 
mathematics teacher knowledge. This field, of course, is currently under development, 
and is only slowly getting specialized enough to capture specific praxeologies o. At 
any rate, we can summarize this theoretical discussion by agreeing that devising and 
adjusting courses (three, perhaps?) is an excellent opportunity to combine and mix 
expertise from both teaching and research in mathematics including but also beyond 
the classical domains of mathematics. We return to this in Section 6. 
As an example of evidence from newer “Klein type” courses, Winsløw and Grønbæk 
(2014) conducted an analysis of student challenges in such a course at the University 
of Copenhagen, based on praxeological analysis along the lines outlined above. One of 
the striking observations was that even RU(σt,ω) may have to be developed in such a 
course. Within the same context, Barquero et al. (in preparation) will delve further into 
specific challenges when it comes to students’ perception on and challenges with 
praxeologies ω∪o related to the real number system.  
The education of future school mathematics teachers may be of special interest to 
scholars in university mathematics education, as they are often also teacher educators. 
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However, when it comes to the métier of university mathematics teaching – our object 
of research – there are other target métiers, if not professions, which are equally 
important, if not more so. We now turn to a major example: future engineers. 
5.3 Authentic Problems of Engineering in first year mathematics 
As for teacher education, the role of mathematics in engineering education has been 
the subject of numerous policy papers. Naturally engineering programs include 
different specialties and academic levels, whose mathematical needs vary significantly. 
An engineering student σe encounters mathematical praxis and logos in many different 
settings of the university study, but “mathematics courses” (given by members of the 
university mathematics métier) appears mostly in the first year or two of undergraduate 
studies. Whatever mathematical praxeologies ω that σe studies then, the aim for 
RU(σe,ω) is to prepare and facilitate the establishment of relationships of type RU(σe,ε) 
where ε is some praxeology from engineering courses at large, in which mathematical 
practices or logos related to those of ω appear.  
A main problem for university mathematics education in this context is that the 
transition (or knowledge transfer) from RU(σe,ω) to RU(σe,ε) is not automatic, even 
when ω and ε are actually bridged by the expert (or teacher) of both. For instance, in 
the context of a signal theory course, Hochmuth, Biehler and Schreiber (2015) 
investigated specific ruptures between the mathematical model of “Dirac impulse” 
treated (and calculated with) in this course, and the technology associated to functions, 
limits, and distributions in mathematics courses. The techniques required to solve 
associated problems in the signal theory course, which involve operating with functions 
that assume the value ∞ at isolated points, “do not fit with higher mathematics 
discourses (technologies)”. The students have somehow to learn that they should 
neglect specific aspects from those discourses” (ibid., p. 696).  

Another, related problem, concern the specialized métier τe of teaching mathematics to 
students in position σe. The classical solution is that the mathematical praxeologies ω 
to be taught are simply some subset of what is taught to σ1 (including extensive work 
on formal logos with proofs etc.). While this model still exists in some countries, it 
seems to disappear in many places due to problems with students’ motivation, attrition 
and transfer (Pohjolainen et al., 2018).  Hernandes-Gomes & González-Martín (2016, 
2020) found that teachers’ relationship RU(τe,ω) with basic calculus topics depended 
significantly on their scholarly background (which included pure mathematics, 
mathematics education, mechanical engineering and electrical engineering), and on the 
teachers’ corresponding experiences as undergraduate students. For instance, only the 
university mathematics teachers with an engineering background had precise ideas 
about how specific mathematical techniques appear (or do not appear) in the 
engineering program. In the context of supervising capstone projects, professional 
experience from engineering institutions outside of the university is also of 
considerable importance, even when it comes to the ways in which teachers assist 
students with mathematical techniques. These case studies mainly suggest that 
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different institutional backgrounds offer somewhat different qualities to the position of 
τe. 
To improve students’ motivation to develop, apart from exam requirements, and also 
to prepare the transfer of type RU(σe,ω) → RU(σe,ε), it is an interesting strategy to 
integrate some concrete tasks from ε in the mathematics course, which can be used to 
show the relevance to engineering of techniques and logos from ω. In his doctoral 
thesis, Wolf (2017) carried out an ambitious project on designing and experimenting 
application-oriented exercises in a first-year mathematics course for students of 
mechanical engineering. The applications were “authentic” in the sense that problems 
and data were taken from professional contexts of machine construction. The 
authenticity was ensured by collaboration with university teachers of engineering. 
Schmidt and Winsløw (to appear) investigate a similar, but more longitudinal and 
entirely spontaneous collaboration pattern, focused on designing authentic problems of 
engineering assignments for a first-year mathematics course with more than 1100 
students every year. They describe the explicit principles that have developed, through 
practice but also from leadership in the position τe to facilitate collaboration with 
scholars of engineering fields, who often produce a first draft of the assignment, which 
is subsequently revised and implemented by (mostly) mathematics faculty in position 
τe. The assignments appear in a first-year course on calculus, linear algebra and 
differential equations, and the main challenges for students are thus to be of a 
mathematical nature, combining several praxeologies taught in the course. Still, the 
mathematical model is built up from an authentic problem of engineering. Here, 
“authentic” in that it comes from recent publication in scholarly engineering. To 
organize the systematic collaboration with institutions of scholarly engineering, 
informal didactical logos was developed from the position τe, adding a professional 
trait to this specific form of the university mathematics métier.  
6. A PROPOSAL FOR THE FUTURE 
In the preceding two sections, we have analyzed instances of the variety of positions 
and knowledge bases that the university mathematics métier is currently based on. Both 
scholarly knowledge, coming from engaging in research praxeologies, and knowledge 
built from didactical praxis, contribute to this knowledge basis. In some cases, 
didactical practice is supplied with more or less strongly developed logos, which often 
takes on relatively generic forms. Experiments initiated by scholars specializing in 
university mathematics education research appear to be mostly punctual, while we have 
also identified instances of more sustained and explicitly framed efforts to develop the 
métier from positions τ1 and τ2. As is the case for mathematics teaching in other 
institutions, the development of professional – shared, explicit and practice-specific 
knowledge – remains quite limited and local. Professional journals focusing on 
university mathematics teaching do exist in some countries like the USA, but even 
then, there seems to be a considerable distance, in terms of logos and readership, 
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between these and scholarly publications in the field of university mathematics 
education research (such as the present volume).  
Indeed, the university mathematics teaching métier remains, to a large extent, a 
secondary occupation of various professions of scholarly research in the mathematical 
sciences, interesting new forms of collaborations emerge especially in the position of 
type τ2. Still the formal preparation for occupying such positions seems to be mainly 
pedagogical, as a complement to the more substantial training for a scholarly 
profession. Reactions to external reform requirements often take the form of more or 
less minimal reconstruction of external didactical transpositions at least when it comes 
to undergraduate programs in pure mathematics (Bosch at al., to appear). In the parts 
of the métier catering to students in positions σ2, more significant developments 
appear, while in all cases, massive challenges with attrition and failure remain evident 
and perhaps even growing in many universities. 
As a result, the impact problem for research in university mathematics education is 
pointed out in several recent syntheses (e.g. Winsløw, Gueudet, Hochmuth and Nardi, 
2018, p. 71). The current institutional model separates, largely, such research from the 
university mathematics teaching métier. To seek impact of an external scholarly field 
on a métier of teaching implies two risks that are very well known from the teaching 
métiers at primary and secondary levels in many countries. The first is to continue to 
fail. The second is to succeed, at least to some extent, but to have merely “robbed 
teachers of the opportunity to participate in the development of new knowledge about 
teaching” (Stigler et al., 1999, p. 174).  
To avoid these risks, a new nexus between teaching and research seems necessary. Of 
course, various blends of scholars and teachers have appeared spontaneously under 
current institutional conditions, as has now and then also appeared in some of the 
efforts outlined here. However, the vast majority of the professional training of PhDs 
in mathematical sciences remains totally disjoint from the preparation of PhDs in 
Didactics of Mathematics, including those focusing on university mathematics 
education. Why would the latter not include some level of further mathematical 
education and experience with research in some mathematical domain? And why not 
include elements of education and research in the didactical domain? Should future 
teachers of university mathematics not be prepared to engage in (rather than, 
hypothetically, be mute consumers of) didactical research on university mathematics? 
What are the institutional and intellectual conditions under which it would be realistic 
to establish mixed doctoral programs (of various compositions) that could prepare for 
shared and fruitful professional development of the métier in all its different forms? 
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We address the relationship between digital technologies and tertiary education. For 
that purpose, we first consider some conceptualisations of the idea of “digital 
resource” from different points of view, and the evolution of the presence of digital 
technologies in our lives. Then, we wonder whether digital resources play a particular 
role in the university, compared to primary or secondary education. We also consider 
some affordances and constraints of their use. Afterwards, we explore how the idea of 
“didactic paradigm” provides a framework for the analysis of different possible uses 
of digital resources. Finally, we report on some experiences about the use of digital 
technologies motivated by the appearance of the COVID-19. 
Keywords: digital resource, tertiary education, mathematics education. 
 
INTRODUCTION 
When the panel started to be planned, by December 2019, we could not imagine how 
trendy the topic of the panel was going to be now, along the year 2020. The aspect of 
potentials of digital means to organise teaching and learning in a different way have 
gained increasing attention. Resources and teaching environments that allow avoiding 
physical presence at universities during the COVID-19 pandemic were (and still are) 
extensively needed and used. The impact of the pandemic in education and the role 
played by digital resources to overcome the difficulties and to face the challenges will 
be one of the issues we will address here. But not the only one. 
Digital resources provide both teachers and students with a whole world of 
possibilities, and so many questions arise concerning their use in the teaching of 
mathematics at the tertiary level. We have tried to consider some important aspects of 
this work. 
We start the first section by considering the question of what a digital resource is. This 
is an important question, because the way we conceptualise it strongly relies on the 
didactic paradigm we assume, and deeply affects the way we analyse different uses of 
digital materials. Next, we will explain that, as a matter of fact, digital resources seem 
to be more used at tertiary education than they are at primary or secondary education. 
We will also provide possible reasons to explain it. 
Digital resources enlarge the collection of possibilities for the teachers to present the 
contents of their courses and for students to engage in these contents. Some of these 
resources can be provided by the educational institutions, and some others are used by 

29 sciencesconf.org:indrum2020:339949



 

students at their own initiative. However, these resources are not always exempt from 
problems in their use, either for technical reasons (experienced by teachers and/or 
students) or for issues concerning the quality of the resources themselves. In relation 
to this, we will address which are the affordances and constraints of the use of digital 
resources. 
In the context of education, digital resources do not exist by themselves, unrelated to 
anything else. They are rather placed in the frame of a didactic paradigm. In other 
words, when an educational institution suggests the use of a certain digital device, or 
when a certain student decides to use it, there is always an underlying set of educational 
ends and an underlying epistemological model. Both the educational ends and the 
epistemological model deeply affect what kind of digital resources are to be used, how, 
and to what purpose. Therefore, we will also make some considerations about digital 
materials in connection with didactic paradigms. 
Finally, as we are not only researchers but also teachers, we will as well consider how 
the COVID-19 crisis has given rise to the intervention of digital resources in our own 
practice, and what difficulties or revelations have appeared related to this. 
At the end, we present the main ideas in a conclusive section. 
WHAT IS A DIGITAL RESOURCE? 
We can distinguish between digital resources from a technological and mathematics 
education point of view. From a technological point of view, the term “digital resource” 
refers to any resource that is in a digitalised form. Digital resources may include 
hardware technologies (e.g., a calculator, laptop, or mobile phone), and educational 
technologies that can be divided into two categories: first, pedagogical software 
technologies such as Wolfram Alpha, GeoGebra, Stack, or Numbas; and second, 
generic software technologies that cover a variety of mathematical topics such as Khan 
Academy, online math video lectures, Massive Open Online Courses (MOOC), 
Facebook resources, etc.  
From the point of view of mathematics education, the term “digital resource” may be 
conceptualised using the instrumental and documentational approach to didactics 
(Trouche, 2004; Trouche, Gueudet, & Pepin, 2018). The key notions of the 
instrumental approach are “instrumentation” and “instrumentalisation”, and the 
transformation of digital artefacts into instruments. The instrumental approach is most 
often used with a student perspective.  
The documentational approach mainly takes a teacher perspective, but it can also be 
used to explore students’ use of resources (Hillesund, 2020). This approach to didactics 
is considered as a further development of the instrumental approach with some more 
key notions such as document and resource (both digital and non-digital resources). 
Moreover, with the documentational approach, there is a distinction between 
educational technologies and digital curriculum resources.  
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Educational technologies at the tertiary level are studied for a long time (see, e.g., 
section 5 in the ICMI study dedicated to the teaching and learning of mathematics at 
the university level, Holton et al., 2001). In recent research, the interest in digital 
curriculum resources and their use by students has developed. Concerning the 
conceptualisation of digital curriculum resources, we refer to Pepin, Choppin, Ruthven 
and Sinclair (2017, p. 647), who contend that: 

It is the attention to sequencing—of grade- or age-level learning topics (all or part of, or of 
content associated with a particular course of study (e.g., algebra)—so as to cover (all or 
part of) a curriculum specification, which differentiates Digital Curriculum Resources from 
other types of digital instructional tools or educational software programmes. 

Some studies choose a quantitative approach to this issue. They study what resources 
are used by students, and for what purposes. Stadler, Bengmark, Thunberg and 
Winberg (2013) observe that during the secondary-tertiary transition, students in 
Sweden increasingly use Internet-based resources. This observation can depend on the 
national context: indeed, in the UK, Anastasakis, Robinson and Lerman (2017) note 
that students mostly use the resources provided by the institution, with exam-related 
goals. Also, in the UK, Inglis, Palipana, Trenholm and Ward (2011) investigate the use 
of three kinds of (optional) resources by students: live lectures, online lectures, 
Mathematics Support Centres. Interestingly, only a minority of students use more than 
one resource. The authors conclude that students need guidance for blending different 
resources. 
Recent studies use the documentational approach (Gueudet, Pepin & Trouche, 2012) 
to investigate the use of resources by students at the university level. This theoretical 
approach is associated with case studies. Kanwal (2018) studies cases of engineering 
students working with a learning management system. She observes that the form of 
the assessment influences their use of resources and concludes that the tasks proposed 
in a digital curriculum resource must be carefully designed, to lead students to the 
expected mathematical activity. This coincides with results obtained by Gueudet and 
Pepin (2018), who observe that some resources are misused by students. The rules of 
the didactic contract, concerning the use of resources, remain mostly implicit and the 
actual use by students does not correspond to the use expected by teachers. Pepin and 
Kock (2019) note that in different courses (Calculus vs Linear Algebra), different kinds 
of resources are proposed by teachers. Students use institutional resources when they 
are aligned with examinations. Otherwise, they search themselves for resources, in 
particular human and social resources.  
In terms of the evolution of digital resources in mathematics education, there is a trend. 
In the beginning, there was a prevalence of visualisation tools, e-learning 2.0, blended 
and mobile learning, e-assessment systems, programming languages. Later, there 
seems to be a preference for resources with advanced functionalities such as e-learning 
3.0, multi-touch technologies, embodied learning technologies, artificial intelligence-
based tutoring tools with feedback, and, most importantly, technologies that connect 
mathematics education to computational thinking and artificial intelligence, and 
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educational Internet of Things aimed at connecting and integrating digital resources 
into people’s everyday life as a guiding principle (Ashton, 2009). Today, students can 
connect computers, laptops, tablets, and smartphones in mathematics classrooms. 
Moreover, people can now connect smartwatches, smart devices, cars, and other 
devices that collect and transfer mathematical data.  
More specifically, educational institutions are moving from the early Internet of Things 
of smart connections to a new phase, one of invisible integration, which results in the 
disappearance of digital resources in the vision of ubiquitous computing formulated by 
Weiser (1991, pp. 94), who pointed out that  

the most profound technologies are those that disappear. They weave themselves into the 
fabric of everyday life until they are indistinguishable from it. 

In other words, digital resources disappear in a manner that they are in the mode of 
being the philosopher Heidegger called the ready-to-handedness of tools (Heidegger, 
1953). This means that the word “digital” starts disappearing from educational 
terminology, which sooner or later will result in a “post-digital” education (Pandrić, 
2018). Are we entering the age of post-digital mathematics education, also partly due 
to the acceleration of digital teaching in this pandemic period? 
PRESENCE OF DIGITAL RESOURCES TO TERTIARY EDUCATION 
As a matter of fact, the relevance of digital resources to tertiary education rests, firstly, 
on the degree and extent to which the resources are used (by mathematicians, 
mathematics educators, non-specialists such as engineers and biologists, students and 
teachers from different disciplines), and, secondly, on the integration of digital 
resources into educational settings. Given these considerations, in practice, it seems 
that digital resources are more present in tertiary education than they are in primary or 
secondary education.  
Indeed, there seems to be an extensive use and integration of digital resources at the 
tertiary level across all subjects, combining face-to-face and distance learning, 
frequently in relation to flipped classroom methods (Pinto & Leite, 2020). In many 
countries, both teachers and students are now using visualisation and simulation tools, 
computer-based assessment systems, programming languages to acquire 
computational thinking skills for mathematical explorations and investigations. 

Let us examine some examples of uses of digital resources at the university. 
From the point of view of MatRIC, the Centre for Research, Innovation and 
Coordination of Mathematics Teaching, which is a learning community working for 
excellence in teaching mathematics in Norwegian universities, digital resources are 
very relevant for the study processes at tertiary level. Many MatRIC-driven activities 
at the University of Agder and other universities in Norway reveal the relevance of 
digital resources for modelling activities, simulation, visualisation, and assessment, 
etc. Likewise, the new activities aiming at digital mathematics teaching show the 
relevance of digital resources for inquiry-based mathematics education and online 
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mathematics teaching and learning. Moreover, MatRIC has developed Drop-in, an 
additional digital resource that offers extra help and guidance to support students who 
are working with challenging mathematical tasks. 
The use of programming language for mathematical investigations at university has 
been studied for several years in the context of the MICA course (Mathematics 
Integrated with Computers and Applications, see, e.g. Buteau & Muller 2010) at Brock 
University in Canada. In this course, mathematics majors and future mathematics 
teachers learn and use programming for mathematical investigations “like 
mathematicians”. A programming language falls within the artefact definition given 
by Rabardel (1995). Nevertheless, compared, for example, with Digital Geometry 
Systems, it is clearly of a different nature. For this reason, studying instrumental 
geneses linked with the use of a programming language when solving mathematical 
problems can lead to identifying new kinds of schemes, and deepen our understanding 
of the relations between computer science knowledge and mathematical knowledge. 
Along with their use of the programming language, students develop an instrument. 
This instrument associates the programming artefact with different kinds of schemes, 
in particular, what we call “p+m-schemes” where knowledge about programming and 
about mathematics are strongly associated (see Gueudet, Buteau, Muller, Mgonbelo & 
Sacristan, 2020). 
Also, the relevance of digital resources can be seen in mathematics education for non-
specialists. Indeed, in many mathematics courses, mathematical objects are not clearly 
linked to objects in the “real world”, are not used to create models of “real systems”. 
Rather, there seems to be an emphasis on understanding the behaviour of those objects 
regardless of the properties of the “exterior world”. However, in mathematics courses 
of other disciplines (e.g. engineering, biology, etc.), mathematics is expected to 
provide, via modelling, useful information about certain systems appearing in nature, 
in real-life. Digital resources for engineering students and other non-specialists seem 
to be of help in this task. Engineers on the workplace use computers and software, and 
their studies have to prepare them for this use. Nevertheless, engineering students 
sometimes use technology as a black box, allowing them to obtain a solution without 
understanding the mathematics behind (e.g. Kanwal, 2020). Recent research has 
advanced our understanding of this complex issue. Drawing on the concept of “techno-
mathematical literacies” (Kent, Bakker, Hoyles & Noss, 2005), defined as 
combinations of mathematical, Internet of Things and workplace-specific 
competencies, van der Waal, Bakker and Drijvers (2017) identified seven categories of 
techno-mathematical literacies for working engineers. Drawing on this work, they 
implemented and evaluated inquiry-based teaching where engineering students were 
invited to present and comment on their use of software (van der Waal, Bakker & 
Drijvers, 2019). This use was then collectively discussed. The authors evidenced that 
this kind of teaching can support the development of techno-mathematical literacies 
for future engineers. 
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A possible explanation for the increasing use of digital resources at the tertiary level is 
that university mathematics students are given more responsibility for learning than in 
school mathematics (Hillesund, 2020). This also entails that, while universities provide 
students with digital resources, it is up to them to decide how to use the resources. 
Indeed, on tertiary level students are usually expected to have, to a certain extent, the 
competence to work on their own, since the scheduling of tertiary education mostly 
just dedicates a relatively minor percentage of the total required learning time to 
supervision by teaching staff. Depending on a variety of contextual factors, students 
can use other digital resources that are freely available online, some of them are related 
and other unrelated to the ones used in the university courses across many disciplines. 
Among those factors, we can find technicalities of the resource, familiarity with the 
resource, availability of time and human resources (teachers, peers, etc.), exam 
situations and mandatory tasks, etc. External digital resources beyond the ones used at 
the university may include video resources, e-books, simulation and 
visualisation tools, games, videos used in flipped classrooms, MOOCs, collaborative 
distance learning environments, etc. University students can make their own decisions 
as to whether to use external digital resources and to what extent and purpose, 
particularly with examinations and compulsory assignments in mind (Hillesund, 2020). 
Thus, it is sometimes required to find and work with adequate learning materials, but 
also, to some degree, to distinguish between good and bad materials that can be found 
and to take responsibility for learning outcomes, and these requirements are increasing 
with the ascending educational level. Thus, in comparison to primary or secondary 
education, the potential for individual use of digital learning materials and the self-
reliant use of those materials appears to be higher at the tertiary educational level. 
AFFORDANCES AND CONSTRAINTS OF THE USE OF DIGITAL 
RESOURCES 
Digital learning resources can be used to enable students to follow new learning 
trajectories and to change the way students engage in the learning of mathematics 
(Sacristán et al., 2010).  
The flexibility digital resources provide concerning the pace, order and organisation of 
learning can allow students for developing their own, individually preferred learning 
routines, strategies and schedules according to their personal needs (Gold, 
Fleischmann, Mai, Biehler & Kempen, in press).  
Digital learning materials can be used to support understanding certain mathematical 
concepts (in the sense of Tall & Vinner, 1981) by offering a variety of different 
representations, or by providing detailed feedback. Software environments like 
GeoGebra (Hohenwarter & Jones, 2007), STACK (Sangwin, 2003) and many others 
are available, and guide students through the challenging process of change of 
representational register (Duval, 2006), using dynamic illustrations and the opportunity 
to actively construct mathematical objects digitally, for example in geometry. There 
also exist elaborated learning environments and teaching concepts where these 
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technical means are implemented in tertiary education (Kinnear, 2019; Biehler, 
Fleischmann & Gold, 2018). 
Evaluations of the students’ learning behaviour when using digital resources are 
pointing in the direction that, when students work independently with a comprehensive 
digital mathematics bridging course material, they mainly concentrate on solving tasks 
rather than working through theory (Fleischmann, Kempen, Biehler, Gold & Mai, 
2019). However, thanks to their technical format, digital materials can here support the 
(mental) linkage between theory and application by providing quick access to the 
relevant passages and offering detailed feedback on the solutions entered by the 
student. 
Having said that, teaching mathematics in a technology-based environment rests on a 
combination of several factors: the characteristics of the digital resource, teachers’ 
digital competencies, students’ mathematical knowledge background and digital skills, 
the subject curriculum, the topic to be taught, the discipline (mathematics, engineering, 
biology, etc.), the learning goal, and most importantly the affordances and constraints 
that emerge in mathematics educational contexts at the tertiary level.  
Therefore, the following question seems appropriate: what affordances and constraints 
emerge from the interactions between users (teachers/students) and digital resources in 
mathematics educational contexts? 
The types of affordances and constraints that emerge from the interaction between 
users and digital resources at various levels depending on many factors highlighted 
above. More specifically, affordances result from the characteristics of the resources 
and the way users interact with them in an educational context. In other words, 
affordances involve both the knowledge background of the users and the features of 
the resources (Hadjerrouit, 2020). Thus, affordances and constraints are not intrinsic 
properties of the digital resource or users (teachers, students), but rather properties of 
the whole conglomerate formed by the digital resource, the teachers, and the students, 
all together. 
The affordance issue has two didactical consequences. Firstly, using digital resources 
for teaching mathematics require good technological, didactical skills and 
mathematical competencies to foster the emergence of affordances and minimise 
constraints. Secondly, teachers need to develop a reflective attitude towards the use of 
digital resources and consider both affordances and constraints in designing 
mathematical tasks. 
In the paragraph above, we had in mind digital resources typically provided to the 
students by the teaching institution, like a certain programming language or a specific 
applet suggested by the teacher to represent mathematical objects or to make symbolic 
calculations. But, of course, those are not the only kind of digital tools. The variety of 
digital learning resources used at current tertiary level goes from complete online 
courses, which are available for students, focusing mostly on the study entrance phase 
(Biehler, Fleischmann, Gold & Mai, 2017; Kinnear, 2019), over online platforms used 
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for communication between students and teachers by most universities, up to a broad 
and constantly growing collection of medial resources that can be found online with 
public access. These online materials include forums where mathematics is discussed 
informally, websites that offer calculations and visualisations, such as Wolfram Alpha, 
and online videos uploaded mainly on YouTube. In particular, these online videos 
gained increasing popularity within students (Acuña-Soto, Liern & Pérez-Gladish, 
2020), but the fact that the quality concerning contents is sometimes questionable and, 
like for most online resources, outside of the control of teaching staff at universities, 
also contains a risk for the education of students using these media. One can identify 
high potential in the offers of digital means, and the fact that it becomes technically 
easier to create and provide new materials online leads to the highly desirable 
opportunity that also unconventional approaches are followed and find their audience. 
On the other hand, there are also risks and challenges associated with educational use 
of digital resources. Suitable learning materials must be identified, and reliable criteria 
for the quality of these materials must be at hand (Hadjerrouit, 2010). Moreover, 
working with some medial formats, such as videos, can lead to an “illusion of 
understanding” that might come with the consumption of these materials, that does not 
necessarily enable students to think and solve problems themselves (Schwartz, 2013). 
Essential for the teaching and learning of mathematics is the communication between 
the teachers and the students, and digital resources can constitute valuable means to 
support this communication process. While the platforms used by many universities 
offer channels to provide learning materials, to ask questions (possibly also 
anonymously, which might lower the barrier to do so for some students), also the 
exchange of feedback on the teaching and the learning can be supported by digital 
environments to the profit for teachers and learners. Data provided by the digital 
learning environment concerning the work behaviour of the students can help to adjust 
the teaching (Reinholz, Bradfield & Apkarian, 2019). In the other direction, studies 
show that students appreciate getting digital feedback on their work via an oral 
commentary that is recorded in the form of video-based feedback (Robinson, Loch & 
Croft, 2015; Grove & Good, 2020). 

DIGITAL RESOURCES IN CONNECTION TO SPECIFIC DIDACTIC 
PARADIGMS  
It would be interesting to consider whether the inclusion of digital resources is an actual 
innovation rather than just a variation of the means (Lindmeier, 2018). Moreover, it 
could be clarifying to regard digital resources in education (and, actually, also about 
analogue resources, like handbooks, blackboards, chalks, notebooks, etc.), as means to 
achieve certain ends in the framework of an explicit didactic paradigm (Gascón & 
Nicolás, 2019, 2020, 2021) for the teaching of mathematics. The idea of didactic 
paradigm (assumed by an educational institution) comprises both the assumed 
educational purposes and the assumed epistemological model of mathematics. The 
educational ends are the answers to the question “Which is the purpose of teaching 
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mathematics?”. The epistemological model is the answer to the question “What is to 
know mathematics?”, which is closely related to the question “What is to teach 
mathematics?”. Only under the premises stipulated by a given didactic paradigm we 
can provide arguments for one or another use of a given digital resource. 
For instance, if, according to our epistemological model of mathematics, students have 
to do a considerable amount of empirical work to construct mathematical knowledge 
(for instance, discovering by themselves counterexamples to their conjectures), like in 
the Theory of Didactic Situations (Brousseau, 1997), then some software (to represent 
functions, to deal with statistics, etc.) would be very helpful to support this work. 
One of the possible purposes of teaching mathematics (or teaching, in general) could 
be to promote a receptive attitude towards posing and answering objective questions 
about the world in a rational way. This is what in the anthropological theory of the 
didactic (Chevallard, 2006) has been called the paradigm of questioning the world. The 
typical means proposed by that theory to design and describe study processes within 
that paradigm are the so-called study and research paths. Those are “paths” that start 
with a meaningful generating question, to which the students are supposed to provide 
a “suitable” answer. Normally, one of the few clauses of the didactic contract in those 
study and research paths is that the teacher is not going to say any possible answer(s), 
and students are allowed to do whatever to find an answer. And, of course, they have 
to show some kind of argument to defend the suitability of that answer. If the students 
use the freedom provided by the didactic contract in the study and research paths, it is 
quite reasonable to suppose that students are going to use digital resources (search 
engines, applets, programming languages, etc.) to look for an answer to the generating 
question. Thus, in the paradigm of questioning the world, digital technologies are 
implicitly regarded as normal ready-made objects to be used along a path from a 
question to a corresponding answer. 
For instance, if one of the purposes of teaching mathematics is to get the students kind 
of familiar with the mathematical activity, like in the Inquiry-Based Learning 
approach, then one could use some specific software ‘for mathematicians’, and also 
allow the students to look for solutions to their problems on the Internet, as the 
mathematicians do themselves. Digital resources today have become more 
sophisticated and have the potential to be more than tools to perform tasks faster than 
by hand and paper-pencil techniques. Digital resources are equipped with interactive 
graphical user interfaces, making students able to participate more actively with the 
help of different forms of feedback. Hence, from a didactical point of view, it appears 
that there is a shift from teacher-centred to a more student-centred pedagogical 
approach to mathematics education. A good example is mathematics flipped 
classrooms, which, according to some versions, it takes a student-centred approach to 
learn at the university level, as studied in (Fredriksen, 2020) with a group of 
engineering students. The shift consists of moving away from a teacher-centred model, 
where the teacher is the main source of instruction towards a student-centred approach, 
where in-class time is used for exploring topics gained from out-of-class video 
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watching, creating rich learning opportunities among students. This is just one example 
of the impact of current digital resources on instruction. Other examples of student-
centred approaches using advanced digital resources are linked to e-assessment 
systems with formative feedback such as Numbas and Stack, programming languages 
with interactive user interfaces such as Python and MATLAB, visualisation and 
simulation tools such as SimReal (Hadjerrouit, 2020; Hadjerrouit & Gautestad, 2019). 
Of course, one of the purposes of many degrees at university is to prepare students for 
certain professions. As some of those professions make extensive use of digital 
resources (for instance, engineering), their study becomes an essential goal in these 
degrees. Some study and research paths have been designed and implemented with 
future engineers (e.g. Florensa, Bosch, Gascon and Mata, 2016, Quéré, 2019), and so 
they use a generating question anchored in working engineers’ practices. For example, 
for future chemistry engineers, Quéré (2019) proposed a study and research path in 
statistics starting with the question: “In the pharmaceutical industry, how do you make 
sure that the product (medicine) meets the dosage on the package?”. The students 
developed sub-questions linked with statistical tests and studied these questions, using 
in particular statistical software. While the use of educational technologies in study and 
research paths addressed to future engineers is not a central aim, it is frequently present 
and plays an important role. Indeed, there are indications that task design for digital 
resources will be crucial in technological-based mathematics courses at the tertiary 
level (Leung & Baccaglini, 2017). Task design is important due to the challenges faced 
by many engineering students in considering mathematics as detached from real-life 
applications (Fredriksen, 2020). Designing realistic mathematical tasks will thus 
become crucial in mathematics education across many disciplines.  
COVID-19 AND DIGITAL RESOURCES 
This last part of the paper will be devoted to reporting on the teaching experiences of 
two of the four authors during the 2020 lockdown. Needless to say, those reports are 
not intended to be scientific conclusions. Nevertheless, they can still be of interests, as 
testimonies of an era in which the implementation of digital resources is being 
accelerated due to the COVID-19 crisis. In (Clark-Wilson, Robutti & Thomas, 2020) 
the reader can find further interesting reflection on teaching with technology during 
the COVID-19 period, mainly concerned with secondary school. 
Due to the lockdown of NTNU in the middle of March 2020, Yael Fleischmann had to 
switch from a traditional attendance-based lecture (with about 120 participants, on 
Euclidian and hyperbolic geometry) in the middle of the Norwegian spring semester to 
a teaching format that was completely realised online. Using the screencast software 
“Explain everything”, she decided to record her lectures and upload them for the 
students twice per week. The software provides a digital “whiteboard” where one can 
write and record a voice-over explanation simultaneously Additionally, she arranged 
real-time online meetings with the students, using the universities digital learning- and 
communication-platform “Blackboard”, where students could ask questions and 
discuss tasks with the lecturer (Yael). As a consequence of this shift of format of the 
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lectures, she noticed that students, even if there were several channels to do this, 
hesitated to ask questions. As the lecturer, Yael also missed the feedback of the students 
concerning their level of understanding for the contents she was explaining, as she 
usually had gotten during the live lectures. Yael also noticed that speaking to a tablet 
computer instead of an audience influenced the formerly quite lively atmosphere of the 
lecture heavily. To tackle these challenges, she decided to include something that she 
called “sound mystery” into the lectures. That was a sound, for example, the music 
theme of the computer game “Tetris”, that was played sometimes during the recorded 
lecture, and students were asked to identify the sound and send her the answer. The 
motivation for this unconventional step was to motivate and provoke reactions of the 
students, and hereby to lower their barrier to get in touch with her as the lecturer. 
Indeed, this worked well and together with the answer to the “sound mystery”, students 
started to send questions concerning the contents of the lecture and also feedback on 
the format and style, which was very helpful for her as the lecturer. From the times and 
numbers of reactions, it was also possible to estimate by how many students and when 
the videos were watched (which is data that the universities’ platform cannot provide 
to the lecturer). Part of the feedback on the lecture was that students expressed very 
different needs concerning the new learning situation during the lockdown. While 
some students appreciated the flexibility given by the opportunity to watch the videos 
at any time and pace, others expressed their need for a given time schedule to stay 
motivated and disciplined. Yael tried to address this by providing videos of 
approximately the length of the former live lectures twice per week shortly before the 
former lecture hours. Students also expressed a high level of insecurity, in particular 
regarding the exam that was planned for this course and had to be taken as a digital 
home exam in consequence of the pandemic circumstances. Here, it was essential to 
communicate also minor decisions and developments concerning organisational and 
administrational details very frequently. It must also be said that the development of 
an exam that was supposed to be written by the students at home, with all possible 
(online-) sources and communication channels available for the students during the 
examination time, was a particularly hard challenge, and also the grading of an exam 
where different students did make use of these unconventional opportunities to 
dramatically different extents was demanding. It yet remains as an open question of 
what kind of digital resources could possibly be developed and used in the future to 
allow appropriate assessment under circumstances that do not allow physical presence. 
During the first lockdown in France, Ghislaine Gueudet taught to prospective 
secondary school mathematics teachers, and to students in educational research. Both 
kinds of students were engaged in Master degrees; the groups were between 15 and 35 
students. Most activities Ghislaine proposed were asynchronous: she offered resources 
and tasks on a Moodle platform, the students uploaded their work, she corrected it and 
sent it back. She also organised some synchronous activities but noticed it was very 
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difficult for some students to have access to the video-conference platform. Finally, 
the best solution to communicate with them was by using cell phones and WhatsApp. 
The most important lesson Ghislaine learned was linked with the observation of the 
difficult situation of some students. The research in mathematics education already 
addresses for a long time the issue of equity. Concerning the use of digital resources, 
Forgasz, Vale and Ursini (2010) noted that while the issue of access was important, 
some research has evidenced that digital resources can contribute to offer equitable 
learning opportunities. The study of equity issues at the university level is very active. 
For example, Adiredja and Andrews-Larson (2017) describe the evolution of research 
towards an increased interest in socio-political issues. They present in particular 
research that addresses the impact of social discourses and institutional contexts on the 
negotiations of power and identity in postsecondary mathematics. 
Nevertheless, the research they cite in their synthesis does not consider the difficulties 
raised or the opportunities created by the use of digital resources at the tertiary level. 
In this time of crisis, maybe the most important question concerning digital resources 
at the tertiary level is: “How should digital resources be used at tertiary level for 
fostering equity?” 
CONCLUSIONS 
There are different conceptualisations of the notion of digital resource. Here, beyond 
the technical one, we have examined those provided by the instrumental and the 
documentational approach. We have also pointed out that digital resources are 
considered each timeless noteworthy orthopaedic tools to help the study, as they are 
becoming more and more transparent and integrated into the normal current life of 
students. 
Sometimes the use made by students of digital resources is essentially rejected, or 
looked with suspicion, or at least not taken into account, by some didactic paradigms. 
For instance, some regard the teacher and the notebook (and perhaps some web pages 
specifically designed for the corresponding course, as if they were digital notebooks) 
as the only sources of information for students. This seems to be the case more 
frequently in primary and secondary education. In tertiary education students are given 
more autonomy and more responsibility of their own learning, and, at this point, digital 
resources (those provided by the university, or any others) seem to be a usual way to 
support their study. 
However, even if the use of digital technologies enlarges both teachers’ and students’ 
affordances, it also presents certain constraints, either due to technical reasons (for 
instance, the complexity of a certain applet) or to the reliability of the service provided 
by the technology itself. Anyway, those affordances and constraints are never due just 
to the digital materials or the teacher or the student, but rather to the indivisible system 
formed by these three components. Not to mention the importance of the content to be 
studied and the way it is related to the digital resources at stake. 
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Typically, digital resources do not provide by themselves new ends of education. 
Instead, they enlarge the collection of means to achieve those ends. Indeed, digital 
technology offers new possibilities for the design and management of study processes, 
both for teachers and students. Those new possibilities concern many aspects of study 
processes: representation of mathematical objects, feedback in the resolution of tasks, 
etc. 
There are didactic paradigms that incorporate digital resources themselves like objects 
of study (for instance, in degrees devoted to the preparation for a profession in which 
those resources are of typical use), or even objects of study and, at the same time, 
means for the achievement of further ends (like in the case of a programming language 
for the design of algorithms that use some theorems in a course on Numerical 
Analysis). 
Also, concerning certain didactic paradigms, even when a digital resource is not the 
object of study, it can be considered as an already-made object that students can use at 
any time along the study process. Actually, digital materials are very likely to be used 
by students if they have to carry out research in order to provide an answer to a 
question, and they are allowed to use any means. This is supposed to be the case in 
many didactic paradigms laying under the broad label of inquiry-based learning. 
The COVID-19 crisis has forced the imposition of online teaching. This change of 
scenario has revealed sometimes the economic and social inequality that exists in a 
single group of students. This is a reality which underlies educational institutions, and 
that may affect students’ commitment to their own education. Also, a teaching proposal 
completely interfered by digital technologies, with no physical presence, seems to 
experience defective communication between teachers and students. Moreover, a 
sudden and unexpected switch to a distance learning regime also entails deep problems 
in assessments, and not only those concerning cheating prevention. 
As we have seen, tertiary education in the digital age is full of challenges and complex 
issues, some of which have been pointed out and taken under consideration in this 
work. 
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INTRODUCTION  

In the Thematic Working Group about Calculus and Analysis (TWG1) 11 papers were 

presented in two sessions, followed by discussions in subgroups; between 20 and 27 

people participated in each presentation and discussion session. Focusing on the topics 

and the didactical issues raised by the authors in this group, we observed that both 

classical and new issues were addressed as compared with the main themes discussed 

in previous conferences (Trigueros, Bridoux, O’Shea and Branchetti, in press). Thus, 

we organized the papers into two groups, the first concerning the school-university 

transition and involving basic concepts of Calculus and the second concerning 

advanced mathematical topics and new research-based approaches to their teaching in 

advanced courses, including links with more basic concepts. Within each group we 

identified two subgroups of papers about similar topics and we separated the 

participants into two rooms, assigned by us to authors and freely chosen by every 

virtual participant, so to encourage fruitful discussions about issues of common interest 

between the authors of the presented papers and the participants.  

DISCUSSIONS DURING THE CONFERENCES 

Group 1 

In a first analysis, two common aspects of the 5 papers concerning basic concepts of 

Calculus were found. The first subgroup’s studies were related to basic key concepts 

at the transition from secondary school to university (3 papers), in particular: functions, 

limits and sequences (M. Flores Gonzales et al., F. Khalloufi-Mouha) and different 

approaches to the definition of continuity, using a topological approach (L. Branchetti 

et al.). The second subgroup focused on integrals (2 papers), one concerned with 

Riemann sums (I. Akrouti) and the other with the introduction of a different approach 

to the teaching of integrals using Klein’s plan B (G. Planchon et al.).  

The first subgroup faced discussion topics related to the transition to university, 

including a perspective on advanced courses. Discussion initiated the provoking 

question: Whether and, in any case, why is it meaningful to make a distinction between 

functions and sequences, since sequences are functions? An interesting debate about 

choices in different countries and the importance of discussing this distinction with 

respect to continuous functions emerged. Then discussion turned to an inquiry about a 
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study on recursive sequences and how students compute limits using general theorems 

on sequences and limits and their relation to the teaching of Calculus. Participants 

considered the topic as pertinent for the community. Attention turned to trigonometric 

functions, and the differences involved in their presentation when introduced in courses 

either at the transition to university or at the transition to advanced mathematics, going 

from angles/arcs to power series and differential equations. The importance of relating 

both definitions was underlined as well as the need for further studies.  

The notion of local routine, such as routines to determine continuity and 

differentiability at a given point of simple trigonometric functions or their composition 

was used in one paper in a way that was not convincing for all the participants, so the 

question: “Is using limits of a function and its algebraic expression to investigate its 

continuity at a point “local”? was discussed and the group stressed the need to check 

these terms carefully to avoid misinterpretations. 

Discussion of different theoretical approaches to the introduction of Calculus’ basic 

concepts, in particular the topological approach, brought about the observation that it 

allows to exploit the graphical register with a good connection to definitions in some 

tasks, so students might find it helpful. It was also observed that it would be interesting, 

but not easy, to find a university course where analytical and topological definitions 

are mixed. The need to adopt a sort of internal “interdisciplinarity” within the different 

branches of mathematics and in teaching also emerged and it was recognized that 

nowadays there are too many barriers between different fields. 

In the second subgroup, the discussion focused on the teaching of integrals. The notion 

of integral and students’ understanding of the fundamental theorem of Analysis and its 

relation to the notion of area was discussed together with the need of a new possible 

praxeology for integration. Interesting issues were addressed such as students’ 

approaches to tasks about integrals and its relation to didactical contract; students’ 

conceptions of integral, with a particular attention to its meaning (the role of the 

concept of area and measures in understanding integration) and the need to find ways 

to relate these ideas to their teaching and to formalize students’ ideas.  

The sub-group discussed students’ tendency to conceive “calculate” as “to find the 

exact value” and to think of it as different from “approximate” in some task. Such an 

issue was examined in terms of its possibility to lead to different approaches to tasks 

depending on how they are formulated and also on the didactical contract: either 

looking for an exact value or expressing the integral as a limit of Riemann sums with 

an unknown “f”. Also, those cases where functions are presented only by their graph 

and the influence of students’ possibility to use graphing calculators or computers 

during a test were addressed. A relevant discussion took place about the nature of the 

four conceptions of integral (primitive, area, sum, approximation), participants posed 

the question: are they concepts or processes? Another issue discussed in the sub-group 

concerned the praxeologies to teach integrals that should be presented to prospective 
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teachers to connect students’ ideas to the different theories of integration (Riemann, 

Lebesgue, etc.) at the school-university transition. Another relevant point was: How 

can the formalization of the area be concretely handled with university students? As 

measures (area) are only formalized in a measure theory course at university, an 

intermediate theory to establish a link with the secondary school integral should be 

introduced. Should it be focused more on proposing a new didactical engineering or on 

a strong mathematical basis of integration? In response, it emerged the need to provide 

students with new theoretically grounded praxeologies starting from their ideas and 

followed by a reconceptualization of basic concepts to introduce the concept of area, 

while making the theory behind them explicit.  

Group 2 

In one room, papers related to the role of representations in the transition to university 

mathematics and to more advanced mathematical courses were selected (3 papers): the 

use of local approximation tools to study functions (F. Belaj Amor); the use of 

diagrams in proving tasks (K. Gallagher & N. Engelke Infante) and a review 

concerning research on the calculus of two variable functions (R. Martínez-Planell & 

M. Trigueros). The other room focused on the teaching of advanced mathematical 

concepts and the role of intuition in this endeavour (3 papers): students’ concept images 

and example spaces concerning continuity and differentiability (E. Lankeit & R. 

Biehler); the learning potential of including advanced mathematical ideas into more 

elementary courses (R. Hochmuth) and intuition and discourse in the teaching of the 

complex path integral (E. Hanke). The main ideas of the discussions follow. 

In the first group participants discussed a difficulty found in the transition to university, 

namely the fact that when students are taking the first Calculus courses at university, 

they tend to continue using what they learnt in secondary school instead of new 

methods. Participants agreed that this may be possibly due to the need to provide 

opportunities for students to reflect on relations and differences between methods 

learnt before and the new ones, since this is not frequently addressed in most university 

courses. Students’ difficulties with Taylor series were described as due to a rupture 

occurring between the ideas of derivative as the slope of the tangent at a point and 

derivative as a way to find a linear approximation to a curve around a point. The fact 

that these two ideas remain compartmentalized may be a major cause of students’ 

difficulties. It emerged the need to clarify the role of Taylor series in problem solving 

when it is introduced.   

When confronted with new abstract mathematical concepts, university students may 

face a new transition. According to research findings, the transition from one variable 

to two variables calculus involves a reconstruction on the part of the students of their 

previous knowledge that is new to them to take into account changes and similarities 

involved when learning new types of functions. Two ideas were brought forward firstly 

this transition could be approached using different registers of semiotic representation, 
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and secondly, pedagogical means such as teamwork might be useful to facilitate this 

transition. A question was raised about the need of reconstructing previous knowledge 

when introducing multi-variable functions, or other functions where mathematical 

objects are impossible to draw or imagine. It led to a general discussion about 

knowledge reconstruction. From this discussion it emerged that “very simple” ideas, 

such as the use of the same symbolism for different mathematical objects, need to be 

deeply discussed to grasp the meaning of those abstract concepts. It was also 

commented that, for example, discussing with students how to define the slope could 

be a way for them to understand that “direction” plays a role in the construction of 

derivatives of multi-variable functions. Discussion on how some specific notions 

change when considered in different contexts led to pointing out the need to give 

students opportunities to represent them in different registers, or to imagine them as a 

way to give meaning to those objects.  

Another important topic was the design of new strategies to teach advanced 

mathematics: the participants discussed what choices could be more helpful to 

introduce students to advanced mathematical concepts. The development of students’ 

intuition and its possible use in proofs presented by an author was considered very 

interesting by participants. The use of diagrams, letting students manipulate and 

discuss them with their peers, was debated and questions about how to trace students’ 

gestures as they work emerged together with its relation to the development of 

intuition. Responses to this question lead to a teaching strategy based on these ideas 

which offers new possibilities to discover how students imagine things and develop 

their ideas even when they are asked to work on difficult topology problems and proofs. 

Students’ possibility to explore and discuss while they draw and interact with diagrams 

received a lot of attention and helped to understand its role in developing key ideas as 

ideas that convince the prover that the statement is true, but which the prover must also 

be able to translate and use into a written proof. The importance of letting students try, 

and possibly fail, if topics are not easily represented using diagrams, was also 

discussed. Participants considered that it might help in gaining valuable information 

about mathematical practices, such as why certain objects, processes and relationships 

cannot be represented well in a drawing.  

In the second subgroup, students’ repertoire of studied functions was considered to be 

generally limited to certain classes, so students develop from their courses a concept 

image about function which includes mostly smooth functions. Approaching other 

functions, such as those that are “locally flat” was considered to provide opportunities 

to foster a better approach to functions’ properties, particularly their differentiability. 

Questions such as: What happens if the function studied is not that regular? What can 

we tell about continuity and differentiability in those cases? were raised and 

suggestions to use some ideas coming from historical studies about partial 

differentiability implying differentiability, once the latter is defined in a non-standard 

way, were found helpful in developing students’ intuition about difficult results. 
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As mathematical concepts become increasingly abstract, they become difficult to 

visualize and mathematical intuition is not readily available. Discussion about what is 

intuitive in courses such as complex analysis was considered by participants worthy of 

attention on the part of researchers. Approaches to intuition like that of Fischbein were 

recalled, but other perspectives, as the commognitive discursive approach, were 

suggested as useful to both investigate the nature of intuition and provide tools for 

teachers to introduce students to difficult ideas. An interesting question arose about 

how to draw the line between rigorous and intuitive discourses. The use of intuitive 

arguments to make sense of mathematics was pointed out but comments about the 

difficulty to define an intuitive discourse also appeared. Participants considered the 

need to use a variety of approaches to abstract concepts so that students can develop 

meaningful ideas based on visualization, intuition and creativity. A way proposed to 

foster students’ development of intuition for advanced mathematical ideas consisted in 

designing tasks that could give students a glimpse of advanced mathematics in basic 

courses. The group discussed what type of tasks could be used, and how they could be 

presented to students. Approximation was suggested as a good topic for this purpose 

since it can be related to questions about the smoothness of a function or be used to 

discuss continuity for functions where continuity is a real issue.  

FINAL REFLECTION 

Papers presented during the conference were original in terms of the topics studied. 

They provided interesting aspects related to the teaching and learning of Calculus and 

Analysis that opened rich discussions on new topics that need more attention from 

researchers. Common topics in discussions covered the need to relate basic and 

advanced concepts through a reconceptualization of basic ideas when introducing 

advanced topics and to present advanced ideas in basic courses to anticipate meaningful 

concepts. This may require innovative approaches and the use of novel representations, 

such as diagrams, that can offer new ways to foster a diversity of teaching strategies to 

develop a deeper understanding of Analysis and abstract mathematical thinking. 

Moreover, even if the formal aspects were taken into account, as usual, by several 

authors, in this conference the issues of visualization, intuition and representation and 

the need to start from the students’ ideas became crucial and were addressed during all 

the group discussions. It was considered that developing students’ creativity and 

intuition is important also in the learning of advanced topics. 
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Conceptions de l’intégrale de Riemann des étudiants à l’entrée en 

classes préparatoires 

Inen Akrouti, Université Virtuelle de Tunis (ISEFC) & Université de Carthage 

(LaRINa), akroutiinen@yahoo.fr  

The purpose of this research is to identify students’ interpretations when solving 

Riemann integral problems. Thirteen students enrolled in public university (first year 

of preparatory class) participated in this study. Data was collected from a test that 

was proposed at the end of integration courses (Semester II). Through detailed 

analyses, large majority of students consider the Riemann integral as representing 

area under a curve or the values of an anti-derivative. In the other side, a few 

number of students use the limit of approximation conception in their responses. 

However, understanding the integral as a Riemann sum is highly productive for 

conceptual learning Tall (1992).  

Keywords: Teaching and learning of analysis and calculus, teaching and learning of 

specific topics in university mathematics, Riemann integral.   

INRODUCTION 

Le concept d’intégrale de Riemann est un concept fondamental de l’analyse réelle. Il 

se caractérise par une nature multiforme. Cette nature nécessite une attention 

particulière afin de faire comprendre aux étudiants les idées principales qui le 

fondent. Une utilisation excessive de certaines interprétations de l’intégrale pourrait 

limiter son application et son domaine d’efficacité.  

Dans une étude antérieure sur les conceptions des étudiants de l’intégrale définie à 

l’entrée à l’université (Akrouti, 2019b), il nous a été possible de souligner que les 

étudiants possèdent différentes interprétations, parmi lesquelles nous citons le 

processus d’approximation de produits infinitésimaux. Cette interprétation est 

particulièrement utile dans de nombreux contextes mathématiques et physiques. 

Beaucoup de recherches (Orton, 1983 ; Jones, 2013, 2015) la considèrent comme 

l'interprétation la plus précieuse qui pourrait donner un sens à l'intégration. En effet, 

cette interprétation se prête à être imaginée comme la somme des produits de 

longueurs et de largeurs de rectangles où l'un des facteurs est un infinitésimal ou une 

« très petite quantité ». Par ailleurs, elle permet à l’étudiant de construire 

effectivement le processus permettant de retrouver la valeur de l’intégrale définie en 

mettant en œuvre sa structure sous-jacente. Or malgré son utilité, de nombreux 

étudiants n’arrivent pas à investir cette interprétation dans leur travail. Ils 

abandonnent la construction de l’intégrale au profit du calcul de primitive et se 

lancent dans des procédures algorithmiques. 

D’un autre côté, beaucoup de chercheurs (Sealy, 2014 ; Ely, 2017) constatent que les 

étudiants n'ont pas une compréhension approfondie de l'intégration et qu'ils ne 

pourraient pas bien faire face à des situations légèrement modifiées. Ils ne peuvent 
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pas reconstruire les techniques dont ils ont besoin : la mémorisation des procédures 

les rend vulnérables face à un oubli (Akrouti, 2016). Ces chercheurs soulignent 

également que les étudiants peuvent avoir une connaissance procédurale de 

l'intégration en termes de techniques, sans une connaissance conceptuelle adéquate 

des structures sous-jacentes. En effet, la structure de l’intégrale renvoie à des 

méthodes différentes en fonction de la nature de la fonction à intégrer. Cela pourrait 

expliquer pourquoi les étudiants semblent confus et ont tendance à exercer leur 

mémoire plutôt que gérer la situation de manière créative et constructive.  

Suite à ce constat, nous avons pensé à proposer deux questions où la procédure de 

primitive ne fonctionne pas. Notre ambition est d’amener les étudiants à réinvestir le 

découpage/encadrement pour mettre en œuvre un processus d’approximation. Nous 

cherchons en particulier à explorer les différentes manières par lesquelles les 

étudiants conceptualisent l'intégrale dans des situations non standard. Nous 

envisageons notamment de répondre à la question suivante : de quelles manières 

répondent les étudiants face à des tâches non standard quand il s’agit de la notion 

d’intégrale ?  

LES CONSIDERATIONS THEORIQUES 

Pour aborder notre problématique et cerner les caractéristiques des conceptions des 

étudiants, nous avons choisi trois outils théoriques : le concept image (Tall &Vinner, 

1981), la dialectique processus/objet (Sfard, 1991) et les représentations sémiotiques 

(Duval, 1993).  

La notion de concept image (Tall & Vinner, 1981) fait référence à la structure 

cognitive totale associée à un concept mathématique. Une image « bien définie » d'un 

concept mathématique peut être considérée comme la forme ou la structure finale 

dans laquelle le concept est logé dans le raisonnement d'un individu. Le concept 

image peut inclure des idées significatives, comme il peut inclure des idées contraires 

aux significations et aux définitions formelles du concept. Dans certains cas, le 

concept image peut différer à divers égards du concept formel défini et accepté par la 

communauté mathématique en général. Tall et Vinner utilisent l’expression « The 

evoked concept image » pour indiquer les éléments du concept image qui ont été 

découverts dans les réponses de l’individu. Dans notre cas, le concept d’intégration 

pourrait être identifié à une aire, au calcul de primitive, à un processus 

d’approximation ou à autres interprétations.  

Le travail de recherche que nous avons entrepris depuis quelques années (Akrouti, 

2016, 2018, 2019a et 2019b) nous a permis de souligner l’importance du rôle que 

pourrait jouer le statut de la notion d’intégrale dans son enseignement/apprentissage. 

Pour cela, nous considérons la dialectique processus/objet (Sfard, 1991) comme 

deuxième outil théorique utilisé. Le statut processus identifie l’aspect opératoire du 

concept alors que le statut objet identifie son aspect structural. La théorie de 

réification (Sfard & Linchevski, 1994) considère que le passage d’une « conception » 

orientée vers le processus à une « conception » orientée vers l’objet est le moyen par 
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lequel une entité mathématique sera conceptualisée. Cela sous-tend également la 

capacité de l’individu à interpréter les représentations symboliques d'un concept à la 

fois de manière opératoire et structurale. La structure de l’intégrale définie renvoie 

aux sommes de Riemann par la relation mathématique suivante :        
 

 
 

             
   . Donc le travail de l’étudiant se manifeste dans le basculement de 

l’intégrale à la somme des aires algébriques (et vice versa), en prenant en compte le 

passage à la limite, donc en réifiant un processus (infinitésimal) de sommation 

d’aires. Nous considérons également que le calcul de primitives constitue un aspect 

opératoire de l’intégrale, qui est en quelque sorte « réifié » dans la 

formule                 
 

 
. Il faut noter que Sfard et Linchevski (1994) ont 

parlé également du niveau pseudo-structurel des connaissances où l’individu se limite 

au statut objet dans la réponse sans montrer comment elle est obtenue.  

Enfin, notre étude requiert les représentations sémiotiques (Duval, 1993). En effet, les 

types de traitement et de conversion sont des éléments efficients dans l’apprentissage 

du concept d’intégrale par la mise en relation qu’ils opèrent entre les différentes 

formes du concept (dans les registres géométrique, algébrique et numérique) : ces 

processus requièrent en général une flexibilité cognitive importante et sont de ce fait 

difficiles pour les étudiants. 

CONTEXTE ET OBJECTIF 

L’intégrale de Riemann est introduite pour les étudiants en classe préparatoire à partir 

de la définition suivante :        
 

 
    

   
         

   . En tant qu'énoncé 

mathématique, cette écriture est une représentation symbolique de la relation entre 

l’intégrale de Riemann et les sommes de Riemann (les sommes de Darboux sont 

exclues du programme officiel). Elle se base sur la décomposition de l’aire principale 

sous la forme d'une combinaison d’aires rectangulaires. Cela met en œuvre un 

processus algébrique et géométrique significatif pour trouver l’intégrale en question. 

L’aire de chaque rectangle est calculée en multipliant sa hauteur et sa longueur qui 

sont représentées par            . Le symbole de la somme indique que tous les 

rectangles doivent être additionnés et combinés pour trouver l’aire totale. Le 

processus consiste à subdiviser l’intervalle d’intégration autant que l’on souhaite : 

plus la subdivision est petite, plus l’approximation est meilleure. Donc le contexte 

dans lequel nous proposons les situations relève de la procédure intégrale : découpage 

→somme →encadrement →passage à la limite ; cette procédure met en œuvre les 

trois étapes suivantes :  

1) le découpage/additivité : si on découpe un domaine D admettant une aire en deux 

sous domaines disjoints X et Y, alors X∪Y admet une aire et aire (X∪Y)   aire 

 X   aire (Y) ; 

 2) l’encadrement : pour toute fonction   continue par morceaux, positive, croissante 

et bornée sur      , on définit les deux sommes suivantes : 
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                        et   

   
   

 
                     

   
     On a 

alors   
         

 

 
   

  ;  

3) le passage à la limite : lorsque le découpage du domaine D devient de plus en plus 

petit, l’écart entre les encadrements supérieurs et les encadrements inférieurs devient 

de plus en plus petit. Ce processus converge vers un réel unique qui est la valeur de 

l’intégrale en question. 

Dans le cadre de ce travail, nous supposons que le processus de résolution d’une 

tâche considérant l’intégrale en tant que limite d'une somme de Riemann est 

intrinsèquement différent du processus de recherche d’une intégrale par le calcul 

d'une primitive et que cette différence peut causer divers niveaux de confusion et de 

perplexité pour les étudiants (Akrouti, 2016). Il faut noter aussi que rien ne permet de 

penser qu’utiliser une procédure d’intégration via la recherche de primitive devrait 

être automatique ou naturelle pour les étudiants, du moins, pas pour les étudiants 

habitués à essayer de donner un sens à leurs activités mathématiques (Akrouti, 2016). 

En plus, rien de ce qu’ils font lors du calcul d’une intégrale définie ne serait lié aux 

idées basées sur les sommes de Riemann (Sealy, 2006). 

METHODOLOGIE 

Pour aborder cette recherche, nous avons choisi de proposer deux tâches non 

routinières aux étudiants après le cours d’intégration. Nous avons fait le choix 

d’écarter les tâches dont la résolution se base sur le Théorème Fondamental 

de l’analyse (TFA) : ces tâches sont fréquemment rencontrées et se focalisent pour 

l’essentiel sur l’aspect opérationnel de la notion d’intégrale. Les connaissances 

interrogées ici sont celles supposées acquises en classe préparatoire. Les questions 

proposées mettent les étudiants face à l’impossibilité d’utiliser la procédure de 

primitive. Il faut noter que l’enseignement de l’intégration en classe préparatoire ne 

prend en charge ni l’interprétation géométrique ni aucune explication métaphorique, 

sauf peut-être dans les cas les plus simples (Akrouti, 2016). Par ailleurs, la majorité 

des étudiants n’arrive pas à comprendre la signification de l’ostensif de la somme et 

comment se fait ce passage d’une quantité continue à une autre discrète. La même 

chose pour le différentiel     : il semble être étranger et s’évaporer dans le processus 

de résolution tout simplement. Nous considérons que le raisonnement fondé sur les 

sommes de Riemann peut correspondre à la syntaxe de l'expression intégrale 

d'origine, mais il n’est pas utilisé pour expliquer ou extraire une signification du 

processus de calcul. Il faut souligner également que nous avons posé quelques 

questions avant le test aux étudiants participants parmi lesquelles :  

- Quelle est la méthode que vous considérez la meilleure pour calculer une 

intégrale ? (I) 

- Pourquoi une intégrale définie pouvait être interprétée comme une aire ? (II) 

- Comment interprétez-vous la différence entre la somme de Riemann et 

l’intégrale définie ? (III) 
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Le test a été soumis à des étudiants de première année préparatoire à l’Institut 

Préparatoire aux Ecoles d’Ingénieurs de Tunis (IPEIT) parcours Math-physique 

(groupe MP8) après le cours d’intégration. Les étudiants ont vu l’intégrale de 

Riemann, les sommes de Riemann, le TFA et quelques techniques de calcul de 

primitives. Donc ils sont supposés connaître et maîtriser les propriétés algébriques de 

l’intégrale de Riemann. Le test a été proposé au mois de mai 2019. Treize étudiants 

ont participé en donnant des réponses écrites.  

La première question a pour objectif de mettre en œuvre la procédure intégrale pour 

une fonction définie à partir d’un graphique. Elle consiste à calculer l’aire d’une 

surface non polygonale en encadrant la fonction en jeu par deux fonctions en escalier.  

La deuxième question vise à mettre en œuvre la procédure intégrale à partir de 

l’interprétation graphique de l’expression algébrique d’une fonction continue, 

croissante et positive. Notre ambition est d’amener les étudiants à utiliser de 

nouvelles procédures (autre que le calcul de primitive) pour calculer la valeur d’une 

intégrale.  

ETUDE EXPERIMENTALE 

L’étude expérimentale comporte deux niveaux : analyse a priori et analyse a 

posteriori.  

Analyse a priori 

Dans l’analyse a priori, nous procédons de la manière suivante : tout d’abord nous 

commençons par la description de la question. Puis, nous identifions les procédures 

de réponse possibles à chaque question. En fin, nous citons les conceptions attendues. 

Question 1 : Le graphique ci-dessous est la courbe représentative d’une fonction  .  

Calculer        
 

 
. 

 

La question est non standard.  L’intégrale en jeu est donnée à partir de la courbe 

représentative de la fonction à intégrer. Les étudiants se retrouvent face à l’aire d’une 

surface non polygonale. Pour réussir cette tâche, deux procédures sont possibles : 

*Dans la première, il s’agit d’encadrer la surface S en question par deux surfaces 

polygonales, l’une contenue dans S et l’autre contenant S. Cette procédure met en 

œuvre la conception d’aire. Elle se limite au statut objet de la notion d’aire et par la 

suite elle met les connaissances dans un niveau pseudo-structurel (Akrouti, 2019a). 
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**Dans la deuxième, il s’agit de décomposer l’intervalle d’intégration en 

subdivisions aussi petites que l’on souhaite. La valeur de l’intégrale est encadrée par 

deux sommes (l’une inférieure, l’autre supérieure) ayant la même limite. La 

complémentarité processus-objet est ainsi acquise : l’intégrale en jeu (objet) et 

l’approximation par l’aire des surfaces polygonales subdivisées mettent en œuvre un 

processus de somme d’aires (processus). Cette procédure se base sur l’interprétation 

de l’intégrale en tant qu’aire et donc sur la conversion entre le registre graphique et le 

registre numérique. 

Question 2 : Soit   une fonction définie sur [0,2] par            . 

Calculer        
 

 
. 

La question est problématique. Bien que la fonction soit continue et admette une 

primitive, son expression ne rentre pas sous l’une des formes usuelles des primitives 

connues. Par ailleurs, elle met les étudiants face à un conflit cognitif : ils connaissent 

depuis la fin de la scolarité secondaire que toute fonction continue admet une 

primitive. Les étudiants qui ont gardé une bonne connaissance du cours sont en 

mesure de pressentir que la recherche d’une primitive n’est pas possible. Donc ils 

sont susceptibles de se baser sur l’interprétation de l’intégrale en tant qu’aire 

algébrique. Pour ces étudiants, nous pouvons identifier deux catégories. La première 

se base sur la procédure de processus d’approximation pour répondre. Cette 

démarche s’accompagne de conversions entre registres : au départ une conversion 

(algébrique/graphique), ensuite une conversion (graphique/numérique) pour calculer 

la valeur de l’intégrale donnée. La complémentarité processus/objet est en jeu ici : 

l’intégrale de la fonction proposée en tant qu’aire (objet) et le processus 

d’approximation (processus). Alors que la deuxième catégorie se base sur 

l’approximation par l’aire d’une surface polygonale. Cette procédure met en œuvre le 

statut objet et les étudiants sont à un niveau pseudo-structurel. Pour d’autres qui 

possèdent une conception de primitive, induite en partie par l’institution (Akrouti, 

2019a), consistant à restreindre la question à un contexte algébrique, nous attendons 

qu’ils aillent rechercher une primitive pour pouvoir appliquer le TFA. Ces étudiants 

pourraient penser aux changements de variables ou à l’intégration par parties : il 

s’agit d’une conception de primitive qui identifie le calcul intégral à une recherche de 

primitive.  

Analyse a posteriori 

Deux étudiants ont répondu à la première question en utilisant la notion d’aire d’une 

surface polygonale pour calculer la valeur de l’intégrale cherchée. Six étudiants ont 

donné des réponses en se basant sur la procédure de processus d’approximation et 

cinq étudiants n’ont pas répondu à la question. Deux procédures de réponses ont été 

utilisées par les étudiants. La première procédure fait partie de la conception de limite 

d’approximation et fait appel à la méthode des rectangles : les étudiants qui ont choisi 

cette démarche n’ont pas pu la mettre en application (Fig. 1). Ils ont simplement 

décrit la méthode sans calculer effectivement la valeur de l’intégrale. La conception 
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existe mais, elle n’est pas bien développée. Certains étudiants ont cherché une 

structure algébrique à partir de la représentation graphique donnée (Fig. 2). Il s’agit 

d’une tentative pour construire une analogie avec la structure algébrique afin de 

trouver la structure sous-jacente dans une somme de Riemann, où les hauteurs, les 

longueurs et les sommes de rectangles sont toutes représentées algébriquement. 

Notons qu'aucun de ces étudiants n'avait invoqué le raisonnement basé sur les 

sommes de Riemann pour interpréter l’intégrale dans la deuxième question, et que la 

plupart d’entre eux avaient montré qu'ils ne pouvaient pas le faire dans la première 

question. Ce qui manquait, c'était la conscience que les procédures de calcul d’une 

intégrale étaient soumises à un raisonnement géométrique.  

La deuxième procédure se base sur l’approximation par l’aire d’une surface 

polygonale : les étudiants ont décomposé l’aire en somme d’aires de rectangles, de 

triangles et de trapèzes (Fig. 3). Cette procédure se base sur l’interprétation de 

l’intégrale en tant qu’une aire algébrique. Cette procédure permet d’approcher la 

valeur de l’intégrale mais, elle ne permet pas de donner sa valeur exacte. 

                                                                

            Fig. 1                                       Fig. 2                                       Fig. 3 

Pour la deuxième question, sept étudiants ont utilisé la procédure de primitive pour 

calculer la valeur de l’intégrale proposée. Parmi eux, six étudiants ont choisi la 

méthode de changement de variables et n’ont pas terminé le calcul parce qu’ils ne 

sont pas arrivés à trouver la forme d’une fonction usuelle ; un étudiant a choisi 

l’intégration par parties, il lui semble qu’il s’agit de la recherche d’une primitive de la 

fonction donnée. Deux étudiants ont choisi de passer à la représentation graphique de 

la fonction à intégrer et ont utilisé l’aire sous la courbe pour répondre (Fig. 4 et Fig. 

5). Le reste des étudiants n’a pas répondu à la question. 

                                    

                      Fig. 4                                                                   Fig. 5 

La majorité des étudiants a choisi de calculer l’intégrale proposée dans la deuxième 

question par la recherche d’une primitive puis elle a appliqué le TFA. Ce résultat est 

attendu pour deux raisons. D’une part, pour eux il y a identification entre intégrale et 

59 sciencesconf.org:indrum2020:294774



  

calcul de primitive : pour la majorité d’entre eux, le TFA constitue la définition de 

l’intégrale et ils n’ont jamais utilisé d’autres méthodes pour calculer une intégrale (en 

répondant à l’une des questions proposées avant le test : la question I). D’autre part, 

les étudiants se limitent souvent aux connaissances procédurales nécessaires à la 

résolution algébrique de certaines intégrales, alors que le recours au graphique est une 

technique non reconnue. La représentation graphique est généralement utilisée pour 

interpréter l’intégrale en termes d’aire et non pour la fonder. Il faut noter que 

lorsqu'on a demandé aux étudiants pourquoi la résolution d'une intégrale définie par 

le calcul d’une primitive permet de calculer l’aire, aucun des étudiants n'a pu 

répondre à la question. Quelques étudiants (un étudiant dans la question 1 et deux 

étudiants dans la question 2 du test) ont utilisé la notion d’aire pour calculer 

l’intégrale cherchée. Ils l’ont approchée par des aires de surfaces polygonales 

(rectangle, trapèze, triangle). Bien que ce choix, qui se base sur la conception d’aire, 

inclue l’idée d’approximation, il est insuffisant pour donner la valeur exacte des 

intégrales cherchées dans les deux questions.  

Aucun des étudiants n’a utilisé un raisonnement fondé sur les sommes de Riemann 

pour calculer l’intégrale définie de la deuxième question. Pourtant, tous ces étudiants 

avaient étudié à la fois les sommes de Riemann et l’intégrale définie. Lorsqu'ils ont 

été interrogés sur les deux notions (la question (III)), ils ont été conscients de 

l'existence d'une relation, mais aucun ne l'avait articulée. Certains étudiants ont 

considéré les deux notions comme deux méthodes différentes pour trouver l’aire. 

D’autres étudiants considèrent les sommes de Riemann comme une méthode 

d'approximation d'une aire, alors que le TFA permet de calculer sa valeur exacte. 

Parmi ces étudiants il y a quelques-uns qui ne pensent aux sommes de Riemann que 

lorsqu’il n’est pas possible de calculer une intégrale « directement » (c’est-à-dire par 

la recherche d’une primitive). La plupart de ces étudiants ont montré que leur 

connaissance des sommes de Riemann n’a aucune influence sur leur compréhension 

de l’intégrale définie.  

CONCLUSION 

La structure du concept d'intégrale est propice à l'utilisation de représentations 

multiples. A titre d’exemples, il y a des « problèmes de l’aire sous la courbe » qui 

peuvent être résolus en utilisant des graphiques, des « problèmes des sommes » qui 

peuvent être résolus dans le registre numérique et des « problèmes des intégrales des 

fonctions usuelles » qui peuvent être résolus en utilisant des procédures algorithmes 

se basant sur un raisonnement algébrique.  

L’analyse du test nous a permis de souligner que la conception de primitive, qui sous-

tend un aspect opératoire de l’intégrale, était la plus utilisée par les étudiants. Ils 

pensent que les procédures algébriques sont plus utiles dans le processus de 

résolution. Il faut noter que l'une des raisons qui pourrait les pousser à faire ce choix 

est la forte présence du raisonnement algébrique tout au long des cours précédents.  
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Bien que quelques étudiants considèrent que l’utilisation des procédures algébriques 

est utile pour résoudre quelques problèmes de l’intégrale définie et ne l’est pas dans 

d’autres (en répondant aux questions que nous avons posées), ils les ont utilisées 

même dans des problèmes qui devraient être résolus à l’aide d’autres techniques (la 

question 2 du test). Il reste à savoir pourquoi les étudiants se limitent à utiliser le 

registre algébrique et pourquoi ils ne réussissent pas à résoudre les problèmes qui 

nécessitent le travail dans d’autres registres. D’autres étudiants disent, en répondant 

aux questions posées avant le test, qu’ils n’ont pas rencontré des problèmes sur 

l’intégrale définie où la résolution nécessite l’utilisation des approches numériques au 

cours de leur processus d’apprentissage. Ainsi, ils considèrent que les représentations 

numériques ne sont pas nécessaires au processus de résolution des problèmes. 

Beaucoup d’étudiants ont choisi d’autres représentations en répondant à une question 

particulière sur la représentation convenable pour traiter une tâche issue de l’intégrale 

définie, alors que, dans le processus de résolution de problèmes, il y avait une 

accumulation vers un type de représentation unique (algébrique). Cela a entraîné des 

incohérences entre les représentations utiles pour répondre et celles utilisées 

effectivement dans la réponse. Le nombre d’étudiants, qui ont basculé d’une 

représentation vers une autre, était considérablement limité. Cela est peut-être dû à 

l’enseignement qui s’appuie beaucoup sur les registres de représentations 

algébriques. D’une façon générale, cette étude nous a permis d’identifier deux types 

de conceptions :  

-Une première conception, utilisée par un ensemble d’étudiants, se base sur le TFA 

pour calculer la valeur de l’intégrale recherchée. Il s’agit d’une conception de 

primitive qui se focalise sur un aspect algébrique et met en avant le statut processus. 

Cela signifie que cette conception perçoit l’intégration comme le processus inverse de 

la dérivée. En effet, cette conception limite les connaissances à un aspect 

opérationnel. Les étudiants ayant utilisé cette conception présentent des difficultés 

lorsqu’il s’agit d’un contexte non routinier comme dans le cas de la question 2 du 

test. 

-Une deuxième conception interprète l’intégrale de Riemann comme une aire. Cette 

conception pourrait amener à utiliser deux procédures différentes correspondant 

chacune à un concept image évoqué. La première procédure se base sur 

l’approximation de l’intégrale recherchée par l’aire d’une surface polygonale ou une 

somme d’aires de surfaces polygonales. Cette procédure se limite à l’approximation 

par un nombre limité d’aires de surfaces polygonales ce qui ne permet pas de trouver 

de bonnes approximations. La deuxième procédure consiste à effectuer des 

subdivisions très fines à l’intervalle d’intégration pour mettre en œuvre un processus 

d’approximation puis, à appliquer la limite. Les étudiants, se basant sur cette 

procédure, utilisent à la fois le statut processus et le statut objet de l’intégrale ce qui 

permet de développer des connaissances d’ordre structural. Elle met également en 

œuvre la conversion entre les registres graphique/numérique.  

61 sciencesconf.org:indrum2020:294774



  

La majorité des étudiants a développé des connaissances qui ne mettent pas en œuvre 

la structure sous-jacente de l’intégrale de Riemann. Elles sont dans leur majorité des 

connaissances d’ordre pseudo-structurel (Sfard et Linchevski, 1994). Il faut noter 

qu’il ne faut pas se limiter, pour la conception d’aire, au cas de fonctions positives. 

En effet les étudiants pourraient rencontrer des difficultés, lorsqu’il s’agit des 

fonctions négatives ou qui changent de signes. Les résultats de cette étude montrent 

également que l’interprétation de l’intégrale en termes d’aire ne pose pas de 

problèmes chez beaucoup d’étudiants, mais plutôt le recours à la procédure de 

processus d’approximation était une difficulté considérable.  
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Résumé : Cet article porte sur l’enseignement et l’apprentissage du concept 
d’approximations locales des fonctions. Il vise principalement à étudier la nature 
et l’origine des difficultés des étudiants lors de la mise en œuvre des outils – 
développements limités, formule de Taylor-Young - au début du cycle 
préparatoire aux études d’ingénieurs en Tunisie. Après avoir explicité les grandes 
lignes des programmes officiel, nous effectuerons une analyse des raisonnements 
des étudiants confrontés à une situation mathématique visant à évaluer leurs 
capacités à faire un usage raisonné de leurs connaissances dans le domaine des 
approximations locales des fonctions au voisinage d’un point et lors de l’étude de 
leurs comportements asymptotiques.  
Mots clés : enseignement, apprentissage, raisonnement mathématique, 
approximations locales, développement limité. 

INTRODUCTION 
En Tunisie, au début du cycle préparatoire aux études d’ingénieurs, les 
programmes en vigueur stipulent que les notions de développement limité, la 
relation de comparaison des fonctions et la formule de Taylor-Young doivent être 
enseignées afin de permettre la résolution de problèmes d’approximations locales 
de fonctions et de modélisations de phénomènes physiques relevant de différents 
domaines (mécanique, optique, etc.). Dans le cadre de notre mémoire de master 
(Belhaj Amor, 2016), les investigations conduites dans les domaines de l’histoire 
des mathématiques, de l’épistémologie, et de la didactique nous ont permis de 
conclure qu'au début du cycle préparatoire, le concept développement limité n’est 
pas introduit en tant que nouvelle technique d’approximation locale des fonctions, 
permettant d’articuler les différents types d’approches (cinématique, graphique, 
géométrique, analytique, algébrique), afin d’en faire usage dans des domaines 
intra et extra-mathématiques (Belhaj Amor, ibidem). Ainsi, nos travaux de 
recherche de master ont mis en évidence un phénomène important le fait que les 
difficultés éprouvées par les étudiants sont étroitement liées à la difficile 
conceptualisation des objets d'approximations locales des fonctions à l’entrée 
dans l’enseignement supérieur. Dans le domaine de l’étude des fonctions, 
certaines recherches en didactique ont permis d’établir que les difficultés des 
étudiants sont dues principalement à l'existence de ruptures lors de la transition 
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secondaire/supérieur (Ghedamsi, 2016). Plus précisément, dès le début de 
l'université, l’approche algébrique fait obstacle à l’entrée dans le champ de 
l’Analyse et notamment à la conceptualisation des notions locales sur les 
fonctions (Vandebrouck, 2011). Ainsi lors de l'étude locale des fonctions au début 
de l'université,  

"…les étudiants traitent algébriquement les équivalents ou les développements 
limités, donnant très difficilement du sens aux expressions du type o(x) (…). Enfin, 
les étudiants ne tracent des graphes que quand la question leur est explicitement 
demandée et ils ne pensent pas spontanément à utiliser cette représentation des 
fonctions pour faire les raisonnements locaux attendus d’eux." (Vandebrouck, 2011, 
p.1-2) 

Ces précédents travaux n'ont pas ciblé précisément l’analyse didactique des 
difficultés des étudiants lors de l'étude des approximations locales des fonctions 
dans la résolution des problèmes intra et extra mathématiques à l’entrée dans le 
supérieur. 
Ces constats nous amènent à nous interroger sur la nature et l'origine des 
difficultés rencontrées par les étudiants lors de la mise en œuvre des 
connaissances et des savoirs inhérents aux approximations locales des fonctions 
en classes préparatoires aux études d’ingénieures tunisiennes (IPEI), dans la 
section Physique-Chimie. 

METHODOLOGIE GENERALE ET CADRES THEORIQUES 
Notre travail de recherche porte sur l'enseignement et l'apprentissage des outils 
d'approximations locales des fonctions. Plus précisément, nous souhaitons étudier 
les difficultés rencontrées par les étudiants lors de la formulation et l’utilisation 
des développements limités d’une fonction au voisinage d’un point, de la relation 
de comparaison des fonctions et de la formule de Taylor-Young.  
Notre méthodologie repose sur l’élaboration de trois situations mathématiques - 
assimilables à des énoncés de problèmes – élaborées en étroite collaboration avec 
l’enseignante de la classe. Ces situations ont été proposées aux étudiants en avril 
2019, dans le cadre d’une évaluation formative et formatrice, en vue de déterminer 
leurs acquis et leurs difficultés inhérentes aux approximations locales des 
fonctions.  
En collaboration avec l’enseignante, nous avons proposé en classe cette 
évaluation écrite constituée de trois situations mathématiques à 2 classes, chacune 
composée de 22 étudiants. 
Ce devoir écrit fait suite à l’enseignement des chapitres "Analyse asymptotique", 
"Intégration" et "Séries numériques". La modalité de passation de l’évaluation est 
la suivante : chaque étudiant travaille seul afin de produire les réponses aux 
questions. Les étudiants disposent de 75 minutes pour rédiger leur composition. 
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Dans cet article, compte-tenu des contraintes éditoriales, nous avons choisi de 
mettre la focale sur la première situation proposée aux étudiants. D’une part, car 
elle a été traitée par une majorité d’entre eux, d’autre part par la richesse et la 
variété des réponses produites. 
Nous allons réaliser, dans le cadre de la Théorie des situations didactiques, 
l’analyse a priori de cette première situation. Ensuite, nous effectuerons l’analyse 
a posteriori de cette situation ; nous analyserons les productions des étudiants en 
nous attachant à étudier leurs raisonnements produits en réponse aux questions.  
Pour cela, nous adoptons le point de vue de Brousseau et Gibel (2005) qui ont 
proposé une classification des raisonnements des élèves, en situation de résolution 
de problèmes, selon leur(s) fonction(s) : organiser sa démarche, décider des 
connaissances à mobiliser, effectuer un changement de cadre, décider d’un 
changement de registre, formuler une explication, formuler une justification, 
interpréter le résultat d’un calcul, contrôler la validité du résultat obtenu. 
Comme indiqué dans les travaux de Bloch et Gibel (2011), l’analyse des 
raisonnements produits par les étudiants nécessite d’avoir recours à une analyse 
sémiotique afin d’analyser les signes produits, leurs usages et leurs 
transformations. Nous utiliserons ainsi les notions de registres de représentations 
sémiotiques (Duval, 1993) afin d’identifier d’éventuels changements de registres. 
Pour compléter l’étude des raisonnements, nous effectuerons une analyse en 
termes de dimensions sémantique et syntaxique (Kouki, Belhaj Amor et 
Hachaichi, 2016), (Bloch et Gibel, 2011). Dans notre cas, la syntaxe fournit des 
règles de transformation des expressions analytique et algébrique dans un 
raisonnement mathématique. Dans certains cas, sa satisfaction nécessite un 
contrôle sémantique prenant en compte aussi les interprétations et vérifications. 
La prise en compte de ces trois composantes du raisonnement (fonction, 
dimension sémiotique et nature) nous permettra d'analyser les différents types de 
raisonnements élaborés par les étudiants afin d'identifier la nature et l'origine des 
erreurs commises dans leurs raisonnements erronés (Gibel, 2018). 
Afin de déterminer les connaissances antérieures de l'étudiant sur les concepts 
d'approximations locales des fonctions, nous commençons par une présentation 
des programmes officiels de la quatrième année secondaire (section Sciences 
Expérimentales) et la première année des classes préparatoires (section Physique-
Chimie). Ensuite nous conduisons une analyse de notre corpus constitué des 44 
productions des étudiants selon deux axes dont le premier se rapporte sur l'étude 
des fonctionnements et nature des raisonnements. Le deuxième axe est lié à une 
analyse en termes de répertoire didactique et plus précisément les connaissances 
et savoirs mobilisables. 
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PRESENTATION DES PROGRAMMES OFFICIELS 
Avant d’analyser les productions des étudiants, nous conduisons une étude des 
programmes afin de déterminer les éléments du répertoire didactique de la classe, 
défini par Gibel (2004), qui se décompose de deux types d’objets le "registre des 
formules" qui est la collection des formules et le "système organisateur" qui 
permet d’organiser et d’utiliser ce répertoire didactique (Gibel, 2018). 
Etude du programme officiel de la quatrième année du secondaire de la 
section Sciences expérimentales (SC-E) 
Au lycée, l'objectif principal du programme de la quatrième année secondaire 
(SC-E) confère à l’enseignant une mission principale celle d'aider l'élève à utiliser 
son répertoire didactique constitué des algorithmes et des procédures faisant appel 
aux technologies de l’information et la communication (logiciel, calculatrice, etc.) 
ainsi que l’interprétation des illustrations graphiques. Par ailleurs, l'enseignant est 
invité à aider l'élève à développer sa démarche de raisonnement par la rédaction 
et l’explication orale de la résolution des problèmes à travers l’interaction avec 
ses collègues. Le texte du programme impose le recours aux registres graphique 
et géométrique par des illustrations graphiques ou par des logiciels pour introduire 
des nouveaux objets. En recours au contenu du programme lié à nos objets d'étude, 
les approximations locales des fonctions algébriques et transcendantes sont 
présentées via les approximations affines des fonctions ainsi que les différentes 
formes d'équations de tangente obtenues à partir du nombre dérivé. Ainsi, 
l'enseignement des concepts d'approximations locales des fonctions nécessite 
l'articulation des différents registres afin de développer le raisonnement de l'élève 
par la rédaction et l'explication orale d'un raisonnement mathématique.  
Etude du programme de la première année Physique-Chimie (PC)  
Le texte officiel du programme actuel (2016) de première année PC commence 
par une introduction précisant la mission de l’enseignant qui se réalise selon deux 
axes. Le premier est du côté "objet mathématique" par la mise en jeu des 
connaissances antérieures des étudiants et l’intérêt d'introduire des nouvelles 
notions dans les domaines intra et extra mathématiques. Le deuxième axe est du 
côté "raisonnement mathématique" par la mise en jeu de la vérification des 
différentes étapes d’une démonstration ou un raisonnement mathématique en 
utilisant des éléments de la logique, des langages mathématique, des techniques 
fondamentales de calcul en Analyse, des règles de calcul et d'outils logiciels dans 
certains cas des situations nécessitant l'explication avec des illustrations 
graphiques. Par ailleurs, l'objectif principal de l'enseignement du chapitre 
"Analyse asymptotique" est d'amener l'étudiant à maitriser les techniques 
asymptotiques à travers des calculs asymptotiques simples, la détermination des 
développements limités des fonctions et la résolution des problèmes que la 
vérification des propriétés des nouvelles notions et surtout liées à la notion de 
relation de comparaison. L'enseignant est invité à mobiliser les registres 
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graphique et géométrique par l'utilisation des illustrations graphiques en 
s'appuyant sur les outils logiciels dans le cas des  

"…situations dont la gestion manuelle ne relèverait que de la technicité seront traitées 
à l'aide d'outils logiciels" (PO, p.8) [1] 

Les savoirs à enseigner dans ce chapitre sont les concepts de relation de 
comparaison des fonctions, le développement limité et la formule de Taylor-
Young afin de déterminer des développements limités usuels. L'objet 
développement limité est un nouvel outil pour le calcul de l'équivalent et de limite, 
l'étude locale d'une fonction et de son comportement. 
En conclusion, l’objectif principal de ces programmes est de ramener l’élève à la 
rédaction autonome d’un raisonnement ou d’une démonstration mathématique en 
articulant les dimensions sémantique et syntaxique par la mobilisation des 
différents registres graphique, géométrique, analytique, algébrique et numérique. 
ANALYSE EXPERIMENTALE 
Avant de présenter l'analyse a priori de la première situation selon un plan 
didactique et l'analyse de notre corpus constitué des 44 productions des étudiants, 
nous allons commencer par la présentation de l'énoncé de la situation étudiée. 
Enoncé de la situation-problème  

On considère la fonction f définie par : 1
1

)( 2 +
−

= x
x

xxf  

1) On s’intéresse à faire une étude locale de f  en 0. 

a. Donner le DL2(0). 
b. En déduire )0('f  et )0(''f . 
c. Déterminer l’expression de la tangente Δ à Cf passant par le point ))0(,0( f  ; 
préciser la position de Cf par rapport à Δ. 
2) Etude de f  en +∞ : 

a. Montrer que l’on a : )1(1
2
31)(

xxx
xxf ε+++=  avec 0)1( →

x
ε  quand +∞→x  

b. Déduire une fonction équivalente à f en +∞. 
c. Préciser le comportement de f  en +∞. 

3) Préciser de même le comportement de f  en -∞. 

Eléments d’analyse a priori de la situation étudiée 
Ce problème a été élaboré afin d'étudier la capacité des étudiants à articuler les 
différents objets d'approximations locales des fonctions en vue de réaliser l’étude 
locale des fonctions au voisinage d’un réel et le comportement d’une fonction en 
+∞ et en -∞, ainsi que l’intérêt de l’objet développement limité en tant que nouvel 
outil pour résoudre certaines questions traitées au secondaire.  
Sur le plan didactique, la situation est assimilable à un problème de 
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réinvestissement des connaissances antérieures relevant des trois chapitres 
étudiés. Nous pouvons distinguer quatre variables didactiques : 
VD1 : La nature de la fonction à étudier, nous avons choisi de proposer une 
fonction sous forme d’un produit des fonctions admettant des développements 
limités usuels.  
VD2 : Les voisinages autours desquels les étudiants doivent déterminer les 
développements limités de la fonction. Dans l’évaluation, il s’agit d’étudier les 
développements limités au voisinage de 0, en +∞ et en -∞. 
VD3 : Le choix de l’ordre des développements limités usuels. 
VD4 : La durée laissée aux étudiants pour résoudre les problèmes dans le cadre de 
l’évaluation. 
L’étudiant en s’appuyant sur ses connaissances antérieures va établir une action 
sur les objets qui est motivée par son répertoire didactique. 
Présentation et analyse des principaux résultats expérimentaux 
Nous allons présenter les principaux résultats de l'analyse des productions des 
étudiants de chacune des questions proposées dans cette situation. 
Question 1-a  
Nous remarquons l'existence des difficultés inhérentes à la justification du 
raisonnement. La majorité des étudiants ont produit des raisonnements purement 
syntaxiques. En effet, ils ne contrôlent pas l'ordre auquel chacun des 
développements limités doit être réalisé. Par ailleurs, l'usage direct de la formule 
(*) du répertoire didactique de la classe, par certains étudiants dans les étapes de 

calculus des développements limités de 1)1( −−x  et 2
1

2)1( x+ , met en évidence 
l'erreur du signe (-). 

(*) )(
!2

)1(1)1( 22 xoxxx +
−

++=+
αααα  

Question 1-b 
Certains étudiants ont un raisonnement de nature syntaxique. Ils n'ont pas justifié 
l'application de la formule de Taylor-Young. En effet, deux étudiants seulement, 
parmi les 22 admettant des réponses valides, ont vérifié que la fonction f est de 
classe C2 sur tout intervalle I un voisinage de 0.  
La majorité des étudiants ont des difficultés d'ordre technique. D'un côté, un 
nombre assez-important d'entre eux ont utilisé une méthode n'ayant aucune 
relation avec le répertoire didactique de la classe. Ils ont calculé les dérivées 
successives de développement limité de la fonction f au voisinage de 0 afin de 
donner les valeurs de )0('f  et )0(''f . D'un autre côté, certains étudiants ont 
présenté directement des valeurs fausses. Ainsi, par leurs réponses erronées, ces 
étudiants ne donnent pas de sens au développement limité et la formule de Taylor-
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Young comme une approximation locale de la fonction f par un polynôme de 
degré 2 dans le but de déterminer les valeurs de )0('f  et )0(''f . Finalement, 
certains étudiants ont recours à leurs connaissances antérieures, vues au lycée, par 
l'utilisation de la technique [

0
)0()(lim

0 −
−

→ x
fxf

x
] pour calculer la valeur de )0('f . 

Question 1-c  
Nous remarquons que rares sont les étudiants qui ont justifié leur raisonnement. 
En effet, ils ont écrit directement l'équation de la tangente et sa position par 
rapport à la courbe représentative de la fonction f. Par ailleurs, certains étudiants 
ont recours à leurs connaissances anciennes, par l'utilisation des techniques vues 
au secondaire, pour déterminer l'équation de la tangente à partir du calcul du 
nombre dérivé, ainsi que sa position par rapport à sa courbe représentative en 
étudiant le signe de ))(( yxf − . En revanche, d'autres étudiants articulent des 
connaissances du secondaire et du supérieur. Ils ont obtenu l'équation de la 
tangente par le calcul du nombre dérivé en mettant en valeur le rôle de 
développement limité pour déterminer sa position par rapport à la courbe Cf. 
Question 2-a  
La majorité des étudiants mobilisent leurs connaissances antérieures par l'usage 
direct de la technique de changement de variable et la formule (*) des 
développements limités. Leur raisonnement est d'un aspect purement syntaxique. 
Tous les étudiants ont utilisé l'expression de la notion de voisinage [ )1(

x
o ] au lieu 

celle de [ )1(1
xx

ε ] donnée dans la question. A partir des raisonnements erronés, 

nous pouvons identifier plusieurs difficultés liées au signe et à la notion de 
voisinage. La recherche de développement limité de )1(

x
f  traduit l'existence de 

difficulté liée à la notion de voisinage. Par ailleurs, certains étudiants font usage 
de technique de changement de variable et de la formule des développements 
limités au voisinage de 0 (*) du répertoire didactique de la classe. Mais on relève 
des erreurs dans les étapes suivantes de leur raisonnement soit par le calcul des 
produits des développements limités à travers l'élimination du reste, soit par 
l'écriture de reste )(xo  au lieu de )1(

x
o . 

Question 2-b 
La plupart des étudiants ont un problème de justification de leur raisonnement. Ils 
donnent directement la fonction équivalente. Par ailleurs, certains étudiants ont 
justifié leur raisonnement par le calcul des limites des différents termes du 
développement asymptotique afin d'obtenir la fonction équivalente.  
Le calcul de la limite du rapport de )(xf  par x , par certains étudiants, traduit la 
difficulté de l'usage de la technique de supérieur. Les étudiants, par leurs 
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raisonnements erronés, n'ont pas recours à leurs connaissances antérieures pour 
obtenir une fonction équivalente par la mise en considération des notions de la 
relation de comparaison et le développement limité d'une fonction en +∞. 
Question 2-c  
A partir de notre corpus, un quart des étudiants ont un raisonnement de nature 
syntaxique. La majorité d'entre eux font appel à leur anciennes connaissances de 
secondaire pour la détermination de l'équation de l'asymptote d'une part et, ils 
remplacent la fonction f au cours de calcul de limite des fonctions [ )(xf , 

x
xf )(  et 

( xxf −)( )] soit par son développement asymptotique, soit par sa fonction 
équivalente, d'autre part. En revanche, un seul étudiant donne l'intérêt de l'objet 
développement limité en faisant usage de la technique de supérieur afin de décider 
que la droite d'équation 1+= xy  est l'asymptote oblique. 

La majorité des étudiants, par leurs raisonnements erronés, ont rencontré des 
difficultés d'ordre technique liées à leurs connaissances antérieures de secondaire 
concernant l'étude du comportement d'une fonction. Par ailleurs, d'autres étudiants 
ont un problème pour employer la formule de fonction équivalente.  
Question 3  
La majorité des étudiants ont des problèmes à expliquer leur raisonnement ce qui 
les met en difficulté. En effet, ils donnent directement le développement limité de 
la fonction f en -∞, puis la fonction équivalente et finalement ils étudient son 
comportement. Certains d'entre eux considèrent que le développement limité en -
∞ est l'opposé de celui en +∞ soit par l'ajout simplement du signe (-) dans cette 
expression, soit par le changement de variable x par (-x) dans cette représentation 
analytique, soit par l'étude de la parité de la fonction f. Cette erreur commise est 
due à l’incompréhension de la notion de développement limité. Par ailleurs, un 
nombre assez-important d’étudiants a utilisé le même développement limité en 
+∞ pour étudier le comportement de la fonction f en -∞. D'un autre côté, certains 
étudiants ont un problème lié à leurs connaissances antérieures du secondaire 
concernant l'étude du comportement d'une fonction. En effet, ils voient qu'il est 
suffisant d'étudier la parité de la fonction f ou d’effectuer le calcul de sa limite en 
-∞ pour préciser son comportement. 
Rares sont les étudiants ayant des raisonnements valides. En effet, ils cherchent 
le développement limité en -∞, puis la fonction équivalente et finalement 
l'équation de l'asymptote en articulant des techniques de secondaire et du 
supérieur. Ces étudiants ont un problème de justification de raisonnement. 
En conclusion, nous pouvons identifier l'origine et la nature des difficultés des 
étudiants lors de la résolution des problèmes dans le champ de l'étude des 
approximations locales des fonctions selon quatre catégories : 
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-Difficulté d'ordre conceptuel : liée à la notion de voisinage (le reste, changement 
de variable, etc.). Dans ce cas, l'étudiant est confronté à un problème pour 
appliquer une formule du répertoire didactique de la classe afin de déterminer le 
développement limité d'une fonction au voisinage de 0, en +∞ et -∞. 
-Difficulté d'ordre technique : l'étudiant utilise soit ses anciennes connaissances 
et plus précisément, une technique vue au secondaire, soit une méthode fausse 
n'ayant aucun lien avec le répertoire didactique de classe. Dans ce cas, il néglige 
le rôle des nouveaux concepts d'approximations locales des fonctions. 
-Difficulté d'ordre justificatif : l'étudiant a problème de justification de son 
raisonnement 
-Difficulté d'ordre calculatoire : Dans ce cas, l'erreur est due aux erreurs du calcul. 
Nous présentons nos résultats dans le tableau ci-dessous : 

Difficultés d'ordre Conceptuel Technique Justificatif Calculatoire 
Question 1-a 16 0 24 4 
Question 1-b 2 22 20 0 
Question 1-c-1 8 8 17 7 
Question 1-c-2 15 6 6 2 
Question 2-a 34 0 9 1 
Question 2-b 21 0 5 1 
Question 2-c 15 24 1 1 
Question 3 36 5 1 1 

Tableau 1 : Nature et l'origine des difficultés des étudiants 
CONCLUSIONS GENERALES ET PERSPECTIVES 
A l'issue de l'étude des programmes, l'enseignement des objets d'approximations 
locales des fonctions articule les dimensions sémantique et syntaxique par la 
mobilisation des registres graphique, géométrique, algébrique et analytique afin 
de ramener l'étudiant à la rédaction autonome d'un raisonnement. 
La majorité des étudiants ont construit des raisonnements de nature syntaxique 
articulant les approches algébrique et analytique. Les difficultés éprouvées par les 
étudiants sont étroitement liées à la difficile conceptualisation des objets 
d'approximations locales des fonctions en première année PC. 
Notre questionnement nous amène à réfléchir à l'élaboration et la mise en œuvre 
d'une ingénierie didactique en PC à travers une situation permettant aux étudiants 
d’élaborer des raisonnements permettant de conjuguer différents cadres et 
d’articuler différents registres de représentation sémiotique.  

NOTES 
1. http://www.ipeit.rnu.tn/sites/default/files/Prog.Mathématiques-PC.PT_.pdf 
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It is well known that students have difficulties with the concept of continuity,             
specifically on points of discontinuity, and concepts like limits and infinity. In Italian             
textbooks, the continuity of functions is usually defined using limits, while an intuitive             
characterization of continuous functions is proposed without providing the students          
with formal tools to use it, like “the graphs of continuous functions can be drawn               
without lifting the pencil out of the paper”. Limits are one of the most complex               
subjects to learn and are usually introduced in an algorithmic way, without a true              
comprehension of the subject. We argue that introducing the definition of continuous            
functions using limits is problematic and we designed and tested a teaching sequence             
to investigate the potentiality of including a topological approach in high school. 
 
Keywords: Transition to and across university mathematics, Teaching and learning          
of analysis and calculus, Topology, Concept image, Intuitive models.  
 
INTRODUCTION 
Italy has a K13 scholastic system and an introduction to Calculus and Analysis is              
proposed at the end of high school (18-19 years), in particular in Liceo Scientifico.              
Students are taught continuity, limits and series in different ways in secondary school             
and university, sometimes with inconsistencies between the two approaches         
(Trigueros, Bridoux, O’Shea and Branchetti, accepted). Thus there is a typical           
problem of transition from secondary school to university. It is well known that there              
are various difficulties with the concept of continuity, specifically on points of            
discontinuity, limits and infinity. In Italian textbooks, the continuity of functions is            
usually defined using limits and an intuitive characterization of continuous functions           
as graphs with no holes, that can be drawn with a pencil without lifting the pencil out                 
of the paper (Bagni, 1994), is proposed in the beginning but never deeply analyzed.              
On the contrary, after an intuitive approach, traditionally secondary school teaching           
of continuous functions aims, from the very beginning, to provide the students with             
the most general and formal conception of continuity, given by a formal epsilon/delta             
definition. In this approach the intuitive characterization of continuity based on the            
properties of the graph are considered a crutch to abandon as soon as possible              
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because it can be a source of future mistakes (Bagni, 1994). We wish to problematize               
such a tradition.  
Moreover, Italian textbooks propose problematic characterization of points of         
discontinuity, since they are usually ambiguous in linking domain, accumulation          
points, definition of continuity at a point and global continuity of the function.             
Furthermore, often continuity is presented as a global, instead of local, property and             
there is an inconsistency with the formal limit approach that leads some students to              
say, for instance, that to evaluate the global continuity of a function it is necessary to                
compute the limit in every point of the domain.  
We decided to investigate the following research question: whether and how a            
different approach, using a mixed topological and analytical approach, could result in            
a better conceptualization of continuity and limits, which yields more students to            
correctly identify continuous functions and points of discontinuity? We proposed the           
following teaching sequence: 1. introduce continuity in a topological way, without           
using limits; 2. introduce the concept of limit; 3. link the two concepts, both formally               
and with concrete examples.  
In this paper, we present the design of a teaching sequence, a general overview of the                
learning outcomes of an implementation of the sequence in grade 12 and, finally, a              
comparison with a class of grade 13 who had been taught with the traditional Italian               
approach. As we will show, a topological approach might provide the students with             
useful images and methods to classify functions in many cases. This study had             
promising outcomes: indeed, in the final tests of the grade 12 compared to the initial               
test of grade 13, we observed fewer students’ misconceptions about continuity and            
limits and a greater ability to manage the semiotic transformation to keep under             
control in the solving processes. However the connection between limits and           
continuity was problematic and a refinement of the teaching sequence is necessary. 
LITERATURE REVIEW 
Two of the most investigated topics in University Mathematics education are the            
continuity of functions and the difficulties with limits in the undergraduate courses            
(Trigueros et al., accepted). Tall and Vinner (1981) showed some typical students’            
conceptions of continuous functions that cause many undergraduate students’         
difficulties, showing that the effectiveness of their use of definitions, also in simple             
tasks, is usually far from the expectations. The formal epsilon/delta definition of            
continuity is powerful enough to evaluate also “pathological” examples, like the           
Dirichlet function, but it is very far from the students’ concept images (Tall &              
Vinner, 1981) reported in the literature about continuity (Hanke & Schafer, 2017) and             
many research results show that limits in many cases do not become conceptual tools              
that improve students’ approach to the evaluation of continuity of functions.           
Moreover, this formal approach is usually not suitably motivated to the students,            
since it is used only in tasks which would be solvable with a more intuitive approach.                
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The literature shows that, with the traditional approach, based on intuition on one side              
and on the formalization based on limits on the other side, the students’ concept              
images about continuous functions are often rooted in specific examples and conflict            
with the formal definition (Tall & Vinner, 1981). Hanke and Schafer (2017) listed the              
following seven possible mental images that students use as criteria to discuss the             
global continuity of a function that are reported in the literature:  
I: “A graph of a continuous function must be connected”  
II: “The left hand side and right hand side limit at each point must be equal”  
III: “If you wiggle a bit in x, the values will only wiggle a bit, too”  
IV: “Each continuous function is differentiable”  
V: “A continuous function is given by one term and not defined piecewise” 
VI: “The function continues at each point and does not stop”  
VII: “I have to check whether the definition of continuity applies at each point”. 
For what concerns limits, many researchers showed that this is one of the most              
complex concepts to learn, and that it is usually introduced in an algorithmic way,              
without a true comprehension of the subject (Trigueros et al., accepted). Several            
epistemological and cognitive aspects must be considered in order to face the critical             
issues that characterize their learning. In particular, considering limits of functions,           
some aspects have been shown as crucial: the potential and actual conceptions of             
infinity (Tsamir & Tirosh, 1992) and the difficulties caused by metaphors and some             
uses of the natural language. Dimarakis and Gagatsis (1997) consider the interactions            
between the mathematical language and the natural language and note how the            
expressions "tends to the limit", “approaches" and “converges” are mathematically          
equivalent, but are not in the everyday language: "approximates" and "tends to", often             
used as a synonym of "approaching", does not suggest situations related to limits but              
reinforce a dynamic interpretation. In the case of limits of functions, as is the case for                
the convergence of sequences, the dynamic conceptions are very resistant (Williams,           
1991). Teaching should aim at turning the dynamic representations of students into            
static conceptions, or at least to scaffold the students’ approach to limits making them              
aware of the relationship between the two aspects (Trigueros et al., accepted).  
RESEARCH FRAMEWORK 
Often mathematics is identified with the precision of rules and a discipline where             
concepts can be defined in an accurate way so as to build a rigorous theory based on                 
definitions, formal statements and proofs. However, a large amount of research about            
mathematics learning argues the necessity of an intuitive and informal base for the             
concepts to be used by the students as thinking tools and support a formal learning; a                
pre-existing cognitive structure lies in the mind of every person and, when the student              
is presented a concept, naturally different personal mental images are evoked, before            
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the formal definition can be accepted. We will use the term concept image (Tall &               
Vinner, 1981) to describe the complete cognitive structure linked to the concept,            
which includes all mental images as well as related processes and properties.            
Different stimuli can activate different parts of the concept image; we will call the              
part of the concept image activated in a precise moment the evoked concept image.              
As the concept image develops, it is not guaranteed it will be coherent; thus when               
different (and contradictory) parts of it are evoked simultaneously, a sense of            
confusion emerges. According to Fischbein (1993), while formally there is no           
difference between accepting a proof and accepting the universality of the assertion,            
for the pupil the two things usually do not coincide. To pursue the intuitive              
acceptance of formal reasonings it is necessary to adopt a didactical approach that             
permits the students to mix and merge different ways of reasoning and make sense of               
formal statements and proof, connecting them to other kinds of discourses that can             
activate the intuitive and personal cognition at a different level. According to Lecorre             
(2016), three types of rationalities are necessary for understanding the learning           
processes of students in the study of limits: 
● Pragmatic rationality consists strictly in examining specific cases; there is no           

attempt to generalize observations. 
● Empirical rationality is used when a general law is to be obtained; the facts are               

used to deduce generalizations. 
● Theoretical rationality begins with theory (theorems, properties, definitions,        

axioms ...) to establish new properties and theorems. 
We relied on this framework to design the activities to introduce limits, encouraging             
students to connect reasonings of different kinds, bridging empirical and pragmatic           
rationality with the theoretical one. The notion of representation was also an            
important reference in the design phase, since representations play a crucial role in             
the acquisition and the use of the individual’s knowledge. As Duval (1995) points             
out presenting his Theory of Register of Semiotic Representation: “There’s no           
knowledge that can be mobilised by an individual without a representation activity”            
(p.  15). The main assumptions of the theory are: 
1. there are as many different semiotic representations of the same mathematical            
object, as semiotic registers utilised in mathematics; 
2. each different semiotic representation of the same mathematical object does not            
explicitly state the same properties of the object being represented;  
3. the content of semiotic representations must never be confused with the            
mathematical objects that these represent.  
RESEARCH METHODOLOGY  
The goal of the research was to check whether and how the didactical approach we               
designed (including topology as element of the theory, using a methodology oriented            
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to strengthen the students’ reasoning with limits intertwining different rationalities          
and paying attention to semiotic transformations) could help the students to deal with             
basic tasks about continuity of functions better than the traditional approach of            
teachers of Liceo Scientifico (Scientific High School) and textbooks in Italy.  
First of all, we carried out an analysis of Italian high school textbooks. Then we               
prepared a questionnaire to investigate the students’ conceptions in grade 13 (21            
students) after a traditional teaching sequence. Then we designed our teaching           
sequence and, after collecting data about students’ conceptions in two classes in            
grade 12 (38 students), we implemented the teaching sequence with the same            
students. The design of the teaching sequence was based on: the results from the              
literature review resumed before, the initial test about students’ concept images and            
the analysis of the audio-recordings lesson by lesson. Finally we carried out a final              
test, with common tasks in two classes, one in grade 12 and one in grade 13. The                 
questionnaire included open questions and tasks where students were asked to           
compute limits at the extreme points of the domain and evaluate the continuity of              
functions, providing explanations. In particular, we collected data about the students’           
images of continuous functions and limits, their use of concept images of limits and              
infinity (potential and actual) and the students’ ability to manage semiotic           
transformations in tasks about continuity. Since in grade 13 the students’ reasonings            
had not been clear in some cases, we added in grade 12 one question (task 8, that we                  
discuss later), asking to compute the limits, to state and explain if the function was               
continuous and then to identify its (possible) points of discontinuity.  
We analysed quantitatively the correct/incorrect answers and we compared the initial           
test carried out in grade 13 after a traditional teaching with the final test in grade 12                 
in one class who attended our course, in the same school. The results are not               
statistically significant but informed us about the potentiality of our approach. Then,            
we analyzed the whole set of data looking for students’ concept images and concept              
definitions of accumulation points and continuity, comparing them with the students’           
outcomes, to check the consistency and the efficacy of such images and definitions in              
the students’ solving processes. We also checked the students’ abilities to manage            
semiotic representations in a fruitful way. Finally we explored whether and how the             
students integrated fruitfully limits and the topological approach to continuity.  
DIDACTICAL TRANSPOSITION AND ENGINEERING 
In Italian High School textbooks it is usually given the following definition:  
A function f is said to be continuous in a point x0 if the limit of f(x) as x goes to x0                      
coincides with the value f(x0).  
The problems begin with the negation of the aforementioned definition: a function it             
is said to be discontinuous at a point x0 if the function is defined but not continuous                 
there or if the point is an accumulation point of the domain but the function is not                 
defined in x0, thus calling point of discontinuity also points out of the domain.              
Textbooks then introduce various types of discontinuity (Fig. 1):  
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Fig. 1: Discontinuities represented in an Italian textbook 

In our teaching sequence, we started carrying out 5 interactive frontal lessons (1 hour              
each) about continuity from a topological point of view. We decided to introduce             
continuous functions defined on subsets of R, using a transposition of the definition             
of connectedness by arcs and neighbourhoods, coming to this definition:  
A one real variable function (whose domain has a finite number of        D ⊆ R       
path-connected components) is continuous if the number of the connected (by paths)            
components of the domain and of the graph are the same.  
This definition (path-connected function) is equivalent to that of continuous function           
in R whenever the domain of the function is locally path-connected and            
simply-connected (Hanke, 2018). The difference between the two is that this           
definition, from a didactical point of view, allow to use the graphical representation             
of the function to evaluate the continuity and to find the possible points of              
discontinuity (by using a local version of the definition in a neighbourhood of the              
point) and should help not to confuse a point outside of the domain with a point of                 
discontinuity. Furthermore in this case the negation of continuity is more           
straightforward. We hypothesized that this approach could reduce the students’          
misconceptions about continuity and points of discontinuity and provide them with a            
powerful resource to use facing tasks about continuity of real functions.  
Then, we carried out 5 lessons (1 hour each) about infinity, limits and sequences,              
using a didactical methodology based on the intertwining of rationalities (Lecorre,           
2016). We included several examples and definitions from the history, to promote            
gradually an intuitive acceptance of the formal definitions: Archimedes’ Measure of           
the circle and the proof by exhaustion, the Paradox of Achilles and the tortoise,              
periodic numbers, a graphical representation of the geometric series, an original piece            
from Cauchy's Cours d'Analyse (1821, first definition of limit). To gradually connect            
a formal definition of limit with the students’ concept images of functions, we             
introduced and discussed with the students some examples of sequences and we            
showed to the students the limit for n which tends to infinity from the dynamic point                
of view, using the graphic representation of functions and the numerical           
representation. Then we moved to a more static approach through the concept of             
accumulation point.  
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In the final 2 hours, we matched the two different approaches and we linked the               
topological idea of continuity with the traditional definition based on limits,           
discussing with the students about continuity and points of discontinuity using limits,            
to show to them that the two approaches lead to the same conclusions.  
DATA ANALYSIS  
Analysing the questionnaires only in terms of correct/incorrect answers, the          
comparison between the tests in grade 13 and in grade 12 showed that the students in                
grade 12 had in general better outcomes. The most common error of the 13-grade              
students was to classify continuous functions as discontinuous. For instance, in grade            
13, no one classified the equilateral hyperbola function f(x) = 1/x continuous in its              
natural domain, while many students in grade 12 answered correctly. The following            
three tasks concerning continuous functions are good examples of the questions we            
asked in the questionnaire; 7 and 9 were asked in grade 12 and 13, while 8 was only                  
in the grade 12 test. In task 7 the function is continuous in its domain, while 8 and 9                   
have points of discontinuity. In task 7 and 8 we also asked to infer the limits at the                  
extreme points of the “natural domains” from the graph. 

 
Fig. 2: Questions about continuity and points of discontinuity  

 
Fig. 3: Students’ outcomes in the tasks about continuity in grade 12 (left) and 13 
Comparing the answers to tasks 7 and 9 (19 students, grade 13; 21 students, grade               
12), it emerged more students in grade 12 answered correctly that a function was              
continuous (task 7, graphical) rather than discontinuous (task 9, analytical), while the            
opposite happened in grade 13. Only 2 on 19 in grade 13 recognized the first as a                 
continuous function, while 18 on 21 in grade 12 did it. In task 9 the trend is the                  
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opposite, even if the difference is much smaller; 13-grade students who were taught             
to classify continuity with limits in many cases answered without computing limits.  
Looking at the sheets, we observed that while in grade 13 no students made a               
semiotic transformation from the analytical to the graphical representation in task 9,            
13 students drew the graph of the function and 12 of them answered correctly. Even if                
we did not find evidence of reasonings about limits and continuity, in grade 12 the               
same students that had problems with discontinuities also made mistakes in the            
computation of limits (even if there are correct answers and errors with limits).  

 
Fig. 4: Students’ outcomes in the tasks about discontinuities in grade 12 
Task 8, proposed in grade 12, was the most problematic: it had a discontinuity point               
in 2 and a “false” discontinuity in 8, that was not an element of the domain; 6                 
students considered 8 a discontinuity point, and 4 of them correctly classified the             
function in task 9. In these last 4 cases, we are not sure if students carried out a                  
correct reasoning, since they could have classified the function discontinuous even if            
the point was not in the domain. 8 students considered the function continuous.  
We also asked the students the question: “How would you explain in your own words               
what is a continuous function?”. Looking at their answers we identified two further             
criteria that were not included in the list by Hanke and Schafer (2017): 
“A continuous function has R as domain.” 
“The number of the components of the domain is equal to the number of the               
components of the graph”. 
The last criterion, that is the one proposed in the lessons, was expressed by 11 (out of                 
21) students of grade 12 out and was used effectively to discriminate continuity.  
In order to check what kind of conceptualization of limits the same students had              
developed, before analysing their link to continuity of functions, we analysed the            
audio-recording of lessons looking bottom-up for emerging relevant students’         
concept images. A basic recurrent image was that of the asymptote: the limit that              
“approaches but does not reach a point” was often linked to the concept of asymptote,               
known to students from grade 11 thanks to the study of hyperbole and homographic              
functions in analytic geometry. Also the images of the “full and empty cue ball” was               
often used by the students, for example when they explained what is difference             
between 0, and 1, or to say if a point belonged (full) or not (empty) to the graph of 9                   
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a function. Moreover this image was used to explain if it made sense or not to                
compute the limit at a point (if the cue ball is empty it makes sense to compute a                  
limit). In both cases the students’ tried to recall previous images and use them to               
create connect limits and functions before our final lesson about the connection            
limits-continuity. When students were required to connect the concept of limit and            
that of point of accumulation, inconsistencies appeared between the students’ images;           
many of them did not understand that it did not make sense to calculate the limit for x                  
tending to x0 if it is not a point of accumulation; moreover, in most cases they said it                  
did not make sense to compute limits at a point in the domain.  
Such images did not prevent the students from answering correctly questions about            
the continuity in task 7, and some students identified correctly discontinuities using            
the graphs even making errors with limits (1 in task 8, 6 in task 9), but, even if there                   
are no explicit reasonings carried out by the students using limits to identify             
discontinuities, they seemed quantitatively to affect their answers to determination of           
the points of discontinuity, in particular where the students had to reason on the graph               
about the asymptote and the empty-full cue balls. Moreover some students in the             
questions about limits wrote that the limit of the functions does not exist since the               
function is discontinuous at the point. This point should be explored more. 
DISCUSSION AND CONCLUSIONS 
As regards the continuity of functions, the comparison between grade 12 and 13             
showed that the topological approach was useful to improve the students’ use of             
graphical representations to state the continuity of functions that was at the basis of              
the better outcomes in grade 12 rather than grade 13. This result encourages us to               
carry out further experimentations refining the didactical engineering and the data           
collection in order to grasp in a more accurate way the students’ reasonings.             
However, some students had still problems determining discontinuities; in particular,          
some students considered points of discontinuities also points not in the domain and             
in task 8 and 9 classified discontinuous functions as continuous, contrary to the usual              
trend observed with the traditional approach. These errors seemed to be due to             
difficulties to visualize the components of the domain, linked to the images of             
accumulation points, and to classical concept images stressed by Tall & Vinner            
(1981), like “a jump in the functions implies the function to be not continuous”. This               
result made an important aspect arise: the topological approach is useful if the             
students are able to count the components of the domain, but in the most relevant               
cases it requires a good image of accumulation points that is demanding for students;              
however, this is also a problem of the traditional approach.  
Students in general overcame the classical dichotomy potential/actual infinity in most           
cases and had good outcomes in the questions about limits. However, only in a few               
cases we observed an explicit connection between limits and points of discontinuity            
and we were not able to reach clear results about it. It seems that the values of limits                  
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are not used by the students, but concept images of limits of functions, built              
spontaneously by the students recalling previous practices, could have influenced          
them to face the tasks about continuity, since quantitative data showed a correlation             
between the answers about limits and the correct identification of discontinuities. The            
connection between topological continuity and limits should be deeply improved in           
further experimentations.  
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Nous présentons une première étude qui permet de rendre compte des ruptures et des 
continuités dans la transition lycée-université à partir de l’analyse d’une tâche 
emblématique de cette transition qui vise à étudier une suite définie par récurrence de 
la forme un+1=f(un). Les outils théoriques utilisés (issus de la théorie des Espaces de 
Travail Mathématique et de la Théorie de l’Activité) nous permettent de fournir des 
analyses de la tâche a priori et a posteriori. Nous constatons que les attentes de 
l’enseignement actuel par rapport à ces suites, se placent sur une analyse algébrisée 
de la notion. Cela nous amène à proposer des variations dans l’activité et le travail 
mathématique à atteindre lors de l’étude de ces suites, qui en l’occurrence, pourraient 
servir à introduire les élèves à l’analyse réelle. 
Mots clés : Suites récurrentes, transition lycée-université, activité mathématique, 
travail mathématique, instruments. 

INTRODUCTION 
Nous avons comme objectif d’étudier les ruptures et continuités existantes dans la 
transition lycée-université dans le domaine de l’analyse, à partir des tâches évaluatives 
qui se trouvent à la fin des cours de l’enseignement secondaire et au début de 
l’enseignement universitaire. Ces tâches caractéristiques visent à étudier les suites 
définies par récurrence de la forme un+1=f(un) ; nous nous intéressons à ses potentialités 
notamment dans l’étude de la notion de convergence, et analysons leur place dans 
l’enseignement actuel. D’autre part, l’objet mathématique de suites que nous avons 
choisi, nous semble être un objet mathématique pertinent pour étudier le passage du 
calculus à l’analyse, car il permet de travailler dans une analyse algébrisée (comme 
l’étude de variations de fonctions, applications des théorèmes de convergence de suites, 
etc.), des notions essentielles du début de l’analyse réelle qui sont encore en 
construction chez les étudiants (comme la limite, la convergence, les nombres réels, 
etc.), jusqu’aux problèmes que l’on étudie en analyse réelle comme les systèmes 
dynamiques discrets. Ainsi, concernant l’épistémologie, le choix des suites définies par 
récurrence comme objet mathématique d’étude dans l’enseignement actuel n’est pas 
anodin. En effet, ce type de suites a une place épistémologique importante dans le 
développement du domaine de l’analyse en mathématiques ; d’ailleurs comme le 
mathématicien D. Perrin1 l’affirme, un des intérêts d’étudier ces suites repose sur la 
recherche des points fixes par itérations, ce qui permet de montrer des résultats 
d’existence en analyse. 
En didactique, la transition lycée-université a fait l’objet de nombreux travaux (pour 
une synthèse, voir Gueudet, 2008). Certains résultats restent encore d’actualité ; tel est 
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le cas de la thèse de Praslon (2000) qui construit des tâches pour cette transition, en 
prenant en compte le contexte éducatif des deux institutions et qui identifie des micro-
ruptures dans cette transition par rapport à la notion de dérivée. D’autres travaux sont 
également à relever : ceux de Robert concernant l’étude de suites avec les 
représentations que les étudiants expriment sur la convergence (dynamiques et 
statiques), et son ingénierie didactique pour établir une représentation de la 
convergence chez les étudiants (ingénierie reprise par Bridoux (2016)). 
Concernant les suites qui nous intéressent, on trouve le travail de Boschet (1982) qui 
fait une étude au niveau de la première année de l’université. Elle constate que les 
exercices sur les suites un+1=f(un) sont stéréotypés et utilisent le lexique le plus pauvre 
en comparaison à d’autres suites. L’auteur remarque que ces suites sont artificiellement 
conçues pour appliquer certains théorèmes, et que si nous faisons appel aux mêmes 
connaissances de façon régulière, cela pourrait provoquer une représentation erronée 
de la convergence.  
Plus récemment, Ghedamsi et Fattoum (2018) ont étudié l’évolution des images 
mentales chez les élèves de 3ème année de secondaire, formées en amont et en aval de 
la définition de convergence de suites numériques. Elles signalent qu’au moment 
d’étudier la convergence, les techniques des opérations sur les limites finies de suites 
« pourraient renforcer les pratiques d’algébrisation dans le travail des élèves, sans 
qu’aucun apport significatif dans le processus de conceptualisation de la convergence 
ne puisse être entrepris » (Ibid., p. 232). Ce renforcement dans l’algébrisation dont 
parlent Ghedamsi et Fattoum, nous semble important à prendre en compte et à 
considérer dans l’étude de la convergence de suites. Ainsi, nous nous demandons : 
quels sont les attendus de l’institution lycée et de l’institution université en ce qui 
concerne les suites définies par récurrence un+1=f(un) ? Et comment l’enseignement 
actuel dans la transition lycée-université se sert de cet objet mathématique pour 
conduire les élèves d’une analyse algébrisée vers une entrée dans l’analyse réelle ? 

CADRES THEORIQUES  
Quand on étudie la transition lycée-université, il s’agit d’un domaine d’étude 
particulièrement complexe par le nombre de variables à considérer et les 
problématiques épistémologiques et cognitives, lesquelles supposent des analyses 
élaborées. Cela nous amène à considérer deux cadres théoriques pour l’analyse de ces 
deux institutions éducatives et des tâches qu’elles proposent. Nous plaçons au centre 
de notre étude l’analyse du travail mathématique que chaque institution cherche à 
développer chez les étudiants, et le travail mathématique que les étudiants développent 
effectivement. De cette manière, nous utilisons la théorie des Espaces de Travail 
Mathématique (Kuzniak et al., 2016) qui s’intéresse aux aspects épistémologiques de 
l’objet mathématique en question (avec l’étude du plan épistémologique en regardant 
le référentiel théorique, les artefacts mis à disposition et les signes qui interviennent 
dans le travail de résolution de la tâche) ; mais qui permet aussi de comprendre 
comment ces composants épistémologiques se mettent en place lorsqu’un sujet les 

84 sciencesconf.org:indrum2020:295507



 

 

 
utilise (avec l’étude du plan cognitif en analysant la preuve et le discours mathématique 
de l’élève, sa construction et la visualisation mathématique de l’objet). Les relations 
qui existent entre ces deux plans se décrivent à partir des dimensions sémiotique, 
instrumentale et discursive, et on identifie les plans verticaux [Sem-Dis], [Ins-Dis] et 
[Sem-Ins] pour caractériser les tensions et relations entre ces dimensions. D’autre part, 
nous prenons en compte les différents niveaux d’ETM : ETM de référence (permettant 
d’analyser le travail mathématique visé par l’institution), ETM idoine (qui est une 
adaptation de l’ETM de référence mis en place par l’enseignant/professeur) et ETM 
personnel (qui permet de décrire le travail mathématique développé par le sujet). Dans 
le cadre de la théorie des ETM, Kuzniak, Tanguay et Elia (2016) signalent que les 
mathématiques enseignées sont en priorité une activité humaine. 
Nous faisons l’étude de l’activité humaine et nous approfondissons des aspects de 
l’individu dans son contexte et d’autres aspects cognitifs grâce à la Théorie de 
l’Activité (TA) en didactique des mathématiques. La TA se base sur une idée 
cognitiviste des processus d’enseignement et d’apprentissage, s’appuyant sur les idées 
des psychologues comme Leontiev et Vygotsky. En didactique des mathématiques, ces 
travaux ont été enrichis par des didacticiens (pour une synthèse voir Vandebrouck, 
2018) permettant de caractériser l’activité mathématique des élèves (ainsi que l’activité 
des enseignants à partir d’une double approche ergonomique et didactique). Dans cette 
étude, on s’intéresse aux outils théoriques de la TA qui vont nous permettre de rendre 
compte de l’activité attendue par l’institution (en analysant la tâche prescrite) et les 
traces de l’activité effectuée par les élèves (en analysant la tâche effective). Ainsi, nous 
analysons l’étude de la tâche en prenant en compte : le contexte dans lequel elles sont 
proposées, les buts, les connaissances (ses adaptations2 et le niveau de sa mise en 
fonctionnement) et les types de sous-activités développées par un sujet en activité 
(reconnaissance, organisation de raisonnement global et Traitement). 
Paradigmes de l’analyse 
Dans les travaux qui s’intéressent à l’étude du domaine de l’analyse réelle en 
didactique, nous relevons la notion de paradigmes de l’analyse (Montoya et Vivier, 
2016). On dégage trois types de paradigmes : « AI » qui permet des interprétations 
provenant de la géométrie, de l’arithmétique ou du monde réel ; « AII » qui permet de 
faire des calculs avec des règles plus ou moins définies et les appliquer sans avoir un 
travail de pensée critique par rapport à la nature des objets utilisés ; et  « AIII » où les 
propriétés et définitions sont bien établies , où on développe un travail en termes 
d’approximation et voisinage (un travail avec ε), caractérisé par l’implication 
d’inégalités, de bornes, et du « négligeable ». Ces paradigmes vont nous permettre de 
différencier et caractériser le type de travail mathématique mis en place. 
L’articulation entre les deux cadres théoriques 
Nous constatons que les deux théories accordent une importance aux considérations 
épistémologiques sur les tâches, car la connaissance mathématique joue un rôle 
indispensable dans l’activité et dans le travail que l’on développe ; ainsi, nous 
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accordons une place prépondérante à la vigilance épistémologique de notre sujet 
d’étude. Par ailleurs, grâce à une étude précédente (Flores González, 2019), nous avons 
pu voir que la notion de tâche est un élément didactique essentiel pour analyser le 
travail et l’activité mathématique (au sens de chacune des théories). D’une part, nous 
nous centrons sur la notion de « tâche emblématique », qui sert à identifier 
l’importance des tâches dans le développement et la description du travail 
mathématique ; ainsi elles doivent « bénéficier d’une reconnaissance institutionnelle, 
être utilisées dans les classes ordinaires et doivent permettre de réaliser, au moins 
potentiellement, un travail mathématique complet3 » (Kuzniak et Nechache, 2016). 
D’autre part, cette tâche nous sert à caractériser l’ETM attendu à la fin du lycée, et 
l’ETM attendu en première année d’université pour les suites récurrentes 
un+1=f(un). Enfin, nous cherchons à caractériser la continuité et les ruptures dans 
l’activité et le travail attendus de l’élève dans la transition lycée-université. En termes 
théoriques la question qui guidera notre travail sera : Quelles sont les caractéristiques 
de l’ETM et de l’activité à la fin du lycée et au début de l’université concernant les 
suites récurrentes un+1=f(un) ? 

METHODOLOGIE   
Nous faisons une étude cognitivo-épistémologique de la tâche emblématique grâce aux 
deux cadres théoriques choisis avec une analyse a priori et posteriori des tâches 
prescrites. Pour aborder notre question et ainsi approfondir la reconnaissance de 
ruptures et continuités de cette transition, notre tâche emblématique est construite à 
partir des tâches d’évaluation de la fin du lycée de l’enseignement scientifique (le 
Baccalauréat4 S) et des évaluations du début de l’université (des examens de la fin du 
premier semestre) en France. Ainsi, nous avons conçu une tâche pour le cours de la fin 
du secondaire scientifique (FSS) qui prend en compte le modèle proposé par le 
Baccalauréat mais aussi le contexte évaluatif en début de l’université (DU) à partir de 
tâches modèles que nous détaillons ci-dessous. 
Nos tâches modèles à l’université et à la fin d’études de secondaire 
Notre première tâche modèle (Figure 1) a été extraite d’un examen de DU (de 1er année 
de licence) de l’année 2018. Il s’agit d’une suite de récurrence non linéaire à un terme 
(homographique). Les connaissances à mettre en place sont principalement du 
paradigme de l’analyse AII (ou issues d’une analyse réelle algébrisée). De cette tâche 
nous gardons le choix de la suite pour construire une tâche pour la classe de FSS. 
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Figure 1 : Tâche d’examen du DU, 2018. 

Notre deuxième tâche modèle est un exercice de Baccalauréat de 2016 (Figure 2). Cette 
tâche se compose de deux parties : La première partie se réfère à l’étude de la fonction 
f(x)=x-ln(x2+1) en commençant par la résolution de l’équation f(x)=x, puis l’étude des 
variations de f (grâce au tableau de variations déjà complété dans l’énoncé), et l’étude 
de la stabilité de l’intervalle [0,1] par f. Dans la deuxième partie de l’exercice, on 
commence à étudier la suite comme le montre la figure 2 (Partie B). 

Figure 2 : Exercice 3 Baccalauréat Scientifique Métropole 2016. 

Pour adapter la tâche de DU à la classe de FSS, on a adopté la façon dont la tâche est 
présentée dans le modèle du Baccalauréat, et la suite choisie est celle de la tâche 
proposée dans l’examen de DU. Pour rester dans le contexte de FSS, on a fait un 
découpage dans l’étude de la suite, c’est-à-dire que d’abord on étudie la fonction (partie 
A) et ensuite on fait l’étude de la suite (partie B) (Figure 3). Les changements qui ont 
été faits se situent principalement au niveau des aides et registres sémiotiques fournis. 
Par exemple, dans l’énoncé du Baccalauréat la question A.2) fournit le tableau de 
variations comme aide ; ou encore dans la question B.1) il est écrit « montrer par 
récurrence que… » (ce changement a été fait pour ne pas s’éloigner de la tâche telle 
qu’elle a été présentée en DU).  

Figure 3 : Tâche adapté à la classe FSS. 

Comme nous voulons avoir accès aux ETM personnels et aux activités individuelles, 
nous analysons des productions des élèves dans les deux institutions éducatives. En ce 
qui concerne la classe de FSS, nous disposons des productions écrites des 10 élèves 
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qui sont susceptibles de poursuivre des études à l’université (selon l’enseignant). Par 
rapport aux données de début de l’université, nous disposons de 40 productions 
d’étudiants de l’examen de DU (Figure 1) proposé en CPEI (cycle de préparatoire aux 
écoles d’ingénieurs). 
Analyse a priori des tâches du lycée et de l’université 
Comme exemple, on explique l’analyse a priori fournie avec les deux cadres théoriques 
choisis de l’énoncé : « Montrer que pour tout 𝑛 ∈ ℕ, 𝑢! ∈ [0,1] » (première partie de 
l’étude de la suite, nous faisons l’analyse à partir de la stratégie5 prévue). Il est à 
remarquer que la façon dont cette tâche a été proposée au lycée et à l’université est 
différente. Au lycée, la stabilité de l’intervalle par f a été abordée dans la partie A et 
l’étude de la bonne définition de la suite est présentée dans la partie B de l’énoncé, 
tandis qu’à l’université, ces deux études ne sont pas séparées. 
De la part de la TA, on différencie le contexte de la tâche des deux institutions en 
question. Pour le lycée, le raisonnement par récurrence a été étudié au début d’année 
de la classe FSS, et les exercices des suites récurrentes sont présents dans les manuels. 
Au début de l’université, la démonstration par récurrence n’a été un objet d’étude ni 
dans les cours magistraux, ni dans les cours de travaux dirigés (TD). Ensuite, nous 
identifions comme but de la tâche le fait de montrer que tous les termes de la suite 
sont bien définis. En ce qui concerne les connaissances à utiliser, elles sont les mêmes 
pour les deux institutions : raisonnement et preuve par récurrence. Ainsi les 
adaptations de ces connaissances seraient : la reconnaissance de l’utilisation de la 
preuve par récurrence, l’introduction des étapes classiques de la preuve par récurrence, 
et l’utilisation du résultat de la question précédente, notamment pour montrer la 
stabilité [0,1] par 𝑓. Le niveau de mise en fonctionnement de ces connaissances est 
mobilisable, car on n’indique pas dans l’énoncé d’utiliser le raisonnement par 
récurrence, mais on dit « montrer que pour tout naturel n … ». Finalement on repère 
les sous-activités mathématiques de reconnaissance (du raisonnement par 
récurrence) et de traitement (des données algébriques, leur travail et leurs implications, 
et les étapes comme traitement de la preuve par récurrence). 
De la part de l’ETM personnel, on privilégie la dimension discursive en mettant en 
amont un discours de preuve par récurrence. Cette preuve est ancrée dans le référentiel 
théorique du sujet et utilise des raisonnements issus de la récursivité et du formalisme 
liés à ce type de preuve. 
À partir de l’analyse a priori de la tâche entière, nous avons pu identifier les continuités 
et les ruptures dans la transition lycée-université à partir des deux cadres théoriques. 
Pour les continuités, on garde les connaissances à mettre en place en commun au lycée 
et à l’université (tel est le cas de la démonstration par récurrence, l’étude de variation 
de la suite à partir de la méthode un+1 – un, ou encore le théorème de convergence de la 
limite monotone). Nous repérons que l’ETM personnel attendu présente presque les 
mêmes types de signes à utiliser (la plupart dans le registre algébrique), et en général, 
c’est le traitement de ces signes qui va permettre un discours mathématique cohérent, 
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ainsi que des signes utilisés en tant qu’outils (les artéfacts symboliques) qui vont 
permettre de résoudre la majorité des tâches. Ainsi, on voit que dans les deux 
institutions on privilégie un travail mathématique dans la dimension discursive. Du 
côté de la TA, les aspects en commun aux deux institutions sont pour la plupart les buts 
des tâches qui seraient les mêmes pour l’étude de la suite (à l’exception de la question 
3 pour étudier le sens de variation de la suite). 
Concernant les ruptures, du côté des ETM, les plans privilégiés vont changer à partir 
de la stratégie choisie pour répondre aux tâches. D’autre part, étant donné que la tâche 
est découpée en deux parties au lycée (étude de la fonction puis étude de la suite), la 
façon dont la tâche est conçue fait produire des circulations entre les différents plans 
de l’ETM, tandis qu’à l’université on ne prévoit pas des circulations provoquées par 
l’énoncé, et cela resterait à la charge de l’élève à partir de la stratégie choisie. En termes 
de TA, cette rupture se traduit à partir des aides données dans les énoncés des tâches, 
tel est le cas de la dernière question concernant la limite de (un) : On voit qu’au lycée 
on admet que l=f(l) et puis l’élève doit « en déduire » la valeur de l, alors qu’à 
l’université on demande juste la limite de (un). Ce fait produit une rupture au niveau de 
sous-activités attendues, car pour le cas du lycée il s’agit d’un traitement (qui est simple 
car les élèves doivent juste résoudre l’équation), et à l’université cela va demander des 
sous-activités de reconnaissance et d’organisation (l’étudiant doit reconnaître la 
méthode qui n’est pas donnée dans l’énoncé, et bien organiser ses connaissances pour 
justifier sa réponse). En termes généraux pour la TA, les ruptures entre le lycée et 
l’université se décrivent aussi à partir des différences dans les adaptations des 
connaissances, car à l’université les étudiants ont plus de choix de méthodes pour les 
différentes tâches. Finalement, la rupture des contextes des tâches est aussi importante : 
dans le cas de la classe du DU les étudiants trouvent dans la feuille des cours TD, 3 
exercices parmi 25 sur les suites un+1=f(un), et le mot récurrence n’est évoqué que pour 
nommer la suite ; alors qu’au lycée la tâche est présente dans les manuels de la classe 
de FSS, et la démonstration par récurrence fait un objet d’étude du cours. 
Éléments de l’analyse a posteriori et premiers résultats 
Dans cette analyse on montrera l’impact des continuités et ruptures dans les 
productions des étudiants. Concernant les connaissances présentes au lycée et à 
l’université on voit des changements quantifiables dans la mobilisation de ces 
connaissances : pour la question 1 liée à la démonstration par récurrence, elle est 
mobilisée par 50% des élèves au lycée (de 10 élèves au total), tandis qu’à l’université 
on trouve seulement 22,5 % (même si elle est non formalisée – de 40 élèves au total). 
Au lycée 80% des étudiants mobilisent le théorème de la limite monotone, alors que le 
taux est de 37,5% à l’université. Du point de vue des ETM, le plan vertical qui a été 
privilégié dans le travail mathématique des élèves et des étudiants a été effectivement 
[Sem-Dis] avec des traitements sémiotiques dans le registre algébrique, et la dimension 
discursive – cet aspect nous semble important dans les résultats généraux sur la tâche 
(seulement 3 des 40 étudiants réussissent en DU). Nous y reviendrons dans les 
conclusions. Du point de vue des ruptures et des aides qui n’ont pas été données, nous 
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relevons le cas de la question 4, car au lycée cette tâche est réussie par 90% des élèves, 
alors qu’à l’université seulement 7,5 % des étudiants l’ont réussie. Un des éléments qui 
peut être le plus lié aux ruptures est le contexte de la tâche, car cela va déterminer les 
différentes adaptations de connaissances disponibles susceptibles d’être utilisées dans 
les différentes stratégies adoptées. Mais ce contexte va aussi jouer son rôle lors de 
l’appel aux connaissances, qui ont peut-être été cataloguées comme acquises (comme 
le cas de la démonstration par récurrence), ce qui expliquerait le décalage de 
l’utilisation de cette preuve au lycée et à l’université. 
Comme erreur répétitive dans les deux institutions, on trouve dans la question 3 
l’application du théorème-en-acte « si f	est croissante, (un) est croissante » où le 
domaine de validité est seulement quand un=f(n)6 (ce théorème a été appliqué par un 
30% d´élèves au lycée et à l’université). D’autre part, la non maitrise du registre 
algébrique dans l’étude des variations de la suite (question 2) produit des blocages dans 
le travail mathématique des élèves. Il s’avère qu’aucun étudiant de lycée n’a eu une 
reconnaissance de l’identité remarquable pour déterminer la croissance de la suite, 
comme l’exemple de la figure 4 (qui, au-delà de son erreur, fait un travail de 
décomposition intéressant pour analyser le sens de variation de la suite), et qu’à 
l’université seulement 12,5% l’ont reconnue. 

Figure 4 : Production à la question 3 d’un élève de lycée (E1 FFS). 
Une dernière erreur fréquente est le fait d’établir des égalités entre l’objet suite et 
l’objet fonction comme f(x)=(un), ou encore entre x et n. À l’université 22,5% des 
étudiants font cette erreur de façon explicite. On montre la réponse des questions 2, 3 
et 4 de l’étudiant E26 (figure 5). D’abord pour le sens de variation de la suite, il 
détermine sa croissance, mais son tableau de variation montre une confusion dans les 
objets suite et fonction ; aspect que l’on note aussi dans la question 4 par rapport à 
l’égalité entre les limites. 

Figure 5 : Production d’un étudiant aux questions 2, 3 et 4 à l’université (E26 DU). 
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CONCLUSION ET PERSPECTIVES 
Grâce à cette étude, nous avons pu obtenir quelques éléments de réponses à nos 
questions et constater certains effets de cette transition. D’une part, les caractéristiques 
de l’ETM attendu dans l’étude de ces tâches emblématiques se basent principalement 
dans le plan [Sem-Dis]. La dimension sémiotique implique surtout des traitements de 
type algébrique (qui parfois bloquent le travail des élèves) et la dimension discursive 
implique l’utilisation des méthodes et du référentiel théorique en tant qu’outil. 
Les résultats dans les productions des étudiants nous permettent de repérer certaines 
progressions dans les apprentissages, mais aussi des régressions. Ainsi, cette étude 
nous montre que l’articulation entre les objets « suite » et « fonction » a une faible 
cohérence lors de l’étude de suites récurrentes un+1=f(un)	; et telle que la tâche a été 
conçue, elle n’exploite pas les potentialités d’une étude contrôlée en autonomie des 
élèves, avec des notions de l’analyse réelle qui puissent tendre vers le paradigme AIII. 
Nous pensons que nous devrions appuyer l’apprentissage des élèves à l’entrée de 
l’université à partir d’un soutien dans la réorganisation des connaissances (qui est 
nécessaire), en s’appuyant sur des connaissances anciennes pour pouvoir ajouter et 
organiser des nouvelles. Nous faisons l’hypothèse que cela pourrait être rendu possible 
par un enrichissement de l’activité et du travail mathématique via l’introduction du 
paradigme AI (pour aller ensuite vers le paradigme AIII) et en mettant l’accent sur la 
visualisation de la suite. Pour ce faire, nous comptons d’abord promouvoir un travail 
mathématique dans le plan [Sem-Ins] à partir d’artefacts (comme des calculatrices ou 
logiciels) pour que les élèves exploitent les capacités technologiques qu’ils ont 
développées au lycée. Nous espérons ensuite pouvoir analyser leur pertinence pour 
évaluer la possibilité de contrôler l’activité et le travail mathématique dans la transition 
lycée-université. Finalement, nous pensons que faire une étude plus approfondie de la 
convergence (des comparaisons de la vitesse de convergence avec d’autres suites par 
exemple) et de la distinction de la nature entre suites, pourrait aider à réduire les 
problèmes et erreurs dans cette transition concernant l’étude des suites définies par 
récurrence. 

NOTES 
1. Sur les suites récurrentes. Cours préparation au CAPES. https://www.math.u-

psud.fr/~perrin/CAPES/analyse/Suites/suites-re%CC%81currentes.pdf 

2. A. Robert (1998) identifie 7 types d’adaptations de connaissances : de reconnaissance (A1) ; 
d’introduction d’intermédiaires (A2) ; des mélanges de plusieurs cadres ou notions, mises en 
relation ou interprétation, changements de points de vue (A3) ; d’introduction d’étapes par 
rapport aux calculs ou raisonnements (A4) ; utilisation des questions précédentes dans un 
problème (A5) ; l’existence de choix (A6) ; et le manque des connaissances nouvelles (A7).  

3. Travail mathématique complet : les plans cognitif et épistémologique des ETM sont en 
relation et les circulations des plans verticaux rendent compte d’une diversité dans le travail. 

4. Le baccalauréat est l’examen qui termine les études secondaires en France. 
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5. Stratégie prévue : Initialisation : 𝑢! ∈ 	 [0, 1]. Hérédité : Soit 𝑚 ∈ ℕ, on suppose 𝑢" ∈ [0, 1]. 

Par résultat de question précédente f(um) ∈ [0,1], donc um+1 ∈ [0,1]. Conclusion : un ∈ [0,1] 
pour tout 𝑛 ≥ 0). 

6. Le théorème valide c’est : « si f est croissante, (un) est monotone ». 
7. Remerciement : Ce travail a été financé principalement grâce à BECAS CHILE - Doctorado 

en el extranjero convocatoria 2016, ANID (Folio : 72170523). 
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Gesture and diagram production as tools for identifying the key idea 
in topology proving tasks 

Keith Gallagher1 and Nicole Engelke Infante1 
1West Virginia University in Morgantown, WV, USA, kngallagher@mix.wvu.edu 

Undergraduates in an introductory topology course participated in a series of study 
sessions in which they were asked to prove or disprove statements. We present a case 
study of one student who alternated between using gestures and constructing diagrams 
when communicating her informal ideas while proving true statements. This cycle was 
repeated until she identified the key idea of the proof, at which point she began to 
translate this idea into a formal proof. We observed that the use of gesture combined 
with diagram modification to explore a heuristic idea supported her identification of 
the key idea and subsequent completion of a written proof. 

Keywords: Teaching and learning of logic, reasoning and proof, Teachers’ and 
students’ practices at university level, Topology, Key ideas, Gesture. 

INTRODUCTION 

Advanced mathematical thinking is often communicated as formal proof. Learning to 
construct proofs is a critical part of the undergraduate mathematics major curriculum. 
Many studies have shown that students struggle to construct valid proofs (Weber, 2010; 
Weber & Alcock, 2004). The concepts involved in these proofs often have multiple 
representations, both formal and informal. Among the informal representations are 
gestures and diagrams, which students use to develop and communicate their insights 
about a problem. These insights can lead to the use of formal notations and logical 
structures that we see used by the mathematics community. Here, we present a study 
in which we examine how gesture informs diagram construction and the discovery of 
the key idea of a proof. 

Proof is a form of advanced mathematical discourse, i.e., how we communicate 
advanced mathematical ideas in written and spoken forms. Research has shown that 
mathematicians often begin with an image (Carlson & Bloom, 2005; Gallagher & 
Engelke Infante, 2019; Zazkis, Dubinsky, & Dautermann, 1996). McNeill observed, 
“…language is inseparable from imagery. The imagery in question is embodied in the 
gestures that universally and automatically occur with speech. Such gestures are a 
necessary component of speaking and thinking.” (McNeill, 2005, p. 15) Roth (2000) 
argued that because students are unfamiliar with scientific discourse, their gestures 
precede their verbal discourse. 

Further, Yoon, Thomas, and Dreyfus indicated "gestures are a useful, generative, but 
potentially undertapped resource for leveraging new insights in advanced levels of 
mathematics." (2011, pp. 891-892). They advised that students should be provided 
opportunities to spontaneously create gestures (in small group problem solving 
sessions) and that instructors model gestures for students in lecture. We created an 
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environment in which students were encouraged to engage in mathematical discourse 
in order to observe how imagery and gestures may influence the development of formal 
mathematics. In this paper, we examine how gesture and diagram construction 
facilitate discovery of the key idea in topology proofs when students are working in 
small groups. 

THEORETICAL PERSPECTIVE 

Embodied Cognition 

We frame our work by viewing mathematics as a semiotic bundle and taking an 
embodied cognition perspective. A semiotic bundle is made of signs, such as words 
(oral and written), gestures, drawings, graphs, and technological devices, that are used 
by people engaged in a discourse. Arzarello, Paola, Robutti, and Sabena (2009) noted,  

The novelty of the semiotic bundle…is that it allows us to describe the multimodal semiotic 
activity of subjects in a holistic way as a dynamic production and transformation of various 
signs and of their relationships. In particular, it properly frames the role of gestures in 
mathematical activities. (p. 100) 

There is a large body of work in cognitive science focused on embodied cognition, 
which posits that knowledge is shaped by our experiences and interactions with the 
world around us (Lakoff & Nunez, 2000; Nunez, 2008). Through bodily experiences, 
such as gesture, our understanding of complex concepts is shaped. Roth (2000) 
suggested that “…schools (and universities) may be ideal ‘laboratories’… to study the 
genesis of formal discourses (e.g., science and mathematics) and the role gestures play 
during this development.” (p. 1712). While there have been many studies of the effects 
of gesture on younger students’ learning of mathematics (Alibali & Nathan, 2012; 
Goldin-Meadow, Cook, & Mitchell, 2009), there have been considerably fewer of 
undergraduate students in advanced mathematics classes. This study documents how 
students interact, through speech and gesture, with the inscriptions they create as they 
work to construct proofs.  

Similar to Bjuland, Cestari, and Borgersen (2008) and Arzarello, et al. (2009), we 
examine discourse, gesture, and inscriptions; however, our focus is on students of 
university age. Roth and McGinn (1998) noted that “When inscriptions are absent from 
face-to-face encounters, conversational troubles may quickly arise.” (p. 43). They 
further pointed out that representing is a social activity and that interpreting inscriptions 
is challenging for students. More recently, de Freitas and Sinclair (2011) proposed that 
diagrams and gesture are intrinsically linked - diagrams are a way to capture gesture. 
The diagrams that are constructed as a result of gesture are a public inscription that 
captures embodied (personal) knowledge. Hence, we seek to understand how students 
(collaboratively) construct inscriptions while determining the key idea of a proof.  

Proof: Key Idea 

Proof primarily serves two purposes: 1) to convince oneself, and 2) to convince others 
(Harel & Sowder, 1998). Raman (2003) defined three types of ideas used in proof: 
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heuristic, procedural, and key. A heuristic idea is based on informal understandings 
and provides a sense of personal understanding; convincing oneself. In contrast, a 
procedural idea is based on logic and formal manipulations to provide a sense of 
conviction; convincing others. Finally, Raman defines, “A key idea is an heuristic idea 
which one can map to a formal proof with appropriate sense of rigor” (p. 323); 
convincing oneself and others. 

As students learn the discourse of proof, they need to identify and use key ideas. While 
students discuss the mathematics verbally, they will likely gesture. In turn, these 
gestures facilitate the construction of diagrams. The resulting diagrams are public 
inscriptions that capture embodied knowledge. In this study, we start to answer the 
following question: How does the interplay between gesture and diagram help students 
identify the key idea when constructing topology proofs? 

METHODS 

We recruited students from an introductory undergraduate course in point-set topology 
at a large university in the United States. Participants attended weekly one-hour 
sessions in which they were asked to complete proof tasks (including “prove” and 
“disprove” prompts). Participants engaged in nine distinct problem sets over the course 
of the semester and were encouraged to collaborate on all proof tasks. Only one student, 
Stacey (a pseudonym), attended all sessions. A qualitative case study methodology 
(Cohen, Manion, & Morrison, 2011; Yin, 2006) was used to examine how Stacey used 
gesture and diagrams as she engaged in proof construction tasks. 

Sessions were video recorded, and the videos were transcribed and coded for gesture 
use according to the coding scheme below. We also identified the moment in each 
session when Stacey verbally expressed the key idea (Raman, 2003) of the proof of the 
“prove” prompt, in those sessions where this occurred. We coded Stacey’s recognition 
of the key idea as the moment first moment she vocalized the idea she would eventually 
turn into a formal proof. This occurred, at most, once per session. The results we 
present in this paper concentrate on data collected from the “prove” prompts. 

The definition of gesture varies in the literature, sometimes including all visible body 
movement including eye gaze and body posture. For this study, we use the definition 
given by Rasmussen, Stephan, and Allen (2004): “movement made by a hand with a 
specific form: the hand(s) begins at rest, moves away from the position to create a 
movement, and then returns to rest” (p. 303), which is adapted from a definition given 
by Roth (2001) but not as broad as other definitions, see Kendon (2004). 

We classified our gestures using McNeill’s dimensions of iconicity, metaphoricity, and 
deixis (Kendon, 2004; McNeill, 1992, 2005). Iconic gestures are those that have real 
world objects and actions associated with them while metaphoric gestures are those 
that are created in the mind to represent something abstract. All representational 
gestures (i.e., iconic and metaphoric gestures) that referred to mathematical objects 
such as sets, points, or functions, were coded as metaphoric gestures, since the referents 
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were abstract and not concrete. Deictic gestures are pointing gestures; we further 
subdivided deictic gestures into static points (using a finger/hand to point to something 
and not moving it) and tracing points (a gesture that starts as a point but then continues 
to move to highlight a secondary attribute of the referent, such as tracing the shape of 
a graph). We agree with McNeill (2005) that these dimensions are not mutually 
exclusive, and that gestures may contain elements from a mix of dimensions. 

RESULTS 

We discuss instances of Stacey’s gesture use and diagram generation in three proof 
productions as well as her recognition of the key ideas of those proofs. 

During Session 5, Stacey and Tom were asked to prove that, given a subset 𝐴 of a 
topological space (𝑋, 𝒯), “[I]f for each open set 𝑂 ∈ 𝒯 we have 𝐴 ∩ 𝑂 ≠ ∅, then 𝐴 is 
dense in 𝑋.” Stacey began by drawing the diagram in Figure 1 (left). 

 

Figure 1: Stacey’s evolving diagram. 

She then began to explain her thinking (referencing the diagrams in Figure 1): 

I can’t really show it with a picture because I can’t draw a dashed line over a … solid line, 
but we have 𝑋 [static point to the label 𝑋 (left)] on the outside [tracing point along the 
boundary of 𝑋 (left)] and then we have the set 𝐴 [static point to the label 𝐴 (left)] which is 
represented by the dashed [tracing point along the boundary of 𝐴 (left)], which I wish I 
could get closer to this [static point to the border of 𝑋 (left)], but I can’t. So, if we had the 
closure of 𝐴 [static point to the label 𝐴 (left)], then it would just be the same as that solid 
line [tracing point along the border of 𝑋 (left)]. So then if you take any open set [drawing 
circles on her diagram (center)] anywhere, there has to be some kind of intersection with 
𝐴 [static point to one of her open sets (center)]. So if it wasn’t … if the intersection could 
be … the empty set [static point to ∅ in the problem statement] – [draws the diagram in 
Figure 1 (right)] You’ve got 𝑋 here, and 𝐴 here, and you could have an open set here, and 
their intersection would be the empty set [recognizes key idea]. But then this closure [static 
point to the boundary of 𝐴 (right)] wouldn’t be equal to 𝑋 [static point to the boundary of 
𝑋 (right)]. I get it conceptually I think, but I’m not sure how to prove it. 

Notice the alternation between diagram construction/modification and explanation 
accompanied by gesture production. The diagram gave Stacey a concrete referent to which  
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Figure 2: Session 5, Stacey reasoning about her diagrams using gestures. 

she could point while explaining her thoughts, and the articulation of her ideas led to 
further modification of the diagram. After a few such alternations, Stacey arrived at the 
key idea of the proof. Following this excerpt, Stacey and Tom chose to use the method 
of proof by contradiction and wrote their formal proof. 

Stacey’s task in Session 7 was to prove that, given a topological space (𝑋, 𝒯), “If the 
sets 𝐶, 𝐷 form a separation of 𝑋, and if 𝑌 is a connected subspace of 𝑋, then either   
𝑌 ⊆ 𝐶 or 𝑌 ⊆ 𝐷.” As in Session 5, Stacey began by drawing a diagram (Figure 3, left). 

 

Figure 3: Stacey’s diagram for a separation of a topological space. 

Referencing Figure 3, she explained, 

If you have 𝑋, the ambient space [static point to the boundary of 𝑋 (left)], and then you 
have the sets 𝐶 and 𝐷 [alternating static points to the left and right rectangles (left)], they 
form a separation, so that means that they’re disjoint [static points to the left rectangle, then 
the right (left)], so they don’t have any of the same elements, and that their union is 𝑋 
[static point to the boundary of 𝑋 (left)], so that is satisfied for this [alternating static points 
to left and right rectangles (left)]. And then if 𝑌 is connected, which means it’s not in these 
sets [metaphoric gesture indicating two disjoint subsets of 𝑌 (Figure 4, left)] that are 
disjoint whose union is 𝑌, it’s just one cohesive set [metaphoric gesture indicating 𝑌 as a 
connected set (Figure 4, right)], then it has to be either in 𝐶 or in 𝐷. It can’t be in both, 
because if it was like that [draws the subset in Figure 3 (right)], it would be disjoint. 
[recognizes key idea] 
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Once again, Stacey started her discussion by drawing a diagram. Her subsequent explanation, 
accompanied by various deictic and metaphoric gestures, led her to modify her diagram and 
then to vocalize the key idea that she then used to construct her proof in the remaining time. 

 

Figure 4: Stacey describing a connected subspace with gestures. 

In Session 9, Stacey was asked to prove that, given a compact subspace 𝑌 of a 
Hausdorff space 𝑋 and a point 𝑥 ∉ 𝑌, there exist disjoint open sets 𝑈 and 𝑉 such that 
𝑥 ∈ 𝑈 and 𝑌 ⊆ 𝑉. Stacey began by extracting a list of details given in the problem 
statement, and she “wrote it out in symbols to help [her] think of it better,” then talked 
through those details while using static points to highlight each one. It appeared that 
Stacey did not initially have a heuristic idea for this proof, as she spent a few minutes 
exploring the implications of her list of given conditions and browsing her textbook for 
useful hints. 

Stacey’s examination of her textbook led her to realize that 𝑌 must be closed in 𝑋, as 
a compact subspace of a Hausdorff space, a fact which she added to her written list on 
the board. She then constructed a diagram (Figure 5, left), which she modified as she 
elaborated: 

The open set 𝑈 would be the complement of 𝑌 in 𝑋 [writing 𝐶 (𝑌) (right)], because you 
know it’s open because 𝑌 is closed. I don’t know if there’s a theorem or something that 
would get me there, but the fact that 𝑌 is a compact subspace of something Hausdorff might 
mean that there exists an open set within it [metaphoric gesture indicating a subset of 𝑌] – 
oh wait, no. Because 𝑌 has to be in 𝑉 [static point to her inscription, 𝑌 ⊆ 𝑉 (right)]. So we 
need something like this [draws a larger set containing 𝑌, labels it 𝑉 (right)]. And then you 
also need their intersection to be empty. So I guess you can’t really take just the 
complement of 𝑌 [static point to the label 𝐶 (𝑌)] because – you can’t just take the set 𝑌 
because it’s closed, you need an open set for 𝑉. So you need something bigger than 𝑌 
[tracing point to the boundary of 𝑉], but if you take anything bigger than 𝑌, then you’re in 
the complement of it [static point to the label 𝑋], and then the intersection isn’t empty. So 
you need something within this complement of 𝑌 [static point to 𝐶 (𝑌)] to be the set 𝑈. 

Stacey used her diagram and her gestures to explain and explore her heuristic idea. In contrast 
to Sessions 5 and 7, however, her combination of diagram and gesture usage exposed flaws  
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Figure 5: Stacey’s evolving diagram of a Hausdorff space. 

in her reasoning. The exposure of these flaws allowed her to modify her understanding of the 
problem and proceed in search of a new idea. Stacey never identified the key idea of the proof 
in Session 9, but she continued to explore new ideas through gesture and modifying her 
diagram to reflect her evolving understanding. 

DISCUSSION 

The data from Sessions 5 and 7 suggest a sequence of events in Stacey’s recognition 
of key ideas and subsequent proof constructions. Stacey’s use of gestures and their role 
in the production of diagrams are critical to her recognition of the key idea (Raman, 
2003) that eventually leads to the writing of the formal proof. 

The embodied cognition perspective (Lakoff & Nunez, 2000; Nunez, 2008) suggests 
that internal knowledge is shaped by interactions with the external world. Engaging in 
discussions of mathematical ideas is a prominent means of interacting with the world. 
Verbal discourse is enhanced when we use gestures and diagrams to aid in our 
communication.  As Roth and McGinn (1998) noted, communication suffers in the 
absence of inscriptions.  In the data we presented, Stacey began reasoning about her 
proofs by drawing a diagram to represent her understanding of the problem, giving her 
ideas physical manifestations. Stacey then gave verbal descriptions accompanied by 
gestures, and she then used her diagrams to further facilitate communication of her 
informal mathematical ideas. With her ideas now part of the external world, she was 
free to interact with them physically, modifying her understanding as she modified her 
diagrams. The result of this activity was recognition of the key idea of the proof. 

Our analysis of Stacey’s proof-writing in Sessions 5 and 7 suggests a pattern in her 
proving behaviours (see Figure 6). In the following paragraphs, we describe this 
pattern, and we speculate on the reasons for the observed behaviours. 

Stacey’s proof production process began with the formation of a heuristic idea: she 
started with an informal reason why she believed the statement to be proved might be 
true. Collaboration with another individual (whether another student or the session’s 
facilitator) produced a need to communicate that idea externally, resulting in the 
production of gestures or an inscription (often, a diagram). Though Stacey may have 
possessed a heuristic idea, she was only able to represent one or two pieces of the idea 
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at a time via gesture alone, and she may only have been able to hold a comparable 
number of pieces in her working memory. In order to record her gestures, Stacey 
created or modified a diagram, freeing her to produce new gestures to further explain 
her idea (de Freitas & Sinclair, 2011). These new gestures could then be added to her 
diagram, and this cycle repeated. The diagram became a more complete representation 
of Stacey’s heuristic idea as more gestures were captured with each iteration of the 
cycle. 

As the diagram became a more complete representation of Stacey’s heuristic idea, she 
began to see how she might be able to translate her informal ideas into a formal proof. 
Stacey’s heuristic idea became the key idea when she recognized that it should translate 
into a formal proof. Once this recognition was achieved, Stacey was free to begin 
construction of the formal proof and the development of the procedural idea, eventually 
leading to the completion of the proof. 

 

Figure 6: Stacey’s observed proof-writing sequence in Sessions 5 and 7. 

Though Stacey did not complete a proof in Session 9, we emphasize that Stacey did not 
identify a key idea during this session. Further, Stacey did not immediately generate a diagram 
like she did in Sessions 5 and 7. Stacey only drew a diagram after she arrived at an intuitive 
(albeit inaccurate) idea of why the given statement might have been true, and it was through 
a combination of gestures, speech, and diagram modification that she recognized the error in 
her idea. This provides support for the idea that gesture use and diagram modification were 
integral to Stacey’s success in producing proofs. 

CONCLUSIONS 

This study sought to understand how the interplay between gesture and diagram 
construction facilitates students’ proof writing. We observed that Stacey’s engagement 
in a cycle of using verbal descriptions of her thinking accompanied by gestures and 
diagram construction led to her success in identifying the key idea of the proof and 
writing a correct proof. This adds to our knowledge of how gesture and advanced 
mathematical thinking are linked.  

While we chose tasks that we thought would prompt students to draw diagrams and 
produce gestures, the tasks did not require students to engage in these activities. Future 
studies could investigate the effect of explicitly prompting students to gesture when 
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explaining their thinking. Additionally, we suggest examining how the instructors of 
these courses use gesture and how that affects students’ gesture use and conceptual 
understanding. Lastly, we acknowledge that our sample size was small and that to 
determine the extent of the generalizability of our results additional data are needed. It 
would further expand our knowledge to observe students working on proofs in other 
areas of advanced mathematics such as abstract algebra and geometry with a focus on 
the relationship between gesture and inscriptions.  

Proof construction is challenging for students. Our results indicate that the combination 
of dialogue, gesture use, and diagram construction may be an effective tool to help 
students translate their informal ideas into formal mathematics. As students transition 
from the algorithmic, computational mindset of early grades mathematics to advanced 
mathematics that require more creativity and flexibility, the tools we give them must 
increase in flexibility as well. Communication is about more than just talk; gestures 
complement our verbal communication by providing a visual component that may be 
captured in inscriptions. We concur with Yoon, et al. (2011) that encouraging students 
to express their mathematical thinking with gesture can help them to be successful in 
communicating and understanding mathematical ideas.       
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Interpretations of the complex path integral are presented as a result from a multi-case 

study on mathematicians’ intuitive understanding of basic notions in complex analysis. 

The first case shows difficulties of transferring the image of the integral in real analysis 

as an oriented area to the complex setting, and the second highlights the complex path 

integral as a tool in complex analysis with formal analogies to path integrals in 

multivariable calculus. These interpretations are characterised as a type of intuitive 

mathematical discourse and the examples are analysed from the point of view of 

substantiation of narratives within the commognitive framework. 

Keywords: Teaching and learning of specific topics in university mathematics, 

teaching and learning of analysis and calculus, commognitive framework, complex 

analysis, mental images. 

INTRODUCTION 

Since ℂ and ℝ2 are isomorphic as real topological vector spaces, one can try to analyse 

analytic properties of a continuous complex-valued function 𝑓 = 𝑢 + 𝑖𝑣 by studying 

analytic properties of the vector field 𝑭 = (𝑢, 𝑣) [1]. For instance, complex 

differentiability of 𝑓 at some point is equivalent to real differentiability of 𝑭 together 

with the satisfaction of the so-called Cauchy-Riemann equations. However, it is not 

immediate how to establish an intuitive or geometric understanding of complex path 

integrals by going back to single- or multivariable calculus. 

It is not very present in other textbooks but “visual complex analysis” has been worked 

out by Needham (1997). In addition, research from university mathematics education 

about complex analysis, and in particular the complex path integral, is emerging (e.g., 

Oehrtman, Soto-Johnson, & Hancock, 2019). It thus seems purposeful to investigate 

intuitive understanding of the complex path integral and other notions in complex 

analysis more closely, not only for epistemological reasons, but also to intensify our 

understanding of meaning-making at university level, and to identify interpretations of 

notions in real analysis that can potentially be expanded for analytic notions which 

appear beyond first year in mathematics study programmes. 

In a larger project, I investigate expert mathematicians’ understanding of basic notions 

of complex analysis. This article continues my investigation of experts’ understanding 

of the complex path integral (Hanke, 2019), and discusses geometric-physical 

interpretations of the complex path integral and analogies to integrals in real analysis. 

Next to the enrichment on complex analysis education, I discuss intuitive 

understanding and mental imagery through a commognitive lens (Sfard, 2008) when 

discussing experts’ intuitive mathematical discourses. 
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Research question 

Based on my own engagement in teaching complex analysis, I can say that many 

students demand for intuitive explanations of complex analytic notions. 

Acknowledging the expertise of professional mathematicians, it is expedient to ask 

which kinds of intuitive interpretations arise in experts’ thinking about notions in 

complex analysis, firstly in order to achieve an understanding about proficient usages 

of these notions, and secondly to study generally how mathematicians at university 

substantiate their intuitive thinking about notions of the undergraduate curriculum. In 

this note, I focus on interpretations of the complex path integral expert mathematicians 

provide when they are explicitly asked to give such: 

How do expert mathematicians interpret the complex path integral and how do they 

substantiate their interpretations? 

PREVIOUS RESEARCH 

Definitions and some interpretations of the complex path integral in the literature 

The path integral of a continuous complex-valued function 𝑓 = 𝑢 + 𝑖𝑣 on the trace 

tr(𝛾) of a piecewise continuously differentiable curve 𝛾: [𝑎, 𝑏] → ℂ can be defined as 

∫ 𝑓(𝑧)
𝛾

d𝑧 ≔ ∫ 𝑓(𝛾(𝑡))𝛾′(𝑡)
𝑏

𝑎
d𝑡 (this is to be interpreted as the sum over the parts 

where 𝛾 is continuously differentiable) (Lang, 1999, ch. III, §2). Then again, it is also 

possible to extend the definition of the Riemann integral of real-valued functions to the 

complex setting with Riemann sums of the form ∑ 𝑓(𝛾(𝜉𝑘))Δ𝛾𝑘
𝑛−1
𝑘=0  (Polya & Latta, 

1974, ch. 5.3) [2]. If one separates ∫ 𝑓(𝑧)
𝛾

d𝑧 into real and imaginary part, one obtains 

∫ 𝑢 d𝑥 − 𝑣 d𝑦
𝛾

+ 𝑖 ∫ 𝑣 d𝑥 + 𝑢 d𝑦
𝛾

. Furthermore, if 𝛾 is simple closed and 𝑓 is 

holomorphic on an open neighbourhood of the interior of 𝛾, int(𝛾), Green’s theorem 

yields that ∫ 𝑓(𝑧)
𝛾

d𝑧 equals − ∬
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥int(𝛾)
d(𝑥, 𝑦) + 𝑖 ∬

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦int(𝛾)
d(𝑥, 𝑦) [3]. 

As a result, one gains three connections to real analysis: The first one extends the 

definition of the Riemann integral for real-valued functions, the second expresses the 

complex path integral via real path integrals of second kind, i.e. path integrals for real 

vector fields, and the third enables to determine the complex path integral for paths on 

the boundary of an area via area integrals. 

Probably the most important fact about the complex path integral is Cauchy’s integral 

theorem. One version says that ∫ 𝑓(𝑧)
𝛾

d𝑧 vanishes if 𝛾 is closed and 𝑓 holomorphic 

on a simply connected domain which contains int(𝛾). 

Geometric-physical interpretations of path integrals in real analysis assist the 

interpretation of the complex path integral as well. However, the transfer from the real 

to the complex setting is more subtle and provides an interpretation dependent on the 

separation into real and imaginary part. Polya and Latta (1974, ch. 5.1f.) reason that 

∫ 𝑓(𝑧)̅̅ ̅̅ ̅̅
𝛾

d𝑧 = ∫ 𝑢 d𝑥 + 𝑣 d𝑦
𝛾

+ 𝑖 ∫ 𝑢 d𝑦 − 𝑣 d𝑥
𝛾

= work + 𝑖 ⋅ flux (note that 𝑓 ̅ is on 
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the left side!), where work means the work of 𝑭 along 𝛾 when 𝑭 is interpreted as a 

force, and flux means the flux of 𝑭 across 𝛾 when 𝑭 is interpreted as a current density. 

If one replaces 𝑓 ̅with 𝑓, like Braden (1987) or Needham (1997, ch. 11.II.1), one gets 

∫ 𝑓(𝑧)
𝛾

d𝑧 = ∫ 𝒘 ⋅ 𝑻
𝛾

d𝑠 + 𝑖 ∫ 𝒘 ⋅ 𝑵
𝛾

d𝑠 = work∗ + 𝑖 ⋅ flux∗ where work∗ and flux∗ 

are interpreted as above with 𝑭 replaced by the “Pólya vector field” 𝒘 = (𝑢, −𝑣) 

(Braden, 1987, p. 321) [4]. In Braden’s terminology, the real part of the complex path 

integral is the flow of 𝒘 along 𝛾 and the imaginary part is the flux of 𝒘 across 𝛾. One 

can see that this geometric-physical interpretation of ∫ 𝑓(𝑧)
𝛾

d𝑧 involves work and flux 

of the Pólya vector field 𝒘, i.e. the vector field associated to the conjugate 𝑓,̅ not 𝑭. 

Moreover, Gluchoff (1991) argues that the complex path integral divided by the length 

of 𝛾, provided that 𝛾 is simple, equals the “average” of the numbers 𝑓(𝛾(𝑡))𝛾′(𝑡)/
|𝛾′(𝑡)| where 𝑡 ranges over [𝑎, 𝑏], i.e. 𝛾(𝑡) ranges over tr(𝛾). Thus, he generalises the 

mean value property of integrals of a real-valued functions. 

Research on complex path integrals in mathematics education 

Research on complex analysis education, besides arithmetic and geometry of complex 

numbers, is emerging. Oehrtman, Soto-Johnson, and Hancock (2019) present a study 

on mathematicians’ understanding of the complex derivative and complex integration. 

Their participants could relate the derivative to the idea of “amplitwist”, however not 

always fluently. For integration, the majority of their participants struggled to interpret 

the complex path integral intuitively, and considered it hard to formulate such an 

explanation. Two participants mentioned the connection between real and complex 

path integrals, e.g., one of them formally multiplied (𝑢 + 𝑖𝑣)(d𝑥 + 𝑖 d𝑦) = 𝑢 d𝑥 −
𝑣 d𝑦 + 𝑖(𝑣 d𝑥 + 𝑢 d𝑦) to establish the connection. Only one of the experts provided a 

more profound personal interpretation. He combined the Riemann sum approach with 

a story on ship navigation where the captain reconstructs his physically real route on a 

chart. The function 𝑓 causes “location-dependent errors” of the original path’s 

segments Δ𝛾𝑘 in the sense that 𝑓(𝛾(𝜉𝑘))Δ𝛾𝑘 is a dilated-rotated version of the original 

path segment on the chart (Oehrtman, Soto-Johnson, & Hancock, 2019, p. 413). This 

resembles Needham’s (1997, ch. 8.III) interpretation of the Riemann sum approach as 

a concatenation of rotated-dilated vectors. 

BASIC TENETS OF THE COMMOGNITIVE FRAMEWORK 

In the commognitive framework (Sfard, 2008), of which I can only elucidate the most 

basic ideas here, thinking as personal communication and communication with others 

are conceptualised as two sides of the same phenomenon. Mathematics and its various 

disciplines are seen as special discourses. Objects in mathematical discourses “are, 

themselves, discursive constructs, and thus constitute a part of the discourse” 

(Sfard, 2008, p. 129), e.g., the discourses grow recursively when processes, which 

involve previous discursive or physically perceptible objects, are in turn objectified 

into new discursive objects. The commognitive framework offers four core categories 

to analyse mathematical discourses: Word use, narratives, visual mediators, and 

105 sciencesconf.org:indrum2020:295477



  

routines (Sfard, 2008, pp. 129–135). Word use refers to the usage of (key) words, 

keeping in mind that the same words can appear in different discourses. A narrative is 

“any sequence of utterances framed as a description of objects, of relations between 

objects, or of processes with or by objects”, which in formal, literate mathematical 

discourses are for example definitions or theorems (Sfard, 2008, p. 134). An endorsed 

narrative is a narrative that is considered true by a set of endorsers when rules, which 

are agreed upon by the endorsers, have been applied to justify that narrative; in other 

words, an endorsed narrative reflects “the state of affairs” (Sfard, 2008, p. 298). Visual 

mediators are all visible entities that are used in communication, e.g., sketches, or 

symbols specifically designed for mathematical communication. Finally, routines are 

collections of metarules which govern the actions of the participants of a discourse, the 

discursants, which are called mathematists in mathematical discourse, rather than the 

objects of the discourse. For example, exploration routines govern the construction of 

new narratives. Lavie, Steiner, and Sfard (2019) argue more detailed that discursants 

may choose their routine performances according to so-called precedent-search-spaces, 

i.e. communicative situations in which they, or other discursants, participated in a 

certain manner, which is adapted to the situation at hand. 

One form of exploration is substantiation. It is “a process through which mathematists 

become convinced that the narrative can be endorsed” and is “probably the least 

uniform aspect of mathematical discourses” (Sfard, 2008, p. 231). In formal, literate 

mathematical discourses, mathematists usually substantiate a definition by checking 

for its consistency and a theorem with a proof—each of the substantiations in a fashion 

that is endorsed itself by the group of endorsers. Contrariwise, in personal 

mathematical discourses, i.e. discourses in which a single mathematist communicates 

with her- or himself, substantiations can vary considerably (Sfard, 2008, pp. 231–234). 

INTUITIVE MATHEMATICAL DISCOURSE 

Discourses around discursive objects emerge through narratives, together with 

metarules, which themselves grow in the discourse. Even the sensitive construct of 

individual meaning-making can be approached from the commognitive framework. In 

mathematics education, the ideas of “intuition” or “mental images” became concepts 

through the narratives created about them, e.g., in the strands of work following 

Fischbein (1987) or Tall and Vinner (1981). However, it often remains ambiguous what 

exactly is structured by these concepts and how the gap between cognitive constructs 

on the one hand and empirical observability on the other hand is bridged. Keeping the 

discussion on these cognitive constructs in mind, one can look at discourses formed 

when mathematicians engage in communicating about their personal intuitive 

understanding of mathematical objects, which I call intuitive mathematical discourses 

here. These include any kinds of visual means or heuristics individuals or communities 

may use to explain a mathematical notion without requiring rigour. 

In the commognitive framework, understanding is the “interpretative term used by 

discursants to assess their own or their interlocutors’ ability to follow a given strand or 
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type of communication”, and a “commognitive researcher [...] is interested in the 

interplay of the participants’ first- and third-person talk about understanding and their 

object-level discursive activity (Sfard, 2008, p. 302; original highlighting omitted, EH). 

Here, the focus is on intuitive understanding of a mathematical notion. While 

examining intuitive mathematical discourses one needs to take into account that 

discursants shape these discourses by what they consider to belong to their intuitive 

understanding of a mathematical notion, in the sense of understanding as above. In this 

context, mental images (German: Vorstellungen [5]) are understood as narratives or 

combinations of visual mediators and narratives on object- or meta-level which serve 

as heuristics for communication, such as making explicit their intuitive understanding. 

Discursants may use them to explain a mathematical notion on a for her or him intuitive 

level, either for somebody else or for her- or himself. These narratives and visual 

mediators constitute intuitive mathematical discourses. 

Discursants may be unsure whether their own intuitive narratives are in some sense 

correct or shared by other discursants, or may be afraid of compromising themselves. 

Thus, the range of endorsement and the substantiations of the narratives a discursant 

produces in her or his intuitive discourse may vary notably (either within a discursive 

community, or with respect to what the single discursant expects as agreement from 

other discursants). An individual’s intuitive mathematical discourse centring on 

mathematical notions is thus not necessarily about endorsed narratives about 

mathematical objects per se, like in literate mathematical discourses, but rather about 

heuristics with which the individual makes sense of these notions. Yet, this can include 

elements of literate mathematical discourses, e.g., theorems or narratives about related 

mathematical aspects, of what the individual believes to be endorsable or rejected by 

other people, or narratives and visual mediators which show the discursants’ struggles 

to express her- or himself. 

The notion of intuitive mathematical discourse is not meant in any prescriptive way. It 

is an attempt to understand meaning-making from a discursive perspective, which 

considers individual and interpersonal communication as the same phenomenon, thus 

bearing theoretical justification for how individual and interpersonal meaning-making 

through communication can take place in mathematics. 

METHOD: PARTICIPANTS AND INTERVIEW QUESTION 

Interviews of approximate lengths of 90 to 120 minutes were conducted with expert 

mathematicians from German mid-size universities, videotaped, transcribed, and all 

notes written down during the interviews collected. In the beginning of the interviews, 

I emphasised that my research is about the very personal meaning-making and mental 

images of mathematicians at university. During the interviews, I asked for the experts’ 

personal meaning-making of complex differentiation, the complex path integral, and 

fundamental theorems like Cauchy’s integral theorem or Cauchy’s integral formula. In 

this article, I draw on data from interviews with two mathematicians: Dirk and Uwe 

(pseudonyms). They have PhDs and lectured complex analysis for several years. 
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Here, I focus on interview excerpts on the following question. It was introduced with 

the geometric interpretation of the integral of a real-valued function as “signed area 

under the graph”, paraphrased, and handed to the participants printed out (translated 

from German). Nevertheless, the participants were encouraged to detour from 

geometrical reasoning in favour of other aspects they deem fertile. 

“Which geometrical meaning does the complex number ∫ 𝑓(𝑧)
𝛾

d𝑧 for a (piecewise 

continuously differentiable) path 𝛾: [𝑎, 𝑏] → Ω and a continuous function 𝑓: tr(𝛾) → ℂ 

have for you?” 

RESULTS 

The excerpts from the transcripts were translated from German (some filler words have 

been omitted for readability), and I redrew the figures. (#) indicates the length of a 

pause, and / indicates unfinished words or interruptions by the interlocutor. 

Transferring the “real image” 

Dirk rephrases the question and thinks for a long time: 

1 Dirk: (13) Uhm, so in strict complex analytical context, what is the meaning? 
Alright, uhm, (5) if one talks, uhm, about path integrals in vector fields, 
then it has a physical meaning, but what, what would it be here? (23) 
Uhm. (7) 

Dirk is aware that “path integrals in vector fields” have a physical interpretation but he 

does not transfer this interpretation to the complex setting. After long silence, the 

interviewer claims that some people simply consider the complex path integral as a 

technical tool used for proving in complex analysis. Dirk does not find this satisfying 

but remains unable to give a geometric description even though he states that he has 

thought about this before. Therefore the interviewer uses Cauchy’s integral theorem as 

another stimulus. Dirk says he believes “what this [the stimulus] boils down to” and 

provides the formula ∫ 𝑓(𝑧)
𝛾

d𝑧 = 𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑎)) where 𝐹 is a primitive of 𝑓, 

and 𝛾(𝑎) and 𝛾(𝑏) are the start and endpoint of 𝛾. He continues like this: 

2 Dirk: Uhm, yes, one can use this [the formula just given] perhaps to he/ help 
with the imagination [German: Vorstellung], right, but (1) in principle 
one would like to, uhm, resort to such an image, right [draws Figure 
1a]. [incomprehensible: And then] it is, uhm, not an interval in R now, 
but a path, let’s say, this here is C, right [draws Figure 1b], and, uhm, 
this is not necessarily helpful, such a picture, since the values are 
complex [adds a ℂ to the axis pointing upwards in Figure 1b]. 

 

Figure 1. Attempt to transfer “such an image” (a.) to the complex setting (b.) 
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The narrative involving the primitive is not yet considered as “imagination” but might 

“help”. This valuation may be the result of the initial question for a geometric meaning. 

Dirk draws “such a picture” (Figure 1a), common for real integrals, even though he 

does not say this, and attempts a transfer to the setting where the domain of the function 

is “a path”. Formally though, the function needs to be defined on the trace of the path, 

and this seems to be displayed in Figure 1b. However, Dirk’s use of words does not 

include “function” but “values”. The routine of drawing a sketch and looking for an 

analogous picture for the complex path integral that builds on a picture for the real 

integral does not help Dirk for finding geometric meaning of the complex path integral, 

and he even questions whether such a picture is helpful at all (Hanke, 2019). 

Here, except for the narrative ∫ 𝑓(𝑧)
𝛾

d𝑧 = 𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑎)), Dirk does not 

produce an explicit narrative about the complex path integral, and he does not even use 

any of the words “integral” or “integration” in his immediate reaction to the interview 

question. Otherwise, his word use of the nouns he uses is object-driven (Sfard, 2008, 

p. 182) and he produces the visual mediator in Figure 1b while he talks. Dirk’s attempt 

for a geometric picture does not indicate process-driven understanding of the complex 

path integral and his drawing seems to hint towards the wish for a static picture, but he 

does not reach an explicit narrative about a meaning of the complex path integral. 

“Path integrals of third kind” as a “tool” in complex analysis 

While the interviewer still poses the question, Uwe interrupts to firmly state that the 

complex path integral has “not any geometric meaning”. Then, he goes on like this: 

3 Uwe: There are path integrals of first, second, and third kind, I like to say. Of 
first kind is a scalar, uhm, path integral, which, boah, no idea, is 
especially important for calculating the arc length, where the number 
one is simply integrated along the path (1) and then there’s path integral 
of second kind, which is incredibly important for any work along any 
paths, where one has a scalar product, and then there is the complex 
path integral, and for this, one does not have any imagination at all at 
first. There is complex multiplication, so to speak [points to 𝑓(𝑧) d𝑧]/ 
This is, so to speak, if you like, f of z is complex multiplied by dz and 
there one best doesn’t imagine anything at all [giggles]. […] So, I mean, 
I am of course, of course, only interested in this for holomorphic 
functions, because that is, that is simply a tool in complex analysis, path 
integrals. This is nothing more than a tool actually. And, uhm, therefore 
this is only interesting for holomorphic functions and, well, there one 
knows the residue theorem and it tells you exactly which image you 
should have of it, namely: If the path is only passing around isolated 
singularities of f, (1) I simply have to look at f in the singularities and 
calculate the residues there, then I also know what this, what this 
integral means, what comes out of the integral. In the end, this is what 
the path integral means. The sum of the residues, the weighted one. 

Here we find three very explicit narratives which get developed during the interview. 

Firstly, there is a clear rejection of geometric meaning for the complex path integral 

and it is granted the status of a tool. Later on, Uwe consolidates that complex path 
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integrals “usually do not have a special meaning in themselves” and serve to evaluate 

real integrals that “have the meaning with which you [the interviewer] started, that this 

is an area under a graph”. Consequently, Uwe is not generally indifferent to geometric 

meaning of mathematical notions, which also becomes evident in other parts of the 

interview where he argues about the importance of sketching domains of functions and 

traces of paths. Secondly, there is a clear differentiation between real and complex path 

integrals. Thirdly, the meaning of the complex path integral is seen in its “outcome”, a 

weighted sum of residues—which is stated normatively (“image you should have”). 

Uwe only considers holomorphic functions to be interesting for integration, which may 

have singularities the path of integration winds around. Also note that Uwe’s 

perspective changes: Whereas “one best doesn’t imagine anything at all” for the path 

integral and “one” has a scalar product in the integrand, he changes to “I” when he 

restricts the class of functions considered, before he changes back to the normative 

statement that the weighted sum of residues is the meaning of the path integral. In 

addition, Uwe’s talk is process-driven at some points: The path is “passing around 

isolated singularities” and Uwe has to “look at f” and “calculate the residues”. Even 

though Uwe holds the static image of the complex path integral as weighted sums of 

residues, the path and he appear as actors in his narratives. 

 

Figure 2. Rewriting 𝒇 ⋅ 𝜸′ as 〈(𝒇, 𝒊𝒇), 𝜸′〉 using matrix multiplication 

Later, the interviewer points to the apparent similarity that 𝛾′ appears both in real and 

complex path integrals and Uwe counters “Yes, certainly, but here is a complex times 

and this makes everything a little weird”, which reinforces Uwe’s distinction between 

real and complex integrals. He identifies complex numbers 𝑎 + 𝑖𝑏 with vectors (𝑎, 𝑏) 

and uses this to write the product of the function 𝑓 and the path 𝛾 in terms of matrix 

multiplication (Figure 2; here is 𝑓 = 𝑓1 + 𝑖𝑓2). The integrand 𝑓 ⋅ 𝛾′ in the complex path 

integral is transformed into 〈(𝑓, 𝑖𝑓), 𝛾′〉, which resembles the integrand of a path 

integral for vector fields that involves the scalar product of the vector field and 𝛾′. 

4 Uwe: […] and now, uhm, there is the integrability condition for exact, for 
conservative vector fields, namely that, when I derive the second 
function [points to 𝑖𝑓 in Figure 2] with respect to the first variable, there 
comes out the same as when I derive the first function [points to f in 
Figure 2] with respect to the second variable. (1) And then there comes 
out exactly d-two f equals i d-one f [writes 𝜕2𝑓 = 𝑖𝜕1𝑓] and these are 
exactly the Cauchy-Riemann differential equations. 

Here, Uwe substantiates the Cauchy-Riemann equations through a narrative on the 

equality between the integrand of the complex path integral and an expression that 

resembles the integrand of a path integral of second kind (Figure 2) on which he applies 

the “integrability condition” (which stems from vector analysis)—but not from the 

definition of complex differentiability or the relationship to real total differentiability. 
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SUMMARY 

A discursive perspective on intuitive understanding of mathematical concepts in terms 

of intuitive mathematical discourse was proposed and used to analyse experts’ intuitive 

understanding of the complex path integral. Although references to real analysis 

appeared frequently—even if only to emphasise conceptual differences or underline 

the inappropriateness of “real images”—the reconstructed substantiations of Dirk’s and 

Uwe’s narratives about their intuitive understanding of the complex path integral differ 

considerably. From the excerpts above and the literature we can see that substantiations 

of the complex path integral include formal (non-) analogies: The definition of the 

complex path integral using Riemann sums is analogous to that of the real Riemann 

integral as it builds on summation and multiplication of ℂ instead of ℝ. Similarly, 

Uwe’s recognition of conceptual similarity and difference of the product structure of 

integrands in path integrals substantiates the narrative of the complex path integral as 

a path integral of third kind: Whereas real path integrals of second kind involve scalar 

products of vectors in ℝ2, complex path integrals involve multiplication in ℂ ≅ ℝ2. 

Neither of the two experts here gave a clear geometric image for the complex path 

integral. However, Dirk tried to build an analogy between the geometric meaning of 

the integral of a real-valued function as an area under the graph and a possible, still to 

him unbeknownst geometric meaning of the complex path integral. He used sketching 

to look for such a geometric interpretation, which is an instance of a transfer of known 

ideas, since sketches of graphs of functions are useful in real analysis. Unfortunately, 

his attempt was not successful. Uwe rejected any geometric meaning of the complex 

path integral. Rather, he substantiated the narrative of the complex path integral as a 

tool with the fact that real integrals have a geometric meaning and that complex path 

integrals can help to calculate these—the notion of complex path integral is valued with 

its helpfulness. Lastly, Uwe’s restriction of generality of the prerequisites 

(holomorphic functions with the exception of isolated singularities and closed paths) 

substantiated the narrative of the complex path integral as a weighted sum of residues.  

Theorematic images on the complex path integral, i.e. narratives in intuitive 

mathematical discourses involving propositions, could also be identified: Uwe’s 

narrative about the weighted sum of residues is based on the residue theorem and Dirk’s 

narrative ∫ 𝑓(𝑧)
𝛾

d𝑧 = 𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑎)) shows meaning-making with a version of 

the “main theorem of calculus”. 

NOTES 

1. A complex-valued function defined on a subset of the complex numbers will be denoted by 𝑓, and 𝑢 (𝑣, respectively) 

denotes its real part (imaginary part, respectively). Paths in ℂ are identified with paths in ℝ2 without notational change.  

2. Here {𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏} ranges over the partitions of [𝑎, 𝑏], Δ𝛾𝑘 = 𝛾(𝑡𝑘+1) − 𝛾(𝑡𝑘), and 𝜉𝑘 ∈ [𝑡𝑘 , 𝑡𝑘+1] for 

every 0 ≤ 𝑘 ≤ 𝑛 − 1. If 𝛾 is piecewise continuously differentiable, this definition agrees with ∫ 𝑓(𝛾(𝑡))𝛾′(𝑡)
𝑏

𝑎
d𝑡. 

3. The Jordan curve theorem states that the trace of a simple closed curve separates the plane into two connected domains, 

a bounded region, i.e. the interior int(𝛾) of 𝛾, and an unbounded region (Apostol, 1971, p. 184). 
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4. 𝑻 stands for the tangential vector field given by 𝛾′ and 𝑵 stands for the normal vector field on 𝛾, each in ℝ2, i.e. 𝑵 is 

𝑻 turned by 𝜋/2 clockwise (Braden, 1987; Needham, 1997, ch. 11.I.1). 

5. Unfortunately, the German word(s) “Vorstellung(en)” do(es) not have a sound English translation; “mental image(s),” 

“mental imagery,” or “basic idea(s)” come close. I prefer to understand a Vorstellung as an object- or meta-level narrative 

in an individual’s intuitive mathematical discourse about a mathematical notion, possibly supported by visual mediators, 

jettisoning the ballast of a cognitive notion. 
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This contribution examines subject-specific potentials of advanced mathematics with 
regard to the issues transition, rationales and compartmentalization. The Anthropo-
logical Theory of Didactics (ATD) is used as a theoretical framework and in  the 
analyses notions from the 4T-model are applied (Bosch & Gascón, 2014). Structurual 
observations in praxeologies terms are illustrated by examples chosen from the 
presentation of a classical result in Nonlinear Approximation (DeVore, 1998). At the 
specific focus are aspects for bridging and extending concepts within and across 
Analysis. Goals of the analyses are to reflect the potential learning gain (beyond the 
concrete content) by studying advanced mathematics and to lay content-related foun-
dations for pursued teaching innovations. 
Keywords: advanced mathematics, praxeologies, compartmentalization, transitions, 
rationales  

INTRODUCTION  
The main aim of this contribution is to highlight subject-specific potentials of study-
ing and learning advanced mathematics with research references with regard to as-
pects of transition, rationales and compartmentalization by means of the presentation 
of a classical result from Nonlinear Approximation in DeVore (1998; see also the 
synopsis in the Appendix). At the focus of our considerations are transitions within 
and across Analysis. For overviews of research on transition aspects in university 
mathematics education, see Gueudet, Bosch, DiSessa, Kwon and Verschaffel (2016) 
and Hochmuth, Broley and Nardi (2020). As far as the author knows, very advanced 
Analysis contents have not yet been didactically explored. 
In the introduction we start with a preliminary clarification of the notions transitions, 
rationales and compartmentalization and pose respective research questions underly-
ing the subsequent analyses. In the course of this contribution, both the notions and 
the research questions will further be specified against the background of ATD and 
its 4T model as well as illustrated by examples in the Appendix.  
First, we will focus on transitions: Advanced mathematics is based on knowledge 
from basic lectures. The fact that certain terms and ideas are taught in basic university 
lectures, such as Analysis and Linear Algebra, and the way they are treated is also 
due to their importance for advanced mathematics. Depending on the field, advanced 
mathematics covers content that is relevant for graduates and their professional ca-
reers, as well as content that is relevant to current research. This raises the question of 
how respective transitions and the connection between content of basic lectures and 
advanced courses might be described. Similarly it may be asked: What are the inter-
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relations between the contents of successive advanced courses? If there are essential 
relations between contents of advanced courses from different mathematical fields, 
how can they be characterized, e.g. in praxeological terms? In this paper we subsume 
those relationships under the key word transition since it expresses the dynamic na-
ture of those relationships regarding learning and knowing. We believe that those 
transitions are an important part of the rationale of teaching mathematical concepts, 
and their adoption in learning processes could be seen as an effective possibility to 
overcome compartmentalized knowledge.   
Second, rationales for the treatment of content in basic mathematical courses are 
sometimes not immediately clear to students. They complain in particular about a 
lack of relevance and a lack of application (Croft & Grove, 2015, p. 180). In order to 
counteract this problem, it is proposed to foster context and problem based learning 
(p. 185). In our opinion, subject related analyses, as presented here, are useful for 
their subject related design, since relevant rationales can be identified in texts on ad-
vanced research related mathematics. Formulated as a question: Are reasons for theo-
retical discourses and e.g. the introduction of certain terms in context with the con-
sidered advanced mathematical content explicated?  
Compartmentalization of knowledge means that related knowledge, for example 
knowledge that belongs to a domain, is composed in separate and not intertwined 
parts. Mandl, Gruber and Renkl (1993) generally differentiate between “three types 
of knowledge compartmentalization: compartmentalization of incorrect and correct 
concepts, compartmentalization of several correct concepts, and compartmentaliza-
tion of symbol systems and real world entities” (p. 162). In this paper, we focus 
mainly on the second type. Regarding Analysis and Stochastics, this type has also 
been considered by Derouet, Planchon, Hausberger and Hochmuth (2018). Particular-
ly relevant in mathematics is another type-2-form of compartmentalization where the 
knowledge aspects  calculi and logic are taught and learned as isolated subject areas 
and their intertwining is hardly visible in what is actually learned (see for example 
(Barbé, Bosch, Espinoza, & Gascón, 2005)).  Similar to the above, the question arises 
as to how and to what extent advanced mathematical content can contribute to a re-
duction of compartmentalization phenomena. 
With respect to the mentioned issues, this paper focuses on subject-specific aspects. 
With the space available here, this can only be done by way of example and sketch. 
The selected example deals with a classical result by Kahane (1961) from Nonlinear 
Approximation and its presentation in DeVore (1998), which is mirrored in the Ap-
pendix together with the mathematical notions necessary for its understanding. The 
line numbering in the Appendix allows referring to concrete places in the discussion 
of the issues.  
The current article is structured as follows: In the next section, the ATD notions that 
are used in the analyses are briefly introduced. Then the issues transition, rationales 
and compartmentalization are discussed in some detail. Thereby, the ATD notions 
serve in particular to take a differentiated view of various transitions situations, to 
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present preliminary praxeological and structural insights in a generalized form and to 
illustrate them by means of concrete passages from the Appendix. It goes without 
saying that the considerations formulated here in no way aim at completeness with 
regard to the research questions stated above, nor with regard to the chosen example.  
Further research ideas are sketched in the outlook.  
Another final apology: The analyses refer to numerous mathematical concepts, such 
as rectifiability, or relations between such concepts, such as limited variation and 
Riemann-Stieltjes integral or Cea's lemma, without references. This is undoubtedly 
nasty and happens only for space reasons.  

A FEW NOTIONS FROM ATD  
ATD (Chevallard, 1999) aims at a precise description of knowledge and its epistemic 
constitution. The theoretical framework allows explicating institutional specificities 
of knowledge and related practices in university mathematics (Winslow, Barquero, 
De Vleeschouwer & Hardy 2014). A basic concept of ATD are praxeologies, which 
are represented in so called “4T-models (T,τ,θ,Θ)” consisting of a practical and a the-
oretical or logos block. The practical block Π (know-how, “doing math“) includes the 
type of task (T) and the relevant solving techniques (τ). The logos block L 
(knowledge block, discourse necessary for interpreting and justifying the practical 
block) covers the technology (θ) explaining and justifying the used technique and the 
theory (Θ) justifying the underlying technology. In addition, we introduce the symbol 
PO to denote praxeologies and praxeological essembles in the sense of linked ele-
ments from practical and/or logos blocks.  The interconnectedness of knowledge is 
particularly modelled in ATD by means of local and regional mathematical organiza-
tions that allow contrasting and integrating practical and epistemological aspects in 
view of different institutional contexts. Further relations between praxeologies from 
different institutions can be identified by comparing and contrasting blocks and their 
elements. In the analyses of this paper, we consider the 4T-model mostly as a heuris-
tic tool for indicating relations and focus in particular on possible relations between 
praxeologies and their blocks. We consider mathematical areas that play a role in dif-
ferent courses or parts of courses such as Analysis and Nonlinear Approximation as 
different institutional contexts (represented in particular by standard textbook litera-
ture), which are indicated as subscripts of blocks or praxeologies. For example, we 
use the subscript A for a block or praxeology from Analysis or the subscript NL in 
the case of Nonlinear Approximation.  In the next section, we use the praxeological 
notions to specify and elaborate on subject specific transitions regarding the piece of 
advanced mathematics presented in the Appendix.  
Transitions  
We consider three different transitions: the transition from basic Analysis lectures to 
the selected content area from Nonlinear Approximation, then from basic Approxi-
mation Theory to Nonlinear Approximation, and finally the transition from Nonlinear 
Approximation to themes of other advanced courses and vice versa. Each of these 
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transition situations is further differentiated with regard to structurally distinct praxe-
ological situations. 
From Analysis to Nonlinear Approximation  

i. Praxeologies from basic Analysis lectures enter essentially unchanged into praxeologies of nonline-
ar approximation, i.e. 

𝛱𝛱𝐴𝐴,𝐿𝐿𝐴𝐴,𝑃𝑃𝑃𝑃𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁, 
where 𝛱𝛱𝐴𝐴,𝐿𝐿𝐴𝐴,𝑃𝑃𝑃𝑃𝐴𝐴denote blocks, parts of them or praxeologies, in the sense of linked elements 
from practical and/or logos block forms, from Analysis and 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 denote praxeologies from Nonlin-
ear Approximation. For this case, a large number of locations can be identified in the Appendix. 
One example is the use of metrics and norms in the mathematization of the idea of distance be-
tween objects (A7, A13, A17, A31 etc.). Already in Analysis lectures, important techniques are con-
nected with the triangle inequality, here in particular the use of the triangle inequality itself, in ad-
dition, however, also the skillful introduction of third objects (implicit in A44). The latter refers to 
the logos block linked to the triangle inequality. This also applies to the use of 𝜖𝜖 in connection with 
limit value considerations and inequalities, which could be seen as a well-known praxeology from 
Analysis: One deduces a desired inequality up to an arbitrarily chosen  𝜖𝜖 > 0 and can finally con-
clude the desired inequality (A44-A49).  

ii. Practical or logos blocks from Analysis or links of both (𝛱𝛱𝐴𝐴,𝐿𝐿𝐴𝐴,𝑃𝑃𝑃𝑃𝐴𝐴) are used, but supplemented by 
specific elements from the advanced situation  (𝐿𝐿�𝑁𝑁𝑁𝑁), then  linked to these (𝑃𝑃𝑃𝑃�𝐴𝐴) and finally find 
themselves in praxeologies of Nonlinear Approximation, i.e. 

𝛱𝛱𝐴𝐴,𝐿𝐿𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴& 𝐿𝐿�𝑁𝑁𝑁𝑁 ↪ 𝑃𝑃𝑃𝑃�𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁. 
In the present context, we would like to refer to the application of the varational semi-norm and 
the concept of BV as examples (A34-A49). Functions of bounded variation occur in Analysis in the 
context of rectifiable curves or the Riemann-Stieltjes integral. Here their use in another context is 
made fruitful and the Analysis-related logos block is extended. This is partly true for the use of the 
property Hölder-continuity (A13) as well, a notion which is rarely dealt with, although it is possible, 
within basic Analysis courses (at least in Germany, where Hölder-continuity appears in courses 
about partial differential equation). 

iii. Logos blocks and their praxeologies (𝐿𝐿𝐴𝐴,𝑃𝑃𝑃𝑃𝐴𝐴) from Analysis  are integrated into the practice blocks 
of Nonlinear Approximation and constitute an aspect of a type of tasks in the advanced situation, 
i.e.   

𝐿𝐿𝐴𝐴,𝑃𝑃𝑃𝑃𝐴𝐴 ↪ 𝛱𝛱𝑁𝑁𝑁𝑁. 
Examples include the use of the terms average in the context of integral calculus (A23-A24) and the 
median for a continuous function (A24-A26), which is rarely discussed in an Analysis course, but 
may instead appear in a beginner's course in stochastics or statistics. 

From Basic Approximation Theory to Nonlinear Approximation 
Basic Approximation Theory stands for topics which do not have to be treated in spe-
cialised courses on Approximation Theory but might be taught in Numeric courses, 
e.g. in the context of polynomial or spline approximation or in more advanced con-
texts like Finite Element Methods considering Cea’s lemma for example. 

i. Praxeologies from basic Approximation Theory (𝑃𝑃𝑃𝑃𝐵𝐵𝐴𝐴) are taken up and supplemented by further 
questionings and praxeologies  (𝑃𝑃𝑃𝑃�𝐵𝐵𝐴𝐴)  and thus constitute a supplemented or completed praxeol-
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ogy of Nonlinear Approximation. As such, however, the supplement could have already been dealt 
with in the basic approximation theory, but it is rather not, i.e. 

𝑃𝑃𝑃𝑃𝐵𝐵𝐴𝐴& 𝑃𝑃𝑃𝑃�𝐵𝐵𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 . 
The saturation results that go beyond the direct estimates are mentioned here as an example (A18-
A21). These could already be treated as such in basic courses, but will typically not be treated in in-
troductory or advanced Numeric courses. In the context of Nonlinear Approximation, such results 
are obviously of particular relevance: From the direct estimates alone one cannot justify the addi-
tional gain by Nonlinear Approximation, because it could be that better direct estimates apply to 
Linear Approximation. The saturation results exclude this in the sense that better estimates, which 
could apply in principle to certain function classes in single cases, apply here only to the trivial case 
of constant functions. In this case, the approximation error in the context of piecewise constant 
functions and linear approximation is zero.   

ii. Praxeologies from basic Approximation Theory (𝑃𝑃𝑃𝑃𝐵𝐵𝐴𝐴) were again taken up but now supplemented 
by discourses from Nonlinear Approximation in such a way, that both were integrated to a new 
praxeology  (𝑃𝑃𝑃𝑃�𝑁𝑁𝑁𝑁), i.e. 

𝑃𝑃𝑃𝑃𝐵𝐵𝐴𝐴& 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 ↪ 𝑃𝑃𝑃𝑃�𝑁𝑁𝑁𝑁. 
Following the considerations in i., one could think here of the Nonlinear Approximation results dis-
cussed at the end of the Appendix. (A50-A53 in combination with A18-A21) 

From Nonlinear Approximation to another Advanced Course and vice versa 
Nonlinear approximation is known to be at the intersection between Numeric and 
various advanced areas of Analysis, such as the Theory of Function Spaces or Inter-
polation Theory. Accordingly, Nonlinear Approximation praxeologies can be found 
as aspects of a praxeology from another area just mentioned and vice versa. 

i. Praxeologies of Nonlinear Approximation constitute an aspect (of the practice block, the logos 
block, or both) of a praxeology of another advanced mathematical domain (𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴), i.e. 

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 ↪ 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 . 
Nonlinear Approximation and its praxeologies play a role in the advanced Theory of Function Spac-
es, for example in the study of characterizations and embeddings of  function spaces (Hochmuth, 
2002), then of course in the study of adaptive numerical methods , the related regularity theory of 
partial differential equations and integral equations (DeVore 1998), but also in Stochastics 
(Kerkyacharian & Picard, 2000). 

ii. Praxeologies of another mathematical domain (𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴) arise as aspects (of practical blocks, logos 
blocks or both) of a praxeology in Nonlinear Approximation, i.e.  

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁. 
Pertinent examples such as the Theory of Function Spaces (for inherent function related characteri-
zations of approximation orders) or Interpolation Theory (ditto) have already been mentioned. 

RATIONALES 
Rationales are rather extensively explicated by DeVore (1998). This is, of course, in 
line with the type of publication: The series Acta Numerica as one of its goals wants 
to inform advanced students and researchers on all levels, in particular those with an-
other special field, about specific underlying ideas from a new field, its most relevant 
results within and also across the fields. To a certain extent, the articles serve as an 
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appetizer and, with this in mind, should in particular answer the question why some-
one should be interested in the area presented. 
In addition to this general level, there is also a certain type of question that is often 
not addressed in research papers or in the standard literature that informs the teaching 
of basic university courses: There is a difference between the possibility to prove 
something and the formulation of this something as a theorem. Or in other words: To 
formulate something as a theorem is related to some justification, which often re-
mains implicit  but is made explicit in the text considered,  and would substantially 
contribute to the logos-block of praxeologies, connecting, for example, praxeologies.  
To provide an example, which is related to i. in the consideration of the transition 
from Basic Approximation Theory to Nonlinear Approximation: In the Appendix 
there is the following reason stated for highlighting the observation in (A15-A17), 
which would typically be presented as a theorem in a lecture: If the estimate (A17) 
holds for every possible partition, then necessarily 𝑓𝑓 ∈ Lip𝑀𝑀𝛼𝛼. In Approximation 
Theory and sometimes also in Numerical Analysis, such a statement is called an in-
verse theorem (cf. also A18-A19).  For an elementary proof of this statement cf. (p. 
62). This inverse theorem justifies the assumption 𝑓𝑓 ∈ Lip𝑀𝑀𝛼𝛼 in the stated result, 
which means that this assumption does not only allow the application of the argu-
ments in the proof, which is a technically orientated argument, but is inherently relat-
ed to the estimate. This relates to the general aim of getting rid of those assumptions 
which are related to the method or approach to prove something but is possibly not 
necessarily linked with the proved assertion. In basic Analysis courses, there are of-
ten results presented without such questioning and related justifications to keep things 
more simple. Getting to know such arguments could encourage students to search for 
comparable situations in their knowledge and to try to clarify the questions that arise. 
By the way, a further justification is given by the saturation theorem (A19-A21). 
Finally, the presentation of the result by Kahane and also the presentation of the proof 
are further explicitly justified by the argument that both express two fundamental 
characteristics of Nonlinear Approximation:  

a) The first characteristic is that the partitions, hence the approximation scheme, 
providing the claimed approximation property depend on the specific given 
function f. This means that in contrast to linear approximation the scheme is 
not given in advance independently of the target function 𝑓𝑓.  

b) Secondly, the 𝑓𝑓-depending partition is obtained in the proof by balancing the 
variation of f over the intervals in the partition, that is, the partition is chosen 
such that the specific error is somehow equally distributed over the interval 
(A38-A40). In other situations, Var(𝑓𝑓)  is replaced by something else related to 
the respective error norm and also depending on f and the type of partitions. 
But balancing or equilibration often remains a crucial idea. This is also true for 
other adaptive schemes like for example adaptive finite element or also finite 
volume schemes utilizing a posteriori error estimates.    
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COMPARTMENTALIZATION 
Our elaboration of transition situations within the little piece of work from Nonlinear 
Approximation relates to the second type of compartmentalization, i.e. the compart-
mentalization of several correct concepts (cf. the explanations in the introduction). 
Each transition type and the corresponding examples presented above in a specific 
way address relations between correct concepts, relations between praxeologies, as 
well as between practical and logos blocks, and point to a possible intervention 
against the compartmentalization of knowledge. In addition, many explicit references 
to relations between pure mathematics and applications are presented in further parts 
of the paper by DeVore on which this contribution is based.  These cover examples 
from Signal Theory, Image Compression and regarding numerical schemes for Partial 
Differential Equations modelling physical phenomena. Such references in particular 
address the compartmentalization between symbol systems and real world entities, 
which was also mentioned in the introduction as a type of compartmentalization.   

OUTLOOK 
The presented analyses have to be continued in the future and transferred to other 
mathematical areas. With regard to the issues of transitions, rationales and compart-
mentalization the contribution could demonstrate that Nonlinear Approximation pos-
sesses a strong potential for bridging and extending praxeologies from Analysis and 
beyond. It seems remarkable that this could be illustrated in so many (with respect to 
praxeological aspects) structural different ways by a brief example. It is reasonable to 
ask whether such learning potentials and manifold praxeological patterns of transi-
tions could also be indicated for examples regarding other mathematical domains. 
Many questions were left open also for the analysed case: For example, it is not clear 
to what extent the potentials can be realised under the currently dominant teaching 
and learning conditions and how this could eventually be done effectively. The latter 
issue stimulates for example to think about whether inquiry orientated education ap-
proaches (Artigue & Blomhøj, 2013; Barquero, Serrano & Ruiz-Munzón, 2016) are 
particularly suitable. With regard to the education of prospective secondary school 
teachers and against the background of the job analysis of Bass and Ball (2004), tasks 
for Analysis courses are presented in (Hochmuth, 2015), which already take up some 
of the observations presented here. In corresponding future empirical studies, emo-
tional-motivational aspects would also have to be considered.  
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APPENDIX 
The following sketch of the mathematical ideas and notions around linear vs. nonlinear approxima-
tion and the famous result by Kahane (1961) closely follows DeVore (1998, 60-69). 

For functions 𝑓𝑓on an interval 𝐼𝐼 ≔ [0,1] two types of approximation are considered in the following, 1 
linear and nonlinear approximation. Linear approximation starts with an a priori given sequence of 2 
partitions T, 0 =: 𝑡𝑡0 < 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑁𝑁 ≔ 1, 𝑁𝑁 ∈ ℕ, related sets 𝛱𝛱 ≔ {𝐼𝐼𝑘𝑘} 𝑘𝑘=1𝑁𝑁  of intervals  3 
𝐼𝐼𝑘𝑘 ≔ [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘), 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁, and linear spaces of piecewise constant functions relative to the parti-4 
tions T of dimension 𝑁𝑁 denoted by  𝑆𝑆(𝑇𝑇). For uniformly continuous functions 𝑓𝑓 and with respect to 5 
𝑆𝑆(𝑇𝑇)  the (linear) approximation error in the uniform (𝐿𝐿∞) norm is defined by 𝑠𝑠(𝑓𝑓,𝑇𝑇) ≔6 

inf
𝜒𝜒∈𝑆𝑆(𝑇𝑇)

‖𝑓𝑓 − 𝜒𝜒‖∞ . Hereby and in the following, norms and semi-norms without indicating the con-7 
sidered interval etc. are to be understood w.r.t. the interval 𝐼𝐼.   8 
The approximation error is related to the mesh length 𝛿𝛿𝑇𝑇 ≔ max

0≤𝑘𝑘≤𝑁𝑁−1
|𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘| and the smoothness 9 

of f:   For 𝛼𝛼 ∈ (0,1] and 𝑀𝑀 > 0, Lip𝑀𝑀𝛼𝛼 denote the set of all functions 𝑓𝑓 on 𝐼𝐼 such that 10 
|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝑀𝑀|𝑥𝑥 − 𝑦𝑦|𝛼𝛼 13 

and Lip 𝛼𝛼 ≔ ⋃ Lip𝑀𝑀𝛼𝛼𝑀𝑀>0 . In particular, 𝑓𝑓 ∈ Lip 1 if and only if f is absolutely continuous and 𝑓𝑓′ ∈11 
𝐿𝐿∞, where the derivative could be understood in the distributional sense. Then for 𝑓𝑓 ∈ Lip𝑀𝑀𝛼𝛼 holds 12 

𝑠𝑠(𝑓𝑓,𝑇𝑇) ≤ 𝑀𝑀�
𝛿𝛿𝑇𝑇
2
�
𝛼𝛼

: 14 

For the midpoints 𝜉𝜉𝐽𝐽 of 𝐽𝐽 ∈ 𝛱𝛱 hold by definition |𝑥𝑥 − 𝜉𝜉𝐽𝐽| ≤ 𝛿𝛿𝑇𝑇
2

, 𝑥𝑥 ∈ 𝐽𝐽, and for the related piecewise 15 
constant function 𝜒𝜒 ∈ 𝑆𝑆(𝑇𝑇) defined by 𝜒𝜒(𝑥𝑥) ≔ 𝑓𝑓(𝜉𝜉𝐽𝐽), 𝑥𝑥 ∈ 𝐽𝐽, 𝐽𝐽 ∈  𝛱𝛱, since 𝑓𝑓 ∈ Lip𝑀𝑀𝛼𝛼,  16 

‖𝑓𝑓 − 𝜒𝜒‖∞ ≤ 𝑀𝑀 �
𝛿𝛿𝑇𝑇
2
�
𝛼𝛼

. 17 

Furthermore, one can show: If the estimate holds for every possible partition, then necessarily 18 
𝑓𝑓 ∈ Lip𝑀𝑀𝛼𝛼. Such a type of statement is usually called as inverse theorem.   Additionally a saturation 19 
theorem can be shown: If 𝑠𝑠(𝑓𝑓,𝑇𝑇) = 𝜊𝜊(𝛿𝛿𝑇𝑇)for partitions T then f is a constant, which means, that 20 
only trivial functions can be approximated with order better than 𝛰𝛰(𝛿𝛿𝑇𝑇). 21 
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Replacing the 𝐿𝐿∞-norm by 𝐿𝐿𝑝𝑝-norms, 0 < 𝑝𝑝 < ∞, similar results hold. It is interesting to note that 22 
for 𝑝𝑝 ≥ 1the adequate constants are given by the average of 𝑓𝑓 over J, that is 𝜒𝜒(𝑥𝑥) ≔ 1

|𝐽𝐽|∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝐽𝐽 , 23 
𝑥𝑥 ∈ 𝐽𝐽, 𝐽𝐽 ∈ 𝛱𝛱, and for 0 < 𝑝𝑝 < 1 adequate constants are the medians of 𝑓𝑓 on the intervals J, where 24 
medians are defined to be any number q for which |{𝑥𝑥 ∈ 𝐽𝐽|𝑓𝑓(𝑥𝑥) ≥ 𝑞𝑞}| ≥ |𝐽𝐽|

2
 and 25 

 |{𝑥𝑥 ∈ 𝐽𝐽|𝑓𝑓(𝑥𝑥) ≤ 𝑞𝑞}| ≥ |𝐽𝐽|
2

.  26 

Nonlinear approximation is related to Σ𝑛𝑛 ≔ ⋃ 𝑆𝑆1(𝑇𝑇)#𝑇𝑇=𝑛𝑛+1  (#𝑇𝑇 denotes the cardinality of the set of 27 
breaking points T),  which is the set of piecewise constants with at most n pieces. Obviously, Σ𝑛𝑛 is 28 
not a linear space, since adding two functions from Σ𝑛𝑛 results in a piecewise constant function with 29 
possibly more than n breaking points. Given a uniformly continuous function 𝑓𝑓  the uniform error 30 
of nonlinear piecewise constant approximation is defined by 𝜎𝜎𝑛𝑛(𝑓𝑓) ≔ inf

𝜒𝜒∈Σ𝑛𝑛
‖𝑓𝑓 − 𝜒𝜒‖∞.  31 

Kahane (1961) has proven that for a function 𝑓𝑓 ∈ 𝐶𝐶(𝐼𝐼) one has 32 

𝜎𝜎𝑛𝑛(𝑓𝑓) ≤
𝑀𝑀
2𝑛𝑛

, 𝑛𝑛 = 1,2, …, 33 

if and only if 𝑓𝑓 ∈ BV, that is, f is of bounded variation on I, and |𝑓𝑓|BV ≔ Var(𝑓𝑓) is identical with 34 
the smallest constant M for which the inequality (33) holds.  Hereby, for a function 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → ℝ 35 
the variation Var[𝑎𝑎,𝑏𝑏]𝑓𝑓 is defined by sup

𝑃𝑃
∑ |𝑓𝑓(𝑥𝑥𝑖𝑖+1) − 𝑓𝑓(𝑥𝑥𝑖𝑖)|𝑚𝑚−1
𝑖𝑖=1  , where the supremum is consid-36 

ered with respect to arbitrary partitions 𝑃𝑃 = {𝑥𝑥1 < 𝑥𝑥2 < ⋯ < 𝑥𝑥𝑚𝑚|𝑚𝑚 ∈ ℕ}. 37 
A proof goes as follows: For 𝑓𝑓 ∈ BV with 𝑀𝑀 ≔ Var(𝑓𝑓) there is a partition  𝑇𝑇 ≔ {0 ≔ 𝑡𝑡0 < 𝑡𝑡1 <38 
⋯ < 𝑡𝑡𝑛𝑛 ≔ 1} such that Var[𝑡𝑡𝑘𝑘−1,𝑡𝑡𝑘𝑘)𝑓𝑓 ≤

𝑀𝑀
𝑛𝑛

, 𝑘𝑘 = 1, … , 𝑛𝑛. If 𝑎𝑎𝑘𝑘is the median value of 𝑓𝑓 on [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘], 39 
and 𝜒𝜒𝑛𝑛(𝑥𝑥) ≔ 𝑎𝑎𝑘𝑘, 𝑥𝑥 ∈ [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘),𝑘𝑘 = 1, … ,𝑛𝑛, then 𝜒𝜒𝑛𝑛 ∈ 𝛴𝛴𝑛𝑛 and ‖𝑓𝑓 − 𝜒𝜒𝑛𝑛‖∞ ≤ 𝑀𝑀

2𝑛𝑛
. Now to the other 40 

direction: If the inequality in (33) holds for some 𝑀𝑀 > 0, let 𝜒𝜒𝑛𝑛 ∈ 𝛴𝛴𝑛𝑛 satisfy 41 
‖𝑓𝑓 − 𝜒𝜒𝑛𝑛‖∞ ≤ 𝑀𝑀+𝜖𝜖

2𝑛𝑛
 with 𝜖𝜖 > 0. If 𝑥𝑥0 ≔ 0 < 𝑥𝑥1 < ⋯ < 𝑥𝑥𝑚𝑚 ≔ 1is an arbitrary partition for I and 𝜈𝜈𝑘𝑘 42 

is the number of values that 𝑆𝑆𝜒𝜒𝑛𝑛 attains on [𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘), then   43 
|𝑓𝑓(𝑥𝑥𝑘𝑘) − 𝑓𝑓(𝑥𝑥𝑘𝑘−1)| ≤ 2𝜈𝜈𝑘𝑘‖𝑓𝑓 − 𝜒𝜒𝑛𝑛‖∞ ≤

𝜈𝜈𝑘𝑘(𝑀𝑀 + 𝜖𝜖)
𝑛𝑛

,𝑘𝑘 = 1,2, … ,𝑚𝑚. 44 

Since ∑ 𝜈𝜈𝑘𝑘𝑚𝑚
𝑘𝑘=1 ≤ 𝑚𝑚 + 𝑛𝑛, we get 45 

�|𝑓𝑓(𝑥𝑥𝑘𝑘) − 𝑓𝑓(𝑥𝑥𝑘𝑘−1)| ≤�
𝜈𝜈𝑘𝑘(𝑀𝑀 + 𝜖𝜖)

𝑛𝑛

𝑚𝑚

𝑘𝑘=1

≤ (𝑀𝑀 + 𝜖𝜖) �1 +
𝑚𝑚
𝑛𝑛
� .

𝑚𝑚

𝑘𝑘=1

 46 

Letting 𝑛𝑛 → ∞ and then 𝜖𝜖 → 0 we find  47 

�|𝑓𝑓(𝑥𝑥𝑘𝑘) − 𝑓𝑓(𝑥𝑥𝑘𝑘−1)|
𝑚𝑚

𝑘𝑘=1

≤ 𝑀𝑀, 48 

which shows Var(𝑓𝑓) ≤ 𝑀𝑀. 49 
Summarizing the results with respect to linear and nonlinear approximation by piecewise constants, 50 
one has the convergence order 1 for linear approximation if 𝑓𝑓 ∈ Lip 1 and for nonlinear approxima-51 
tion if 𝑓𝑓 ∈ BV. Since 𝑓𝑓 ∈ Lip 1 means 𝑓𝑓′ ∈ 𝐿𝐿∞ and 𝑓𝑓 ∈ BV that 𝑓𝑓′ ∈ 𝐿𝐿1, this result shows that the 52 
second condition is essentially weaker than the first one.   53 
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Abstract: Utilisant le cadre théorique de l’approche commognitive, ce travail explore 

l’évolution au niveau des attentes et des exigences relatives à l’enseignement de la 

notion de fonction trigonométrique lors de la transition lycée/université, à travers 

l’étude des caractéristiques des routines visées. Les résultats des analyses des 

organisations proposées pour l’enseignement de cette notion, fait apparaitre une 

fausse continuité au niveau de ces routines visées qui se traduit par une continuité 

apparente au niveau des tâches et un changement important au niveau des procédures. 

Keywords: enseignement apprentissage d’une notion spécifique au niveau 

universitaire, transition lycée/université, approche commognitive, routine, fonctions 

trigonométriques et leurs réciproques.  

INTRODUCTION ET PROBLÉMATIQUE 

Les fonctions trigonométriques sont les premières fonctions périodiques et 

transcendantes que les élèves rencontrent au niveau de l’enseignement secondaire. Ces 

fonctions qui se situent au carrefour de plusieurs cadres mathématiques (la géométrie, 

l’algèbre et l’analyse) sont connectées aux différents concepts mathématiques 

appartenant à ces cadres (angles, arc, fonctions, équations, …) et mettent en relations 

différents registres sémiotiques et différents types de représentation (Khalloufi-Mouha, 

2014). Dans nos travaux antérieurs (Khalloufi-Mouha, 2018, 2014, Khalloufi-Mouha 

& Smida, 2012) nous avons identifié l’importance des difficultés relatives à la 

construction d’une signification mathématique de la notion de fonction 

trigonométrique qui soit cohérente avec les connaissances antérieures du cadre 

géométrique de la trigonométrie chez des élèves de 2ème année de l’enseignement 

secondaire tunisien (16/17 ans). Au niveau de l’enseignement supérieur, les fonctions 

trigonométriques jouent un rôle très important dans l’introduction et l’apprentissage de 

l’Analyse, notamment dans leurs relations avec les notions d’intégrales, de séries 

numériques, de séries de Fourier …. Par conséquence, cette notion est considérée 

comme très importante dans les études universitaires pour la plupart des disciplines 

scientifiques utilisant les mathématiques. Les recherches ayant abordé l’enseignement 

et l’apprentissage de la notion de fonction trigonométrique au niveau de 

l’enseignement universitaire ont souligné que les étudiants continuent à rencontrer des 

difficultés importantes (Gueudet & Quéré, 2018, Mesa & Goldstein, 2017, Weber, 

2005). 

Dans son article, Weber (2005) a analysé l’apprentissage du concept de fonction 

trigonométrique par deux groupes d’étudiants universitaires. Le premier groupe a été 

enseigné par un professeur utilisant un cours magistral classique, tandis que le second 
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a été enseigné selon un paradigme d’enseignement expérimental basé sur la notion de 

procept de Gray et Tall (1994) et les théories cognitives qui conceptualisent 

l’apprentissage à travers les notions de processus-objets. L’analyse d’interviews et 

d’un test papier-crayon ont mis en évidence que les étudiants ayant suivi le cours 

magistral ont développé une compréhension de type procédurale qui n’est pas liée à 

une signification mathématique. Cependant, les étudiants qui ont reçu un enseignement 

expérimental ont développé une compréhension plus approfondie. Les étudiants 

interrogés ont pu opérationnaliser leurs connaissances sur le processus de calcul du 

sinus d’un réel pour justifier les propriétés de la fonction sinus. De plus, les réponses 

des étudiants interrogés ont indiqué qu’ils considéraient les expressions 

trigonométriques comme des procepts. Mesa et Goldstein (2017) ont identifié 

l’existence de différentes significations relatives aux notions d’angles, de fonction 

trigonométrique et de fonctions trigonométriques inverses à travers l’étude des 

organisations proposées dans les manuels scolaires relatives au niveau collégial (post-

secondaire) pour l’enseignement de la trigonométrie. Ils supposent que cela pourra 

engendrer des difficultés chez les étudiants lors de la résolution de situations problèmes 

surtout que l’enseignement proposé dans ces manuels ne prend pas en charge les 

connexions nécessaires entre les cadres et les registres mis en jeu dans cet 

enseignement. La problématique de l’articulation entre les différents cadres et registres 

lors de l’enseignement des fonctions trigonométrique a été également l’objet de l’étude 

de Gueudet et Quéré (2018). L’étude a porté sur l'enseignement du thème de la 

trigonométrie dans les ressources en lignes proposées aux futurs ingénieurs (ingénierie 

électrique) en France et cela en comparant l’utilisation de la trigonométrie en tant 

qu’outil, dans un cours d’ingénierie électrique et le contenu des cours en lignes de 

mathématiques proposé au ingénieurs relatif au chapitre trigonométrie. Dans ce travail, 

les auteurs ont identifié l’écart entre les besoins relatifs aux notions de trigonométrie 

dans le cours d’électricité et les cours de mathématiques. Les résultats des travaux 

précédents, attestent que les difficultés des étudiants relèvent essentiellement d’un 

manque au niveau de l’habilité à faire des connexions entre les différents cadres, 

registres et concepts mis en jeu (Gueudet & Quéré, 2018), afin d’identifier les plus 

pertinents lors de la résolution d’une situation problème (Mesa et Goldstein (2017). 

Les connaissances des étudiants restent ainsi à un niveau procédural (Webr, 2005) ne 

permettant pas une appréhension plus profonde articulant les cadres, registres et 

concepts relatifs à la notion de fonction trigonométrique. 

En nous appuyant sur les résultats des travaux précédents, ainsi que sur nos travaux 

antérieurs sur l’introduction des fonctions trigonométriques au niveau de 

l’enseignement secondaire (Khalloufi, 2018, 2014, 2009, Khalloufi & Smida, 2012), 

nous avons choisi d’explorer, dans le contexte Tunisien, en utilisant une approche 

discursive, l’enseignement des fonctions trigonométriques dans la transition 

lycée/université. Le but étant d’étudier les changements au niveau des exigences et des 

attentes auprès des étudiants lors de leur entrée en première année de l’enseignement 

universitaire entamant des études en sciences de l’informatique. Le travail est guidé 

par les deux questions de recherches suivantes : 
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Q1 : Quels sont les changements au niveau des exigences et des attentes auprès des 

étudiants, autour de la notion de fonction trigonométrique, lors de la transition 

lycée/université ? 

Q2 : Quels sont les changements au niveau des caractéristiques des routines visées par 

l’enseignement des fonctions trigonométriques au niveau de la première année 

universitaire ? 

CADRE THÉORIQUE 

La théorie commognitive (TCM) (Sfard, 2008) est une approche discursive qui définit 

les mathématiques comme une activité de communication (Sfard, 2012) et 

l’apprentissage des mathématiques comme un développement du discours. Selon cette 

approche, le discours mathématique sur la notion de fonction trigonométrique émerge 

lorsque les apprenants sont engagés dans une communication avec les autres ou avec 

eux-mêmes à propos de cette notion. Comme tout discours mathématique, le discours 

sur les fonctions trigonométriques, se distingue par quatre caractéristiques. Le 

vocabulaire spécifique, qui constitue la première caractéristique, correspond à 

l'utilisation de la terminologie mathématique et les termes techniques. L’utilisation de 

ce vocabulaire obéit à des définitions explicites (fonction sinus, cosinus et tangente, les 

fonctions réciproque des fonctions trigonométriques…). La deuxième caractéristique 

correspond aux médiateurs visuels. Nous distinguons les médiateurs visuels graphiques 

(le cercle trigonométrique et les représentations graphiques des fonctions 

trigonométriques et leurs réciproques) et les médiateurs visuels symboliques tels que 

les expressions sin(x), cos(x), tan(x), arccos(x), arcsin(x) ou arctan(x). La troisième 

caractéristique correspond aux récits approuvés qui comportent les textes écrits ou 

oraux décrivant les objets, les processus et les relations entre eux et qui sont soumis à 

la validation, à la modification ou au rejet selon des règles définies par la communauté 

(définitions, théorèmes et preuves). La dernière caractéristique est la notion de routine. 

Les routines comprennent les pratiques régulièrement utilisées et bien définies par la 

communauté (telles que la définition, la conjecture, la preuve, l'estimation, la 

généralisation et l'abstraction). Dans les travaux récents (Lavie, Steiner & Sfard, 2019 

et Lavie & Sfard, 2019) la notion de routine gagne en opérationnalité dans sa nouvelle 

définition et devient une unité d'analyse pour étudier l'apprentissage. Pour définir la 

notion de routine, Lavie et al. (2019) introduisent le concept de task situation (la 

situation dans laquelle une personne ressent le besoin d'agir) et le concept d’espace de 

recherche précédent (precedent-search-space) qui comprend les événements passés 

considérés comme suffisamment similaires à la tâche actuelle pour justifier la 

répétition de la même procédure. En utilisant ces notions, Lavie et al (2019) définissent 

la routine comme étant le couple tâche-procédure. Dans cette perspective, Lavie et ses 

collègues considèrent l’apprentissage comme un processus de routinisation progressive 

et l’étude de l’apprentissage revient à l’étude du processus d’émergence et de 

développement des routines. Dans cette partie de notre travail, relative à l’étude des 

changements au niveau des exigences et des attentes auprès des étudiants, autour de la 

notion de fonction trigonométrique, lors de la transition lycée/université, nous avons 
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désigné par « routines visées » l’ensemble des routines proposées dans un objectif 

d’enseignement d’une notion mathématique spécifique. Ces routines sont évoquées à 

partir de leurs tâches sans référence à une task situation particulière ou à une personne 

spécifique. Ce sont les routines telles qu’elles sont susceptibles d’être interprétées et 

réalisées par un expert en utilisant les connaissances relatives au niveau scolaire en 

question. Les procédures sont décrites soit à l’aide d’algorithmes qui déterminent la 

façon d’agir, soit à partir des règles qui guident l’action de l’apprenant comme exemple 

les règles utilisées pour prouver des théorèmes ou définir de nouveaux termes 

mathématiques (Morgan & Sfard, 2016, p.101). Nous admettons dans notre travail 

l’hypothèse que les exigences de l’enseignement se traduisent dans les organisations 

mathématiques proposées pour l’apprentissage des notions en jeu, à travers la mise en 

place de routines visées, auxquelles les apprenants sont amenés à s’engager lors de la 

résolution de problèmes. Ainsi, approcher nos questions de recherche en termes de 

routines, nos amène à identifier les changements au niveau des routines relatives à 

l’enseignement des fonctions trigonométriques que les auteurs des manuels, au niveau 

du lycée, et que l’enseignant du cours de mathématique, au niveau de la première année 

universitaire, cherchent à installer. 

ANALYSE DE L’ÉVOLUTION DES ROUTINES 

Méthodologie 

Dans ce travail nous analysons le manuel de 3ème (17/18 ans) l’année où les fonctions 

trigonométriques commencent à être un objet d’enseignement ainsi que le manuel de 

4ème année (18/19 ans). Nous rappelons que dans le contexte Tunisien, à chaque niveau 

scolaire correspond un manuel officiel unique, utilisé comme une ressource pour les 

enseignants et comme un outil de travail pour les élèves. L’analyse du manuel de 3ème 

porte sur les parties « cours » et « exercices et problèmes » du 8ème chapitre « Fonctions 

trigonométriques ». Pour le manuel de 4ème année (Tome 1), nous avons examiné les 

chapitres où les fonctions trigonométriques sont utilisées dans l’apprentissage de 

nouvelles notions mathématiques. Au niveau de l’enseignement supérieur, nous avons 

analysé dans les notes de cours de l’enseignant responsable du module mathématique 

du premier semestre, la partie du chapitre « Fonctions numériques » relative aux 

fonctions trigonométriques et leurs réciproques ainsi que la série d’exercices associées 

à cette partie. 

Pour l’identification et l’analyse des routines et en adaptant les indicateurs des routines 

explicités dans le schème analytique Morgan et Sfard (2016), nous identifions les 

routines visées pour l’apprentissage des fonctions trigonométriques à travers 

l’identification des tâches proposées et des procédures susceptibles d’être utilisées pour 

accomplir ces tâches. L’analyse des routines est guidée par les questions suivantes : 

Composantes des routines visées Questions guidant l’analyse 

Catégorisation des tâches relatives aux 

fonctions trigonométriques, auxquelles 
• Quels sont les cadres mathématiques 

mis en jeu ? 
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les élèves sont amenés à s’engager et qui 

sont proposées dans les manuels et dans 

les notes du cours et la série d’exercices 

proposées aux étudiants de 1ère année 

sciences de l’informatique. 

• Quels sont les différentes réalisations 

associées à la notion de fonctions 

trigonométriques (les différentes 

façons de définir et de représenter ces 

fonctions) ? 

• Quels sont les médiateurs visuels 

évoqués ? 

• Quels sont les objets et les concepts 

mathématiques mis en relation avec 

les fonctions trigonométriques ? 

Les caractéristiques des procédures 

routinières que les élèves doivent être 

capables de mobiliser pour accomplir ces 

types de tâches. 

• Les procédures sont-elles 

algorithmiques ou heuristiques ? 

• Quel est le degré de complexité 

associé à ces procédures ? 

• Les procédures sont-elles implicites (à 

identifier par les élèves) ou explicites 

dans l’énoncé de la tâche ? 

Table 1 : méthodologie de l’identification et l’analyse des routines visées. 

Analyse des manuels scolaires 

L’analyse de l’organisation proposée dans les manuels pour l’introduction et l’étude 

de la notion de fonction trigonométrique, fait appel à différentes réalisations1 de cet 

objet, qui font appel à différents types de médiateurs visuels (symbolique, tableau, 

graphique, …). Les activités proposées utilisent ces différentes réalisations afin 

d’étudier les propriétés des fonctions trigonométriques et leurs relations avec les 

différents objets mathématiques. L’analyse en termes de routines visées, a permis 

d’identifier trois catégories de routines selon la nature de la propriété mobilisée des 

fonctions trigonométriques : la première catégorie est celle mobilisant l’une des 

propriétés globale, locale ou ponctuelle des fonctions trigonométriques (Vandebrouck, 

2011). La seconde catégorie est relative aux routines articulant entre deux de ces 

propriétés et la troisième catégorie est relative à celles articulant les trois aspects, 

global, local et ponctuel. 

Catégorie 1 : dans cette catégorie nous distinguons entre les routines ayant un aspect 

ponctuel, local ou global. Les routines ponctuelles sont les routines essentiellement 

associées à des tâches de calcul des images de certains réels par une fonction 

trigonométrique et les routines de résolution algébrique ou graphique des équations 

trigonométriques où le travail est localisé en des points d’intersection. Le second type, 

les routines locales, ce sont les routines de détermination de la continuité et de la 

 
1 Sfard (2008) définit les réalisations comme « perceptually accessible objects that may be operated upon in the attempt 

to produce or substantiate narratives” about a signifier (p. 154) 
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dérivabilité, en un point donné, des fonctions trigonométriques simples ou composées 

avec des fonctions algébriques. Les procédures associées sont essentiellement de type 

algébrique. Elles mettent en jeu la notion de voisinages et sont mobilisables lors du 

calcul de limites. Selon les procédures de calcul des limites on distingue deux sous-

routines. L’une émerge lorsqu’il s’agit d’une application directe d’une limite usuelle et 

la seconde, lorsqu’il s’agit de procéder à une modification de l’expression de la 

fonction afin de faire apparaitre une limite usuelle à travers des minorations, 

majorations et encadrement avec des fonctions usuelles. Le troisième type, désigné par 

routines globales, comporte les routines de détermination de l’ensemble de définition, 

l’étude de la continuité et la dérivabilité sur un intervalle ainsi que l’étude des 

variations. Ces études, vu la propriété de périodicité des fonctions trigonométriques, 

sont généralement réduites à un intervalle, déterminé à partir de l’étude de la parité et 

la périodicité de ces fonctions. L’analyse des différents problèmes proposés, fait 

apparaitre qu’en général, l’intervalle d’étude est proposé dans l’énoncé et sa 

détermination n’est pas à la charge des élèves notamment au niveau des tâches de 

l’étude de l’existence d’une fonction réciproque où la procédure proposée consiste à 

appliquer le théorème de la fonction réciproque dans un intervalle imposé par l’énoncé 

(fig1). 

Catégorie 2 : la seconde catégorie est relative aux routines articulant deux types des 

routines précédentes. Elles comportent les routines de construction des représentations 

graphiques qui articulent entre le ponctuel (construction des points) et le global (la 

forme de la courbe). Il y a également les routines de détermination et de représentation 

des tangentes ou des asymptotes à la représentation graphique des fonctions 

trigonométriques. Ce type de routines articule entre le ponctuel et le local. 

Catégorie 3 : c’est la catégorie des routines articulant les trois aspects, ponctuel, local 

et global. Elle comporte à titre d’exemple, les routines de réalisation de tableau de 

variation des fonctions trigonométriques simples ou composées avec des fonctions 

algébriques. Les procédures relatives à ces routines comportent la détermination des 

valeurs de la fonction en des points, l’étude des variations sur le domaine d’étude ainsi 

que le calcul des limites. 

À travers nos analyses des caractéristiques des routines identifiées, nous avons repéré 

que dans la plupart de ces routines, les procédures sont imposées dans les énoncés à 

travers des questions intermédiaires qui guident entièrement le travail des élèves en 

indiquant la procédure visée. Cela permet de fournir des modèles unifiés des routines 

visées. Nous avons également noté que les routines relatives à la parité et la périodicité 

ne font pas l’objet de beaucoup de travail au niveau des exercices proposés. Dans ces 

exercices l’énoncé impose l’intervalle d’étude de la fonction trigonométrique donnée. 

Nous illustrons par l’exercice suivant, extrait du manuel de 4ème année (Tome 1, 

exercice 26, p93) 
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L’exercice est extrait de la partie « Exercices et problèmes » du chapitre « Fonctions 

réciproques ». L’objectif de l’exercice est la définition, l’étude de la dérivabilité et la 

représentation graphique de la fonction réciproque de f. Les questions 1.a, 2.a et 3 

renvoient à des routines globales de détermination du domaine de continuité et de 

dérivabilité. L’énoncé fait également apparaitre une importante utilisation des routines 

ponctuelles de détermination de l’image d’un réel par la fonction réciproque et par sa 

dérivée. La procédure de cette routine visée, consiste à appliquer la relation entre une 

fonction et sa réciproque ainsi que l’utilisation des angles remarquables pour la 

résolution d’équations trigonométriques simples. Nous supposons que l’utilisation de 

ces routines ponctuelles vise une justification de l’existence de la fonction réciproque 

de f qui ne peut pas être explicitée à travers une expression spécifique comme le cas 

des fonctions précédemment étudiées. De même, la représentation graphique de cette 

fonction qui est une autre réalisation de la fonction réciproque vise également la 

justification de son existence. Nous considérons que à ce niveau, les fonctions 

réciproques des fonctions trigonométriques restent au niveau procédural et son 

approchées à travers un algorithme qui se caractérise par l’application directe du 

théorème de la fonction réciproque ainsi que la relation entre une fonction et sa 

réciproque. Dans l’énoncé de cet exercice, nous avons également noté que le domaine 

de définition est imposé et que l’intervalle image par f et le domaine de dérivabilité de 

sa réciproque son donnés. La tâche de l’élève revient à justifier ces intervalles à travers 

l’application du théorème du cours. Les procédures des routines visées par cet exercice 

son imposées par l’énoncé et l’élève est guidé à travers les questions intermédiaires qui 

visent l’exécution de routines précises. 

Analyse des notes de cours et de la série de TD proposés aux étudiants 

Le module de mathématiques du premier semestre des sciences de l’informatique a 

pour objectif d’introduire et de reprendre des notions de base. La notion de fonction 

trigonométrique est revisitée dans ce module au niveau du 2ème chapitre qui s’intitule 

« Fonctions numériques ». Ce chapitre consiste d'abord à reprendre succinctement des 

résultats rencontrés durant les deux dernières années du lycée relatives à l’étude de 

fonctions numériques et leurs représentations graphiques. Il reprend également des 

éléments de base sur le calcul des limites, l'étude de la continuité, la dérivabilité, la 

parité et les éléments de symétrie, en plus des théorèmes fondamentaux comme le 

théorème des valeurs intermédiaires et celui des accroissements finis. Par la suite il y 

a un passage à l'étude des propriétés de la réciprocité d'une fonction, et les 

conséquences qui en découlent sur les représentations graphiques, l'explicitation de la 
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fonction réciproque et de sa dérivée. En fin de chapitre, sont introduites les fonctions 

réciproques des fonctions trigonométriques et des fonctions hyperboliques, comme un 

nouveau champ d'application de tout ce qui précède. L'étude des fonctions 

trigonométriques et hyperboliques réciproques s'étale sur deux séances de cours 

(3heures) et deux séances de travaux dirigés (3heures). 

L’analyse des notes de cours de l’enseignant et de la série d’exercices associée à ce 

chapitre a permis d’identifier l’émergence de nouveaux types de routines associées aux 

fonctions trigonométriques réciproques. Ces routines coexistent avec les routines déjà 

rencontrées au niveau du secondaire. Cependant, nous avons noté une augmentation 

remarquable au niveau du degrés de complexité des fonctions proposées ainsi que 

l’émergence de nouvelles fonctions transcendantes (la composée de fonctions 

trigonométriques avec des fonctions algébriques ou transcendantes, la composée de 

fonctions trigonométriques avec des fonctions trigonométriques réciproques). Nous 

illustrons par l’exercice suivant extrait de la série de TD 

 

L’objet de l’exercice est l’utilisation des propriétés de la fonction arcsinus pour l’étude 

de la composée de la fonction arcsinus avec une fonction rationnelle. L’énoncé de 

l’exercice fait apparaitre l’importance du degré de complexité au niveau de la fonction 

étudiée et des procédures algébriques à utiliser pour déterminer le domaine de 

définition, le domaine de dérivabilité ainsi que pour le calcul de la dérivée. 

L’analyse des notes de cours et des exercices proposés dans la série a permis de relever 

une importance du nombre de routines relatives à la troisième catégorie puisque les 

tâches proposées articulent généralement entre les différents aspects ponctuel, local et 

global des fonctions. Les routines de représentation graphique de fonction 

trigonométrique et/ou de sa réciproque apparaissent uniquement dans la partie cours 

lors de l’introduction et la caractérisation des fonctions arcsinus, arccosinus et 

arctangente ce qui atteste une régression au niveau de l’importance accordée aux 

médiateurs visuels graphiques par rapport à l’enseignement secondaire. L’analyse a 

également mis en évidence l’émergence de routines reliant une fonction 

trigonométrique et sa réciproque ou entre une fonction trigonométrique et la réciproque 

d’une autre fonction trigonométrique. Ces routines permettent la mobilisation des 

propriétés de parité et de périodicité des fonctions trigonométriques. Ces routines sont 

de type global dans le cas de la détermination du domaine de définition des fonctions 

étudiés. Cependant nous avons également identifié la mobilisation de ces propriétés 

dans le cas de nouvelles routines ponctuelles visant la détermination des images de 

certaines valeurs par ces fonctions composées. Nous donnons à titre d’exemple la 

détermination de Arcsin[sin(
15𝜋

7
)]. 
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Nos analyses font apparaitre une fausse continuité au niveau des routines relatives aux 

fonctions trigonométriques qui sont susceptibles de cohabiter avec les nouvelles 

routines relatives aux fonctions trigonométriques réciproques introduites en première 

année universitaire. En fait, le changement des contextes des tâches routinières au 

niveau de l’université, la complexité des fonctions étudiées et l’introduction des 

fonctions trigonométriques réciproques nécessite une modification au niveau du 

domaine d’applicabilité des routines. Cela est susceptible d’engendrer certaines 

difficultés à individualiser les routines visées par l’enseignant vu la nécessité de 

développer de nouvelles procédures plus complexes que celles au niveau du 

secondaire. L’analyse fait apparaitre également qu’au niveau de l’université, les 

étudiants ont plus d’autonomie pour l’élaboration des tâches proposées ce qui engendre 

une diversité des routines susceptibles d’être effectués et par conséquence, l’existence 

de plusieurs routines associées à une même tâche.  

CONCLUSION 

Dans ce travail nous avons exploré les exigences et les attentes relatives à 

l’enseignement de la notion de fonction trigonométrique, à travers l’identification de 

l’évolution des routines visées et l’analyse de leurs caractéristiques en utilisant le 

concept de routine de l’approche commognitive. Les résultats nous ont permis 

d’identifier trois catégories de routines selon la nature de la propriété de fonction 

trigonométrique visée par cette routine. L’analyse de l’évolution des caractéristiques 

de ces routines a fait apparaitre une fausse continuité qui se traduit par une continuité 

apparente au niveau des tâches et un changement important au niveau des procédures. 

Ces procédures relèvent d’une application directe des théorèmes et définitions du cours 

au niveau de l’enseignement secondaire et sont entièrement imposées aux élèves qui 

sont guidés par des questions intermédiaires. Au niveau universitaire, la complexité 

des fonctions étudiées et l’introduction des fonctions trigonométriques réciproques 

nécessite le développement de nouvelles procédures plus complexes. 

Dans ce travail, nous avons focalisé sur les routines spécifiques à la notion de fonction 

trigonométriques. Cependant, plusieurs autres routines peuvent entrer en jeu et 

influencer l’apprentissage de cette notion. Parmi ces routines il y a les routines 

d’instanciation. En fait, l’importance du niveau de rigueur associé à l’utilisation d’un 

ensemble de règles formelles bien définies au niveau de l’enseignement supérieur rend 

le discours mathématique universitaire loin de ce qu’un nouveau bachelier connait de 

l'enseignement secondaire. 
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“I only know the absolute value function” – About students’ concept 

images and example spaces concerning continuity and differentiability 
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We analyse students’ work on a task concerning relations of various concepts of 

differentiability in ℝ𝑛 to find out about their concept images about continuous but non-

differentiable functions other than the prototypical examples of functions with a 

“cusp” like the absolute value function. We identify different types of continuous, non-

differentiable functions and show which types seem to be more accessible for the 

students than others. We use a study with sixteen students in an Analysis-II-course at 

a German university.  

Keywords: Teaching and learning of Analysis and calculus, epistemological studies of 

mathematical topics. 

INTRODUCTION 

Differentiability and derivatives are essential topics in school and university 

mathematics and have been studied extensively in different contexts (e. g. Orton, 1983; 

Zandieh, 2000). In another article (Lankeit & Biehler, 2019), we described a task where 

Analysis-II-students were asked to explore the relations between different concepts of 

differentiability in ℝ𝑛 such as total differentiability, partial differentiability, one-sided 

directional differentiability and continuity. We found out that one of the implications 

students had the most difficulties with was the question of whether continuity implied 

the existence of all one-sided directional derivatives. Only one out of 31 students who 

handed in their written work, produced in a tutorial group meeting, stated a correct 

example for a function that is continuous but for which not all one-sided directional 

derivatives exist in 𝑥 = 0: the function √|𝑥|. Five of the students gave the absolute 

value function as an example, which is not a legitimate counterexample since all one-

sided directional derivatives exist. To find out why so many students could not come 

up with a valid example, we will have a look at the transcripts of a subgroup of sixteen 

students whom we videotaped while working on this task. We will examine how they 

argue and what functions they consider. This analysis will provide exciting insights 

into these students’ concept images concerning continuous and differentiable or non-

differentiable functions. 

THEORETICAL FRAMEWORK AND LITERATURE REVIEW 

We based our task design and analysis on Brousseau’s Theory of Didactical Situations 

(TDS) (Brousseau, 2006). A situation describes the circumstances in which students 

find themselves concerning their milieu (the set of objects on hand, available 

knowledge and interaction with others). In this theory, we distinguish between 

didactical and adidactical situations. A situation is of adidactic nature if the teacher 
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does not instruct, but students work autonomously and learn by adapting to the milieu 

whereas, in a didactical situation, acculturation happens through institutionalisation 

and devolution. For a more detailed description and a well-presented introduction of 

TDS, see for example, Artigue, Haspekian, and Corblin-Lenfant (2014). For the 

analysis of students’ work on the task, we use the notions of concept image and 

example space. Tall and Vinner (1981, p. 152) describe the concept image as the “total 

cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes”. It is important to note that a concept 

image does not have to be coherent. It is also notable that not all parts of the concept 

image are evoked at the same time. An essential element of the concept image is the 

related example space (Goldenberg & Mason, 2008) which contains examples, non-

examples and counterexamples for the concept. We consider the concept image as a 

part of students’ milieu when working in a specific situation.  

Not much is known about university students’ concept image of differentiability or 

non-differentiable functions after they have been taught a formal approach as compared 

to the situation in school where arguing with interpretations like “tangent slope” is 

more common. Viholainen (2008) presents the case of a student who claimed that 

several piecewise-defined functions with jumps were differentiable because it was 

“constant where the jump occurred” so that the derivative in that point “was zero”. 

However, that functions whose graphs depict “corners” could not be differentiable was 

clear to him. This example illustrates that this student’s concept image concerning non-

differentiable functions is not complete, and especially it was not clear to him that 

differentiability implies continuity. A problem for students correctly linking 

differentiability and continuity is also reported by Juter (2012) and Duru, Köklü, and 

Jakubowski (2010) who found that many students believed continuity implied 

differentiability in the one-dimensional case. Klymchuk (2005) showed (with a small 

sample) that in a group of students where counterexamples were not used regularly and 

explicitly in the lecture, less than half of the students were able to sketch a graph that 

was continuous, looked smooth and was at one point not differentiable. 

RESEARCH QUESTIONS 

The broader aim of the whole study is to improve our understanding of students' 

difficulties concerning the different concepts of multivariable differentiability and their 

connections to one-dimensional differentiability. This understanding can inform the 

teaching of these topics. The understanding of multivariable differentiability cannot be 

separated entirely from that of one-dimensional differentiability because it builds on it.  

In this article, we are interested in the following research questions: What makes the 

task of deciding whether continuity implies one-sided directional differentiability 

difficult for the students: Do difficulties occur in translating the item into the one-

dimensional case or do the problems lie in insufficient concept images for non-

differentiable functions in the one-dimensional case? What kinds of functions do the 

students consider when trying to find an example and what can we learn about students’ 

concept images and example space concerning differentiability and continuity in the 
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one-dimensional case from their work on this task? What can be done to improve 

students’ performance on this task? 

METHODOLOGY AND STUDY DESIGN 

Our study took place in an Analysis-II-course (which is, from an international 

perspective, more on the level of upper-division proof-oriented Real Analysis courses 

in the US than typical lower-division Calculus courses). We did not influence the 

lecture the students participated in but designed two tasks concerning differentiability 

in ℝ𝑛 in cooperation with the lecturer and his teaching assistant. The students (second 

or higher semester, depending on their study program) worked on these tasks in two of 

their weekly tutorial group meetings. The task that we are concerned with here is part 

f) of the task shown in figure 1, for a more detailed description of the task and the 

design principles (guided by different “task potentials” that Gravesen, Grønbæk, and 

Winsløw (2016) formulated building on TDS) see Lankeit & Biehler (2019).  

We chose eight pairs of students to work on this task not in their usual tutorial group 

but separately in a situation where the first author acted as a tutor. The selected students 

were in their second or higher semester and studied Mathematics (4 students), 

Computer Science (1 student) or were pre-service teachers (11 students). Each group 

was filmed while working on this task. The written work they produced while working 

on the task was collected as well. The videos were transcribed after collecting the data. 

The transcripts were then analysed concerning our research questions. Transcripts 

shown in this article are translated from German by the first author.  

The situation could be (and was in all of the cases) transformed from an adidactical to 

a didactical situation when the tutor stepped in, asked questions or gave hints. Since 

the time we had for the interviews was limited and this was the last task, we did not in 

all cases let the students think on their own or allow them “walk in the wrong direction” 

Figure 1: The discussed task (translated by the first author).  
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as long as we would have done for other tasks. Therefore, we can only conclude that 

some functions might not be as readily available in the students’ example spaces as we 

would like them to be, and not that they are not at all contained in the example spaces. 

EPISTEMOLOGICAL ANALYSIS AND A PRIORI ANALYSIS 

The question of whether or not continuity implies the existence of all one-sided 

directional derivatives translates in the one-dimensional case to the question of whether 

continuity implies right- and left-sided differentiability. There are different reasons for 

functions not to be differentiable in the one-dimensional situation. As known, a 

function 𝑓: ℝ → ℝ is differentiable in 𝑥0 ∈ ℝ if the limit lim
h→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
 exists. This 

limit does not exist if (a) the right- and left-sided limits exist but are not the same, (b) 

the term tends to infinity (for ℎ ↘ 0, ℎ ↗ 0 or both) or (c) oscillatory behaviour (from 

at least one side) occurs in a way that makes the limit not exist. Case (a) happens for 

example in the absolute value function and means that the graph of the function has 

some sort of “corner” or “cusp”, i.e. an abrupt change of the slope. Case (b) means that 

a tangent line to 𝑓 at the point 𝑥0 is vertical. This kind of behaviour can be found for 

example at 𝑥0 = 0 in the cubic root function 𝑓: ℝ → ℝ, 𝑓(𝑥) = √𝑥
3

 or in a suitably 

continued square root function, e. g. the functions 𝑓: ℝ → ℝ, 𝑓(𝑥) = √|𝑥| or  𝑓(𝑥) =

−√−𝑥 for 𝑥 ∈ ℝ<0 and 𝑓(𝑥) = √𝑥 for 𝑥 ∈ ℝ≥0. Case (c) occurs for example in the 

function 𝑓: ℝ → ℝ, 𝑓(𝑥) = 𝑥 ⋅ sin (
1

𝑥
) for 𝑥 ≠ 0, 𝑓(0) = 0, at the point 𝑥0 = 0.  A 

function that is not differentiable because of (a) still has both one-sided directional 

derivatives. In cases (b) or (c), at least one of the one-sided directional derivatives does 

not exist. This means that the standard example for a continuous but not differentiable 

function, i. e. the absolute value function, cannot be used to contradict the implication 

“continuity implies one-sided directional differentiability” (as well as any other 

function that is not differentiable because of a cusp). However, the example functions 

for cases (b) and (c) provide valid counterexamples since all of them are continuous.   

In our a priori analysis, we expected that students would first think of the absolute 

value function and then quickly come to the conclusion that this is not a 

counterexample because the one-sided derivatives in 0 exist (although they are not the 

same). We expected them to try to come up with other functions ℝ → ℝ that are 

continuous but not differentiable and assumed that most students would – maybe with 

some help – think of some sort of a root function. A more detailed a priori analysis was 

done in Lankeit and Biehler (2019). The example space concerning non-differentiable 

functions was not explicitly cared for in the lectures. As usual, the absolute value 

function was given as an example for a non-differentiable, continuous function. 

Examples from the case (b) or (c) were not addressed in particular in the analysis I 

course preceding the discussed Analysis II course. The function √𝑥
𝑛

 on (0, ∞) for 𝑛 ∈
ℕ was used as an example for a differentiable function as well as the function 𝑓(𝑥) =

𝑥3 ⋅ sin (
1

𝑥
) for 𝑥 ∈ ℝ ∖ {0}, 𝑓(0) = 0.  
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RESULTS 

We will now give an overview over the groups’ work on the question whether or not 

continuity implied the existence of (one-sided) directional derivatives with an emphasis 

on our research questions which different functions they debated and what we can learn 

about their concept images. For space reasons, we will not show detailed case studies 

for the groups independently but rather give summaries over all of the groups 

concerning example functions they mentioned and students’ reactions to the idea of a 

vertical tangent.  

When they started looking for an example function, all of the pairs considered functions 

ℝ → ℝ and had no trouble translating the question into the question whether continuity 

implied the existence of the limits lim
h↘0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
 and lim

h↘0

𝑓(𝑥0−ℎ)−𝑓(𝑥0)

ℎ
. Some of 

them started by actually trying to find a proof for the implication but recognised errors 

in their “proofs” themselves or with the help of the tutor. In this article, we will 

concentrate on the attempts to falsify the statement. Some of the groups also tried to 

use the logical structure of the diagram given in the task (see figure 1) which is 

something we found students doing for many of the implications, see Lankeit and 

Biehler (2019). It is not possible to use this diagram-based strategy successfully for 

this task if all earlier implications have been assigned the correct truth values.  

Example functions the groups used 

We will now have a look at example functions the groups came up with themselves, 

without the tutor hinting at a specific function (e. g. by saying the name, sketching the 

graph or asking for a function’s inverse function). We will group the examples the 

different pairs came up with by the different cases ((a)-(c)) we described above. We 

additionally add the group (d) of discontinuous functions that were wrongly discussed 

as counterexamples, even though discontinuous functions could also be grouped into 

the cases (a)-(c). Still, it seems helpful to differentiate between continuous and 

discontinuous examples because their non-continuity makes them unsuitable as 

counterexamples in this task. We also added a category of differentiable functions (e) 

that students wrongly mentioned as candidates for non-examples. The groups came up 

with the following examples [1] in the five categories (a)-(e) on their own: 

(a) |𝑥|∗ (7 groups), 𝑓(𝑥) = {
𝑥2, 𝑥 < 0,

sin(𝑥) , 𝑥 ≥ 0,
 (1 group), 𝑓(𝑥) = {

0, 𝑥 ≤ 0,
x, 𝑥 > 0,

 (1 

group), other  (2 groups) 

(b) (vertical tangent): None 

(c) 𝑥 sin (
1

𝑥
) (2 groups) 

(d) Step function* (1 group), 
𝑥𝑦

𝑥2+𝑦2
* (1 group), other (1 group) 

(e) 𝑒𝑥∗∗
 (2 groups), 𝑥2* (2 groups), 𝑥2 sin (

1

𝑥
)* (1 group), 

1

𝑥
 (1 group), 

1

𝑥

∗∗
 (1 

group), tan (𝜋𝑥 −
𝜋

2
)** (1 group), other (1 group) 
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When a group immediately (i.e. in the same or one of the two following turns) after 

stating the example recognised that it is not a suitable counterexample, it is marked 

with “*”. The tag “**” is used to mark examples the students came up with after the 

tutor introduced the idea of a vertical tangent. “Other” means the group talked about 

some other functions from the respective category without explicitly specifying it. It 

should be noted that none of the groups came up with an example of case (b) (“vertical 

tangent”), but two groups found an example of case (c). All groups who considered the 

absolute value function as a counterexample immediately realised it was not a suitable 

one. Only one group did not discuss this function (or any other function with a cusp). 

Most of the groups at first only came up with functions with cusps or only the absolute 

value function. Some of them commented on this like the following quotes: 

Peter: Can you come up with anything? Because mine [my example for a 

continuous, non-differentiable function] is the absolute value function by 

default. Because there it is nice that one has the visual evidence why it doesn't 

work. 

The tutor asked five of the groups for reasons why a function could be continuous but 

non-differentiable. All of them only mentioned functions with cusps and in some cases, 

discontinuous functions, similar to group 1: 

Tim: What other functions that are not differentiable do I know? […][2] It would 

have to be functions that have some kind of cusp, right? 

Michael: Yes. 

Tutor: Have a cusp, or what else would be possible? 

Tim: Have a gap. But then it would not be continuous. 

Group 8 reacted similarly: 

Carl: Then I don’t know any other class of functions that is non-differentiable and 

continuous, other than cusps. 

Only the groups 3 and 7 came up with an example that could be successfully used to 

falsify the statement “continuity implies the existence of all one-sided directional 

derivatives”. Both groups used the same example, the function 𝑓: ℝ → ℝ, 𝑓(𝑥) = 𝑥 ⋅

sin (
1

𝑥
) for 𝑥 ≠ 0, 𝑓(0) = 0, at the point 𝑥0 = 0. How they came up with it was 

different in those cases: The tutor had shown the function 𝑓: ℝ → ℝ, 𝑓(𝑥) = 𝑥2 ⋅

sin (
1

𝑥
) for 𝑥 ≠ 0, 𝑓(0) = 0, to group 3 in part c) of the considered task as an example 

for a differentiable function for which not all (partial) derivatives are continuous. They 

remembered having seen this example before but said they wouldn’t have hit on it by 

themselves. After having seen this in the earlier task, they had a look at it again in part 

f) when they were looking for a function that is continuous but does not have all one-

sided directional derivatives. They noted the function was continuous and then wanted 

to check out whether the one-sided directional derivatives existed. When asked by the 
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tutor what this function had been an example for, they realised it was differentiable 

which implied the existence of all directional derivatives. They then decided to modify 

the function: 

Sophie: What happens if we only take 𝑥 here? Because she [the tutor] said before it’s 

not differentiable if we only take 𝑥. 

In group 7, the tutor had not introduced this or a related example before. Marc 

mentioned 
sin(𝑥)

𝑥
 wanting to find “that function that oscillates around zero the closer we 

get to zero” and finally developed (guided by the tutor’s questions) the above function. 

It is clear from what he said that he had seen this or a related function before.  

In the other six groups, the tutor introduced the idea of using a variant of the square 

root function (see above), either by saying the name of the function, sketching the graph 

or hinting at it by asking for the inverse function of the quadratic function. Depending 

on the time, the groups then checked themselves or together with the tutor that the one-

sided directional derivatives in 0 do not exist.  

The idea of a "vertical tangent." 

The tutor gave different hints for each group, depending on what they needed. In groups 

1 and 4, the tutor introduced the idea of a function with a “vertical tangent”, or that is 

very steep at some point. In the first group, Michael answered with the exponential 

function but immediately stated that this function is, in fact, differentiable. In the fourth 

group, Laura mentioned a function with an asymptote, a function that approaches the 

y-axis like 
1

𝑥
, and later the exponential function. In group 8, David explained that 

another function they had discussed in a previous task (which was not continuous) did 

not have all one-sided directional derivatives in the following way, thus introducing 

the idea of an infinite slope himself: 

David: The problem was that there wasn’t really a slope but rather a steep ascent 

tending to infinity. But that function was not continuous.  

When asked what this would mean visually for the graph of a function ℝ → ℝ, David 

and Carl talked about functions with bounded domain and unbounded codomain and 

mentioned a bijective tangent function (we believe they meant 𝑓: (−1,1) →

(−∞, ∞), 𝑥 ↦ tan (𝜋𝑥 −
𝜋

2
)) but realised there is not one specific point where the 

slope is infinite. When asked for a function with a particular point where the slope is 

infinite, the following dialogue happened: 

Carl:  Some kind of… a vertical line, somehow.  

Tutor: Do you know any function that behaves like that? 

David: Yes, a step function, but that is not continuous. (laughs) 

Carl: Exactly. It is either not continuous or not well-defined in that sense.  
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The second group worked with the definition of one-sided directional derivatives. It 

came up with the idea that the limit should be ±∞ so that the one-sided directional 

derivative does not exist. The first example they tried was 
1

𝑥
. They did not translate this 

into the idea of a vertical tangent and did not advance this idea but tried other strategies 

next.  

On the other hand, after discussing √|𝑥|, when the tutor asked the fifth group whether 

they could have seen the function is not differentiable in 0 before calculating that the 

limit of the difference quotient does not exist, Peter answered in the following way: 

Peter: […] We don't have an unambiguous way to find the tangent is zero. […] 

Respectively, the tangent gets steeper and steeper and steeper […] until it 

would be vertical, which is impossible.   

At first, he uses the argumentation he used to explain why the absolute value function 

is not differentiable in 0. Still, he then realises that the square root function is a different 

case and gives the idea of a vertical tangent himself. It can also be seen from this 

excerpt that he does not accept a vertical tangent as a tangent to the function graph. 

DISCUSSION 

Students correctly had the idea to look for counterexamples in the one-dimensional 

case. However, finding examples for functions ℝ → ℝ that are continuous but not 

differentiable from the left and right side was problematic. The students’ remarks show 

that for a non-negligible part, the accessible example space concerning continuous but 

non-differentiable functions contains only the absolute value function. Most of the 

groups seemed to be limited to functions with a cusp when thinking about continuous, 

non-differentiable functions. This finding is not very surprising since the absolute value 

function is the prototypical function for a non-differentiable, continuous function that 

was shown to them in the Analysis I lecture preceding the discussed Analysis II course 

when differentiability was introduced. Differing from findings in the analysis of 

students’ written solutions (Lankeit & Biehler, 2019), the problem of using the absolute 

value function as a counterexample did not occur. Most groups discussed this function 

but quickly realised it was not a suitable counterexample. Additionally, a broader range 

of functions was considered as possible examples. Both differences might be due to the 

different setting: The didactical contract is slightly different when under individual 

observation than in the usual group work. It can be assumed that the students had a 

greater need for a solution. Additionally, while the situation was purely adidactical for 

the students in their usual tutor group meeting since the tutors were advised not to help 

them, the groups in this video study had the help of the tutor who interacted with them.   

None of the groups came up with an example from the group (b) by themselves, a 

function that has a “vertical tangent” at a point. Two groups mentioned that the limit 

might not exist because it is ±∞ but could not find an example. The idea of a “vertical 

tangent” evoked images of functions that become steeper when approaching infinity or 

a pole but not of functions with “infinite slope” at one point. This idea seemed to be 
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new for the students, which shows that this type of behaviour of functions needs to be 

addressed more explicitly. It is, however, not unexpected since the tangent to a graph 

at a point where the function is not differentiable is often not defined distinctly. In Biza, 

Christou, and Zachariades (2008), the task where a vertical tangent to a point of a curve 

needed to be drawn was solved successfully by only 33 % of the students. Problems 

with drawing the tangent to the graph of the function √|𝑥| in 0 are documented by 

Vinner (2002) in the school context as well, showing that case (b) is not easy for 

learners. Peter's explanation “until it would be vertical which is impossible” 

additionally shows that vertical tangents are perceived as “not allowed”. The 

spontaneous extension of the notion of tangent should not be expected. Therefore, the 

hint to think about “vertical tangents” proved to be not helpful to the students. When 

trying to bring students to think about functions from group (b), it might be more 

suitable to work in a symbolic rather than a graphical way and lead the students to think 

about why the limit of the difference quotient might not exist.  

The fact that the rather “strange” oscillating sine-function was more accessible for the 

students than a root function was surprising to us. The students had seen this example 

in an additional, voluntary task at the end of their Analysis I course (not in the lecture), 

and not much time was spent on it. A possible explanation is the following: A problem 

with the square root function is that it is defined only on [0, ∞). Therefore, 

differentiability is often, as in the Analysis I course preceding the discussed class, only 

examined on (0, ∞), leading students to remember this as an example for a 

differentiable function and not thinking about the vertical tangent in 0. The variants of 

the square root function mentioned above were not discussed in the lecture, and neither 

was √𝑥
3

. Additionally, while the oscillating sine-function is – if introduced – always 

framed as a strange function serving as a counterexample to something, the square root 

function might be considered a too “normal” function to even consider it as a 

counterexample. Therefore, one should probably not expect students to invent 

functions from group (c) themselves without help but, if they have already seen a 

variant of sin (
1

𝑥
), it might be easier to find these example functions than suitable 

modifications of the square root function.  

These findings suggest that the students’ example space as part of their milieu when in 

the situation of solving this task is not rich enough. These difficulties can be met in 

different ways. One way is addressing the cases (b) and (c) and not only the absolute 

value function when discussing continuous, non-differentiable functions in Analysis I. 

Another is enriching the milieu for this situation by hints and preceding tasks helping 

the students explore different cases why functions might not be differentiable and find 

example functions. It might be more suitable to lead them towards the group (c) than 

the group (b). Hinting at specific functions enables the students to solve the task by 

calculating that the one-sided derivatives do not exist, but this does not improve their 

understanding of their concept image and should therefore not be preferred. 
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NOTES 

1. The functions are shortened for space reasons, of course, “xsin (
1

x
)” actually means the function 𝑓: ℝ → ℝ, 

𝑓(𝑥) = 𝑥 ⋅ sin (
1

𝑥
) for 𝑥 ≠ 0, 𝑓(0) = 0 etc. 

2. If transcripts contain “[…]”, this means that we omitted a (not relevant) part from the discussion in the transcript here  

to shorten the paragraph. In contrast, “(…)” means there was a pause. 
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In this article we present a short review of our research on student understanding of
function of two variables. We describe results dealing with basic aspects such as
geometrical understanding and understanding of the definition, then we consider
results on student understanding of some notions of the differential calculus: plane,
tangent plane, partial derivatives, directional derivatives, and the total differential.
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INTRODUCTION

It can be expected that natural or human induced phenomena in science, technology,
and engineering will commonly involve quantities which are on an invariant (or nearly
invariant) relationship with two or more other different quantities. This makes the
multivariable calculus an important tool for the modelling and exploration of these
phenomena. It is only in the last 10-15 years that research on the didactics of
multivariable functions has gathered some momentum. The reason for this is that
perhaps for a long time there was the expectation that understanding the didactics of
single-variable calculus was enough since generalization to the multivariable context
seemed to be non-problematic. However, this was quickly found not to be the case. A
common undercurrent to research in multivariable functions is that these functions
have their own particularities which make generalizing from the one-variable case
challenging for students. In this article we describe research on the teaching and
learning of two-variable functions. Because of lack of space, we concentrate on
discussing mainly our own research results giving only a brief hint of some research
by others. We also try to minimalize theoretical considerations and technical
nomenclature so that the article may be of value to practitioners, as well as informative
to researchers from different perspectives.

Our research question is: What do our research results about the learning of two-
variable functions Calculus taken together tell and how can they be used to help
promote students’ learning in the classroom?

THEORETICAL FRAMEWORK

Since most of the research we have undertaken is APOS-based, we start with a brief
summary. In APOS (for more detail see Arnon et al., 2014), an Action is a
transformation of a previously constructed Object that the individual perceives as
external. It is external in the sense that it is relatively isolated from other mathematical
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knowledge and so the individual will not be able to justify the Action. An Action could
be the rigid application of an explicitly available or memorized procedure or fact.

When an Action is repeated and the individual reflects on the Action, it may be
interiorized into a Process. The Process is perceived as internal in the sense that it has
meaningful connections to other mathematical knowledge. This enables the individual
to imagine the Process, omit steps, and anticipate results without having to explicitly
perform the Process. A Process is thus perceived as dynamic. The meaningful
connections also allow the individual to justify the Process and interrelate its different
representations. Different Processes may be coordinated to form new Processes.

As new problem situations arise the individual may feel the need to apply Actions on
a Process. For this to occur the Process has to be conceived as a totality, an entity in
itself. When an individual is able to do Actions on a Process or imagine doing so, it is
said that the Process has been encapsulated into an Object.

A Schema is a coherent collection of Actions, Processes, Objects, and other previously
constructed Schema dealing with a specific mathematical notion. The Schema is
coherent in the sense that its different components are interrelated in a way that allows
the individual to determine if a problem situation falls within the scope of the Schema.

In their research, Martínez-Planell and Trigueros used semi-structured interviews with
students who had finished a multivariable calculus course and, in some studies, had not
used APOS-based didactical strategies. Students are asked several questions and the
interviewer interacts with them in order to give them opportunities to show evidence
of their constructed structures as defined in the theoretical framework. They analyse
students’ responses to find evidence showing if they were using Actions, evidenced by
students’ relying mostly on memorized facts, or in their need to use specific
information to do calculations, or if they showed to have interiorized Actions into
Processes demonstrated by their capability to generalize their strategies or to skip steps
in procedures, for example, or encapsulated them into Objects shown by being able to
perform Actions on notions studied to find their properties, for example.

When students work with different problems related to a mathematical notion. they
may evidence that they use mainly Actions in their responses. It is then said that those
students have constructed an Action conception of that notion. The same can be said
about Process and Object conception.

A genetic decomposition (GD) is a conjecture of mental constructions students may do
in order to understand a specific mathematical notion. In this article “to understand” a
mathematical notion means to attain at least a Process conception of the notion. After
a research study where a dialogue between APOS Theory and the Anthropological
Theory of Didactics was carried out (Bosch, Gascón & Trigueros, 2017), interesting
theoretical constructs emerged. In some researches we have used some of them to
include both the cognitive and the institutional aspects that play a role in the teaching
and learning of mathematics. Those mentioned in this paper will be discussed when
they are needed.
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BASIC ASPECTS OF FUNCTION OF TWO VARIABLES

Geometric understanding of functions of two variables

The first article we found on the literature of mathematics education that deals with
generalization of function of one variable and student understanding of the basic
notions of functions of two variables was by Yerushalmy (1997). She studied a group
of seven-graders as they generalized notions from single to two-variable functions in a
modelling context. Her results, among other things, stress the importance of the
interplay between different representations in this generalization. Trigueros and
Martínez-Planell (2010) followed with a study of students’ geometrical understanding
of functions of two variables. It may be argued that the most basic technique for
solving problems about functions of two variables is reducing them to problems about
functions of one variable; this is done by holding a variable fixed, equivalently, by
intersecting a surface with a plane of the form x=c, y=c, z=c (fundamental plane).
However, students tend not to do this on their own. Trigueros and Martínez-Planell
(2010) found that intersecting a surface with a fundamental plane and placing the
resulting curve in its appropriate place in space needs to be explicitly discussed, since
students frequently confuse transversal sections with projections onto a coordinate
plane, and need help to construct those Processes needed to relate contours with the
graph of a function. Students were found not to easily relate their intuitive knowledge
of space with the mathematical notion of R3. This suggests the potential of using
concrete manipulatives for students to perform Actions during instruction. Like
Yerushalmy (1997), students’ constructions were found to be dependent on the specific
representation used so that it is important to help students construct Processes to
interrelate different representations, including verbal representations, where phrases
like “cut the surface”, “lift a curve” and so on, are sometimes misunderstood by
students. Given the importance of fundamental planes for the study of two-variable
functions it may be expected that they would be institutionalized as a technique by
explicitly referring to them and exploring their use throughout the course in different
problem situations. Follow up studies (Trigueros and Martínez-Planell, 2011, 2015) of
institutional conditions (textbook and instruction) using tools from the dialogue
between the Anthropological Theory of the Didactic (ATD) and APOS (Bosch,
Gascón, and Trigueros, 2017) show that this is not the case. Specifically, the moments
of study of the ATD were used to examine the mathematical organization of the Stewart
(2006) textbook as it regards the treatment of geometrical aspects of functions of two
variables. Results obtained supported APOS based observations.

Understanding of the definition of function of two variables

After studying geometrical representations of functions of two variables, Martínez-
Planell and Trigueros (2012) turned their attention to student understanding of the
definition of functions of two variables: domain, range, uniqueness of functional
values, and the possible arbitrary nature of a functional assignment. They found that
generalizing from function of one variable to function of two variables is fraught with
difficulties. Students frequently think of the domain of a function of two variables as a
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collection of real numbers, and sometimes as the x values with the y values being the
range (see also Dorko and Weber, 2014) which implies that students were not offered
enough opportunities to construct the notion of domain of two-variable functions
through Actions involving ordered pairs and their representation in 3D-space,
particularly in cases where the domain is given symbolically and includes a restriction.
However, in a later study, students in Şefik and Dost (2019) did not exhibit this 
difficulty with restricted domains, so institutional issues may play a role here. Other
aspects which need specific attention in classrooms include the vertical line test and its
use for ascertaining uniqueness of functional value. It was observed that even good
students occasionally have difficulties to recognize the uniqueness of functional value
and the possible arbitrary nature of a functional assignment. So, to summarize, students
tend not to generalize to a notion of function of two variables that allows them to
recognize or show behaviour consistent with the modern set theoretic definition.
Students need opportunities to reflect on the construction of domain, range, and
uniqueness of functional value so they can distinguish functions of two variables from
one-variable functions through activities designed to foment student reflection. As
before, it was found that student constructions tend to be dependent on specific
representations so that treatment Actions and conversion Processes (Duval, 2006) need
to be explicitly fostered throughout instruction.

Use of designed activities in the classroom

The Trigueros and Martínez-Planell (2010) and Martínez-Planell and Trigueros (2012)
studies were part of a first cycle of APOS research. Study results led to revising the
GD where constructions were introduced taking into account results obtained in the
first cycle. The new GD was used to design specific activities to help students do the
constructions they needed to better understand two-variable functions. After classroom
testing the activities for several semesters a second research cycle was undertaken
(Martínez-Planell and Trigueros, 2013). It was found that students frequently did not
work well with free variables, for example, as in f(x,y)=x2 (missing variable) or as in
f(x,y)=xsin(y) when you set x=0 (all variables present). Difficulties associated to both
of these types of functions are independent of each other so it was concluded that they
need to be explicitly addressed in class. In particular, the use of fundamental planes to
graph cylinders (like z=x2), needs to be explicitly considered through reflection on
Actions during instruction. It was also found that activities that review function
transformations help students construct the Process needed in graphing activities; that
students overgeneralize familiar algebraic expressions so they can act as an obstacle;
that in order to do the Action of intercepting a surface with a given fundamental plane,
some students attempt to first graph the entire surface (consistent with an Action
conception), and that some students needed help to interiorize point by point
evaluations Actions into a Process (especially in the case of a missing variable). Results
of the use of these activities were encouraging since students in the experimental
section, who used the designed activities, performed better than those in a lecture-
based section. Since it was considered that more reflection opportunities were needed
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to encourage the construction of a Process conception, it was decided that a third cycle
of APOS research would be needed. So, the GD was further refined and the activity
sets were improved to reflect the results of the second cycle. After classroom
implementation of the activity sets, a third cycle of student interviews was undertaken.

Comparing understanding in two groups

Results of the third research cycle and their comparison with the main results of the
first two cycles and the evolution of GD and activity sets through the three cycles
showed that the activity sets were adequate in terms of helping students to interiorize
their Actions into Processes (Martínez-Planell and Trigueros, 2019). Students from the
sections using the activity sets were found to be more likely to show they had
constructed a Process conception of function of two variables (8 of 12) than students
not using the activity sets (0 of 7). Students who did not construct Processes did not
show to have reflected on their Actions while working on the activity sets.

DIFFERENTIAL CALCULUS OF FUNCTIONS OF TWO VARIABLES

Vertical change on a plane and the genetic decomposition

Tall (1992) proposed a way to interpret the total differential dz=(∂z/∂x)dx + (∂z/∂y)dy
as dz=(dzx /dx)dx + (dzy /dy)dy where dzx, dzy, dx, and dy are lengths of segments in the
tangent plane (see Figure 1) and so may be cancelled. This makes more sense than the
two ∂z’s occurring in the original equation, where they mean different things in each
of the two terms. We adapted this idea using the notion of vertical change on a plane
to model the point-slopes equation of a plane, the tangent plane, the directional
derivative, and the total derivative as suggested in Figures 2 and 3, thus aiming to bring
coherence to students’ differential calculus Schema (see Arnon et al., 2014, for a
discussion of Schemas and Schema coherence).

A genetic decomposition was proposed in terms of vertical change on a plane
(Martínez-Planell, Trigueros, and McGee, 2015). The vertical change on a plane dz
from an initial base point (a, b, c) to a final generic point (x, y, z) is the sum of the
vertical changes in the x direction (dzx) and the y direction (dzy) as one moves from the
initial to the final point. But each one of these vertical changes can be expressed in
terms of slope: dzx is the slope in the x direction times the horizontal change in the x
direction, (dzx /dx)dx and similarly for dzy . From here one may obtain the point-slopes
equation of a plane (Figure 2) z ̶ f(a,b) = mx(x ̶ a) + my(y ̶ b) , the tangent plane z ̶
f(a,b) = fx(a, b)(x ̶ a) + fy(a, b)(y ̶ b), and the total differential df (a,b) = fx(a,b)dx +
fy(a,b)dy. One may also obtain the directional derivative in direction of a given vector
(Figure 3) D<Δx,Δy>f (a,b) = ( fx(a,b)Δx + fy(a,b)Δy )/ ‖< Δx, Δy>‖.  

The original genetic decomposition is detailed in Martínez-Planell, Trigueros, and
McGee (2015), a revised version in Martínez-Planell, Trigueros, and McGee (2017),
and further refinements for the total differential in Trigueros, Martínez-Planell, and
McGee (2018). These three papers will be discussed in the following subsections.
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Figure 1: Tall’s suggestion

dz = dzx + dzy = (dzx /dx)dx + (dzy /dy)dy

Figure 2: Vertical change on a plane
Δz = mxΔx + myΔy may be used to model
point-slopes z  ̶ c = mx(x  ̶ a) + my(y  ̶  b),
tangent plane z  ̶ f(a,b) = fx(a,b)(x  ̶ a) +
fy(a,b)(y  ̶ b), and total differential df (a,b)
= fx(a,b)dx + fy(a,b)dy

Figure 3: Directional derivative at (a,b) in the direction <Δx, Δy >, 
D<Δx,Δy>f (a,b) = ( fx(a,b)Δx + fy(a,b)Δy )/ ‖<Δx, Δy>‖ 

Slope and other pre-requisites to the differential calculus

One of the most important pre-requisite ideas necessary for the differential calculus is
the notion of slope. It was found that even students that showed behaviour consistent
with a Process conception of slope in two dimensions sometimes were restrained to
working with slope as an Action when dealing with lines in three dimensions. Moore-
Russo, Conner, and Rugg (2011) had previously observed student difficulty in
generalizing slope to three dimensions. They observed that students would have
difficulty realizing that in 3D slope must be directed slope. Indeed, in Martínez-Planell
et al. (2017) these results were confirmed when discussing directional derivatives even
in the case of some of the best interviewed students. Results showed that students need
to have constructed an Object conception of slope in 3D to be able to think of a Process
of slope as a totality upon which Actions can be performed. The notion of slope is
central in the construction of a Process of vertical change which is the main concept
giving coherence to a differential calculus Schema that includes the notions of point-
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slopes equation of a plane, tangent plane, directional derivative, and total differential.
Indeed, McGee and Moore-Russo (2015) and McGee, Moore-Russo, and Martínez-
Planell (2015) showed that students who explicitly consider 3D slopes during
instruction seem to develop a better understanding of the differential calculus than
students who do not.

Other basic pre-requisite ideas also play a role in students’ possible construction of the
differential calculus (Martínez-Planell et al., 2015): Some students do not realize that
slope in the x and y directions are invariants of planes that do not depend on a base
point, or that the total vertical change Δz is the sum of the vertical changes in the x and
y directions, Δzx + Δzy. This behaviour is reminiscent of the “two-change problem” as
discussed in Weber (2015). Some students need to develop flexibility in their notion of
variable and still consider slope to be Δy /Δx, similar to the before-mentioned
observation of Dorko and Weber (2014).

Partial derivatives

The construction of partial derivatives is conjectured as the coordination of Processes
of fundamental planes and derivative of a one-variable function (Martínez-Planell et
al., 2015), thus being restricted to an Action conception of either notion will not allow
the construction of a Process of partial derivative or any of the other notions that depend
on this. Given observed student difficulty with derivative of function of one variable,
this suggests that the basic ideas in the construction of derivative of a one-variable
function should be repeated in the discussion of partial derivatives, but now inserted in
corresponding fundamental planes. As observed in Asiala et al. (1997), the notion of
derivative needs the construction of graphical and symbolic trajectories that then must
be coordinated. The same care should be taken by explicitly considering conversions
between different representations in the construction of the ideas of the differential
calculus (Martínez-Planell et al., 2015, 2017).

Directional derivative

The directional derivative is considered in detail in Martínez-Planell, Trigueros, and
McGee (2017). One unexpected finding was that even some of the best performing
students may have difficulty representing or imagining the direction vector <a, b> in
space as <a, b, 0>. This has implications in their geometrical interpretation of
directional derivative. These students can only perform Actions when doing symbolic
computations and are not always sure of what they are doing when looking for
directional derivatives. Students who have constructed an Action conception of vertical
change may be expected to have difficulty to interpret the usual formula found in
textbooks (Stewart, 2006) D<u1,u2>f (a, b) = fx(a, b)u1 + fy(a, b)u2 where <u1, u2> is a
unit vector, or the formula proposed in the genetic decomposition D<Δx,Δy>f (a,b) =
(fx(a,b)Δx + fy(a,b)Δy) / ‖<Δx, Δy>‖. So again, vertical change plays a key role. Also, 
as mentioned before, some students did not realize that slopes in 3D must be directed
slopes. This was a difficult construction for students; only one of 26 interviewed
students managed to construct a Process conception of directional derivative. Our
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findings suggest that the construction of geometric meaning for the directional
derivative should be carefully worked with students during instruction, thus helping
them find a solution to the “two change problem” discussed by Weber (2015).

The total differential

Trigueros, Martínez-Planell and McGee (2018) considered student understanding of
the total differential. They found this to be a very hard construction for students as none
of 26 interviewed students managed to construct a Process conception of the total
differential, only one of the 26 was judged to be in transition to such a conception, six
were found to have an Action conception, and 19 of the 26 students showed to have no
knowledge or recollection of the total differential. As with the previously described
concepts, it is fundamental to develop a Process conception of vertical change on a
plane in order for students to construct the geometric interpretation of the total
differential. Most students do not think of the total differential as a function of
independent variables dx and dy. Those students showing an Action conception were
able to do mechanical computations where dx and dy were thought of as “very small
numbers” which was not enough to develop a geometric insight that would help justify
their solution procedures. Some students showed to have constructed the notions of
function and tangent plane as isolated concepts thus had difficulties to explain the
analytical and graphical consequence of the relation between them that is formalized
in the total differential. These results led to revising the genetic decomposition and the
activity sets so as to help students be able to coordinate Processes of tangent plane to a
surface and of two-variable function into a Process where they can recognize that the
tangent plane to a point of the function can be considered as the local linear
approximation of the function, both in analytical and graphical representations.

The Trigueros et al. (2018) study included an analysis of some institutional issues
(textbook, activities, and instruction) that constraint student learning of the total
differential and provide supporting evidence for the APOS-based observations in the
paper. The model of the moments of study of the ATD was used together with another
tool from the ATD-APOS dialogue (Bosch et al., 2017): the institutional classification
of techniques as action-technique (memorized, rigid, or applied to isolated tasks),
process-technique (supported by a technological-theoretical discourse, presenting
variations, connected to other techniques), and object technique (taken as an object of
study). It was found that the moments of study were unbalanced (i.e. some moments
and or ideas were not well represented) and may not foster a deep understanding of the
total differential and its relation to the tangent plane. The analysis of the different types
of techniques indicates that techniques introduced in the textbook are constrained to
action-techniques which may limit the understanding of the concepts introduced and
their relations while process-techniques are needed to foster students’ understanding.

SUMMARY AND CONCLUSION

In this short paper we have briefly summarized our research on functions of two
variables, the basic aspects, and the differential calculus. The results of this research
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give ideas that may influence the design of better teaching strategies. All results show
the role that construction of three-dimensional space and different representations play
in students’ understanding of the differential calculus of two-variable functions and
how students’ reflection on detailed activities and class discussion can help them to
construct Processes and Objects needed in deepening their understanding of the main
ideas of this discipline. Results obtained also open the door for further research on
students’ understanding of the differential calculus of functions of two variables.
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Dans le contexte  institutionnel  de la formation des enseignants  du secondaire  en
France, nous avons élaboré un problème qui vise à créer des liens entre l’intégrale
du Lycée (upper secondary) et les théories de Riemann et de Lebesgue enseignées à
l’Université.  En  d’autres  termes,  il  s’agit  d’une  réponse  à  la  question  de
l’implémentation du plan B de Klein, dans le cas de l’intégrale, comme stratégie pour
pallier  à  la  seconde  discontinuité  de  Klein.  La  méthodologie  se  fonde  sur
l’exploitation d’un modèle praxéologique de référence pour les différents objets de
savoir.  Les premiers résultats  suggèrent que la modalité sous forme de problème
écrit  est  insuffisante  pour  produire  le  transfert  des  connaissances  mathématiques
académiques en des connaissances utiles pour un enseignant du secondaire.

Mots clefs: teaching and learning of analysis and calculus, transition to and across
university mathematics, teacher training, integral, Klein’s plan B

INTRODUCTION

Dans une préface souvent citée, Klein (1908) a mis en avant une double discontinuité
dans  le  parcours  des  étudiants  de  mathématiques  se  destinant  à  la  carrière
d’enseignant. La première discontinuité a lieu à l’entrée de l'université (on parle de
nos jours de “transition secondaire-supérieur”) tandis que la seconde, moins étudiée
en  éducation  mathématique,  s'opère  à  la  sortie,  lorsque  les  étudiants  quittent
l'université pour prendre un poste d'enseignant de mathématiques dans le secondaire.
En effet,  ces derniers perçoivent en général  mal, d’eux-mêmes,  les liens entre les
savoirs universitaires et ceux, plus élémentaires, qui font l’objet des programmes de
l’enseignement  secondaire.  La  seconde  discontinuité  pose  donc  la  question  du
transfert des connaissances mathématiques académiques en des connaissances utiles
pour un enseignant du secondaire.

En France,  la formation initiale des futurs enseignants est  dispensée à l'université
dans le cadre des masters MEEF1. Ces derniers préparent à la fois au concours de
recrutement  (le  CAPES2,  lequel  évalue la maîtrise  de connaissances  disciplinaires
couvrant essentiellement les deux premières années d’université, ainsi des capacités
liées aux dimensions professionnelles)  et à l'entrée dans le métier d'enseignant de
mathématiques (pendant la seconde année, les étudiants enseignent à mi-temps). Les
étudiants  du  master  MEEF  ont,  pour  la  plupart,  suivi  un  cursus  de  licence  de
mathématiques. La première année de master est alors un moment propice au travail

1 Métier de l’Enseignement, de l’Education et de la Formation

2 Certificat d’Aptitude au Professorat de l’Enseignement du Second degré
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des liens entre les notions mathématiques (dans le monde anglo-saxon, on parle de
“capstone  course”,  point  culminant  de  l’apprentissage  qui  vise  l’intégration  des
connaissances en un tout cohérent) et en particulier, dans la perspective du concours,
des liens entre  savoirs mathématiques du supérieur et ceux du secondaire.

Klein (1908) propose en fait un programme de cours de type capstone (deux autres
ouvrages suivront), basé sur une stratégie d’apprentissage qu’il appelle plan B (loc.
cit. p.77-85). Par opposition au plan A qui opère un morcellement des savoirs en des
pans plus ou moins autonomes (c’est la stratégie dominante à l’université, mise en
oeuvre  dans  la  division  en  modules),  le  plan  B  promeut  une  vision  davantage
holistique des mathématiques dans sa démarche de mise en évidence et d’exploitation
des liens entre domaines mathématiques.

Les  idées  de  Klein  n’ont  pas  manqué  d’inspirer  mathématiciens  et  didacticiens.
Récemment, Winsløw et Grønbæk (2014) se sont appuyés sur des outils de la théorie
anthropologique du didactique (TAD ; Chevallard,  1991, 1999) pour modéliser  la
double discontinuité et proposer une première étude diagnostique des difficultés des
étudiants qui se destinent au métier d’enseignant, dans le cadre d’un enseignement de
type capstone au Danemark. Dans une seconde étude et avec des outils similaires,
Winsløw et Kondratieva (2018) ont construit deux problèmes qui relient la théorie de
l’Analyse aux savoirs pratiques du Calculus, dans le but de préciser, exemplifier et
raviver l’idée de plan B de Klein. Des données issues d’expérimentations en classe
sont analysées afin de discuter la faisabilité et les effets d’une telle approche. 

L'objectif de cet article est d'exposer, dans la continuité des travaux de Winsløw et
ses collaborateurs,  une implémentation du plan B,  cette fois  dans le contexte des
masters  MEEF en France et  sous la forme d’un problème de CAPES portant  sur
l’intégrale. Le cadre de la seconde épreuve écrite du CAPES semble être favorable à
ce type d’implémentation puisque le programme de cette épreuve “est constitué des
programmes de mathématiques du collège et des différentes séries du lycée général et
technologique.  Les  notions  traitées  dans  ces  programmes  doivent  pouvoir  être
abordées  avec  un  recul  correspondant  au  niveau  M1  du  cycle  master”  (Journal
Officiel du 8 décembre 2015, texte 8). L’intégrale est rencontrée par les élèves en
classe de Terminale (dernière année du Lycée), puis par les étudiants à l’université à
différents niveaux du cursus, avec souvent plusieurs théories (intégrale de Riemann,
de Lebesgue, intégrale par rapport à une mesure quelconque, etc), ce qui en fait un
objet riche et porteur pour l’étude de la deuxième discontinuité de Klein.

Dans  un  premier  temps,  nous  exposons  les  outils  de  TAD  qui  ont  guidé  la
construction du problème de CAPES et servent également à l’évaluation des effets
sur les apprentissages. Puis nous présentons globalement le problème en soulignant
les liens entre connaissances mathématiques qu’il vise à tisser. Enfin, nous ciblons
deux parties  du problème afin d’illustrer,  par  une analyse de copies d’élèves,  les
premiers résultats que cette étude a permis de produire.

154 sciencesconf.org:indrum2020:295319



CADRE THÉORIQUE ET QUESTIONS DE RECHERCHE

Winsløw et Grønbæk (2014) formalisent tout d’abord la double discontinuité à l’aide
de la notion de rapport d'un individu à un objet de savoir au sein d'une institution,
introduite par Chevallard (1991). Il s'agit de considérer : l’institution I, qui ici sera
soit le lycée (L), soit l'université (U) ; un individu x qui occupe différente position
dans l'institution I : d'abord élève au lycée (s), puis étudiant à l'université ( ) et enfin𝜎
enseignant  au  lycée  (t)  ;  un  objet  de  savoir  (ici  l’intégrale),  qui  vit  à  travers
différentes institutions et sera noté o au lycée et  lorsqu’il s’agit d’une théorie de𝜔
l’intégration enseignée à l’université. Le problème de Klein se modélise alors ainsi :

RL(s,o) → RU(𝜎,𝜔) → RU
*(𝜎,𝜔) → RU(𝜎,o) → RL(t,o) 

où l’enjeu d’un cours de type capstone dans une formation des enseignants se situe au
niveau  des  éléments  en  gras  :  quels  types  de  connaissances  complémentaires
instaurant  un  rapport  RU

*(𝜎,𝜔) sont  à  apporter  sur  les  théories  universitaires  de

l’intégration  pour  établir  un  rapport  RU(𝜎,o) qui  soit  pertinent  pour  un  futur
enseignant ?

En  TAD,  les  rapports  institutionnels  aux  savoirs  sont  décrits  en  termes  de
praxéologies (Chevallard, 1999), c’est-à-dire de couples (Π,  Λ) où Π dénote le bloc
praxique et Λ le bloc théorique. Le premier bloc est composé d’un type de tâches T et
d’une  technique  τ permettant  de  réaliser  ces  tâches.  Le  second,  qui  est  souvent
rattaché à une famille de blocs praxiques, comprend la technologie θ, un discours qui
justifie la technique, ainsi qu’un niveau supérieur de justification, la théorie  Θ, qui
unifie en général plusieurs technologies. Dans leur travail, Winsløw et Kondratieva
(2018)  font  l’hypothèse  que  les  cours  de  Calculus  à  l’université  développent  en
général des praxéologies notées (Πi, Li) aux blocs du logos “faible” (par rapport à la
pratique  mathématique  experte),  tandis  que  les  cours  plus  avancés  d’Analyse
développent  des  praxéologies  (Pi,  Λi)  aux  blocs  praxiques  artificiels.  Une
interprétation du plan B est alors de créer des liens du type Λi↔ Πj visant à montrer
aux étudiants comment des blocs du logos de l’analyse Λi  sont “construits” (dans un
sens  épistémologique  à  clarifier  en  fonction  des  objets  d’étude)  sur  des  blocs
praxiques Πj  qu’ils ont travaillés au préalable en Calculus.

Le  dernier  outil  de  TAD  que  nous  allons  mobiliser  est  la  notion  de  modèle
épistémologique de référence (MER ; Florensa et al., 2015). Ce modèle consiste en
une  reconstruction  du  savoir  enseigné,  obtenue  en  étudiant  l’objet  de  savoir  à
différents niveaux de la transposition didactique (via l’épistémologie historique, les
programmes officiels, les études de manuels et documents de cours). Il constitue la
référence pour le chercheur et est construit en lien avec les questions de recherche.
Dans la section suivante, nous ferons une présentation simplifiée du MER qui a été
élaboré pour l’intégrale du secondaire o et ses avatars universitaires 𝜔R (intégrale de
Riemann) et 𝜔L (intégrale de Lebesgue dans le cadre de la théorie de la mesure). Les
questions de recherche qui guident sa construction sont les suivantes : quels liens
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peut-on  établir  entre  les  praxéologies  mobilisant  o dans  le  secondaire  et  les
praxéologies  universitaires  développées  relativement  à  𝜔R et  𝜔L?  Quelle
implémentation d’un plan B de Klein proposer  dans  le  contexte  des  étudiants  de
master MEEF, pour l’intégrale ? Enfin, notre dernière question de recherche concerne
alors  les  effets  sur  les  apprentissages  :  la  modalité sous forme d’un problème de
Capes permet-elle aux étudiants de construire les liens RU

*(𝜎,𝜔) → RU(𝜎,o) qui ont
guidé sa construction et constituent les objectifs d’apprentissage ?

MÉTHODOLOGIE, PRÉSENTATION DES MER ET DU PROBLÈME

Pour  construire  le  MER pour  l’intégrale  au  lycée,  nous  avons mené une  analyse
praxéologique de manuels  et  nous sommes appuyés sur  le  programme officiel  de
2011.  Pour  l’intégrale  de  Riemann  à  l’université,  nous  avons  complété  le  MER
proposé par Cong Khan (2006) par une analyse praxéologique de documents de cours
et  travaux  dirigés  utilisés  à  l’université  de  Montpellier  en  2016  ainsi  que  d’un
ouvrage collectif en ligne (http://exo7.emath.fr). Enfin, le MER relatif à l’intégrale de
Lebesgue,  encore  en  cours  d’élaboration,  s’appuie  également  sur  des  ressources
issues des enseignements donnés à Montpellier.

Au  lycée  comme  en  début  d’université,  un  bloc  praxique  prépondérant  pour
l’intégrale est le bloc  Π1 composé du type de tâches  T1 (calculer l’intégrale définie
d’une fonction continue  f sur un segment [a,b]) et de la technique τ1 (calculer une
primitive  F de  f puis  F(b)-F(a)).  La  technique  est  justifiée  par  le  théorème
fondamental de l’analyse (θ1) qui, à son tour, est justifié au lycée à partir de la notion
d’aire et ses propriétés (l’intégrale est définie géométriquement comme l’aire sous la
courbe). Ces dernières ne sont pas formalisées, voire demeurent implicites, et restent
donc largement fondées sur l’intuition. Le bloc du logos du lycée, noté Lo est donc un
bloc  faible  au  sens  de  la  rigueur  universitaire,  voire  incomplet.  Un  second  bloc
praxique P2 rattaché à ce logos est celui du calcul approché des intégrales, avec pour
technique la subdivision de l’intervalle et l’encadrement par des rectangles, de façon
à définir ce qui sera appelé à l’université les “sommes de Riemann”.

À  l’université,  une  plus  grande  diversité  de  techniques  (intégration  par  partie,
changement de variable) permettent de réaliser  T1. La technique τ1 n’est cependant
pas  obsolète  et  toujours  justifiée  par  θ1.  Par  contre,  la  théorie  de  Riemann vient
justifier la technologie ; elle comprend la définition de l’intégrale de Riemann ainsi
que des notions qui fondent l’analyse comme la borne supérieure. Nous notons ΛR ce
nouveau bloc du logos qui accompagne le passage de o à 𝜔R, ou encore la fondation
de l’intégrale sur le nombre plutôt que sur la géométrie. De nouvelle praxéologies
apparaissent  également  à  cette  occasion,  notamment  des  types  de  tâches  plus
théoriques, par exemple “Montrer qu’une fonction donnée est Riemann-intégrable”,
dont les techniques correspondantes sont justifiées par la théorie  ΛR.  Plus tard, en
général en troisième année de licence, les étudiants peuvent trouver dans la théorie de
la mesure les idées générales d’une formalisation possible du bloc du logos Lo. Des
types de tâches relatifs à 𝜔L tels que “Montrer qu’une application donnée définit une
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mesure sur un ensemble donné” ou encore “Montrer qu’une mesure (générale) est
croissante”  facilitent  en  effet  une  telle  formalisation.  Cependant,  cette  théorie
abstraite demeure probablement hors de portée de nombreux étudiants qui abordent le
cycle de formation des enseignants et elle ne figure pas au programme officiel du
CAPES.

Le problème de CAPES que nous proposons comme implémentation du plan B de
Klein a pour objectif la construction d’un nouveau bloc du logos Λo  de l’intégrale du
lycée,  pour  l'enseignant.  La  méthodologie  de  sa  construction  se  base  sur
l’exploitation des liens que les différents MER ont permis de mettre en évidence,
lesquels  sont  pensés  en  termes  de  relations  entre  blocs  de  la  praxis  et  du  logos,
comme  expliqué  dans  le  cadre  théorique.  Les  éléments  ci-dessus  suggèrent  la
possibilité de relier Λo  à différents blocs du logos et de la praxis relatifs à 𝜔R et 𝜔L.
Nous allons voir que l’implémentation de ces liens va se faire en exhumant dans
l’histoire des éléments d’une théorie de la mesure des aires due à Jordan et Lebesgue
(mais différente de 𝜔L).  En d’autres termes,  c’est  l’épistémologie historique qui a
permis d’enrichir les MER.

Notre  problème  comporte  quatre  parties.  La  première  partie  commence  par  la
définition axiomatique d’une mesure des aires, inspirée de celle proposée par Perrin
(2005). Cette axiomatique repose sur ce que Lebesgue considère comme les éléments
essentiels que doit vérifier une mesure des aires (Lebesgue, 1935), renforçant le rôle
des transformations géométriques du plan, dans l’esprit de l’algèbre moderne. Cette
mesure consiste en la donnée d'une application μ définie sur un ensemble Q appelé
ensemble  des  parties  quarrables  du  plan.  Contrairement  à  l’axiomatique
contemporaine  de  théorie  de  la  mesure,  μ n'est  pas  supposée  σ-additive  mais
simplement additive (la mesure d’une union disjointe est la somme des mesures),
d’où sa propriété de croissance (pour l’inclusion). On suppose de plus qu’elle vérifie
les  propriétés  d’invariance  par  isométrie  et  d’homogénéité  par  rapport  aux
homothéties (μ(h(X))=k2 μ(h(X)) pour une homothétie h de rapport k). Ces propriétés
sont démontrées par Lebesgue mais nous les considérons comme faisant partie des
axiomes. La mesure du carré unité est 1. Cette axiomatique constitue le fondement de
notre logos Λo. 

Les tâches demandées dans la partie 1 consistent à démontrer un certain nombre de
formules  élémentaires  de  calculs  d'aires  (aire  d'un  rectangle,  découpages  dans  un
triangle, aire d'un parallélogramme) en s’appuyant sur l’axiomatique précédente. Le
travail  proposé  consiste  donc  à  appliquer  la  méthode  axiomatique  travaillée  à
l’université (autant en algèbre qu’en topologie ou théorie de la mesure) pour fonder
des praxis  enseignées à l’école et au collège. En vertu de la sémantique des objets et
du type de formalisme, ce travail est à rapprocher de praxéologies en théorie de la
mesure  (voir  plus  haut)  ou  encore  de  raisonnements  ensemblistes  en  théorie  des
probabilités  menés  dans  le  secondaire.  Mais  il  s’agit  également  d’intégrer  des
éléments  de  géométrie  (usage  des  transformations),  ce  qui  est  susceptible  de
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déstabiliser  certains  étudiants.  Nous  détaillerons  des  exemples  dans  la  partie
empirique.

La  deuxième  partie  de  ce  problème  consiste  à  montrer  que,  sous  l’hypothèse
d’existence  de  la  mesure  μ et  de  “quarrabilité”  de  l’aire  sous  la  courbe  
Ωx ={(t,y)∈R2 ,  0≤  t ≤  x, 0≤  y ≤  f(t)}, la fonction d’aire  x↦μ(Ωx) est dérivable de
dérivée  f (théorème fondamental de l’analyse, TFA). Deux exemples sont proposés
pour débuter : le cas des fonctions x2 et ex.  Les tâches suivantes correspondent aux
étapes de la preuve du TFA rencontrée au lycée (donc sous l’hypothèse de monotonie
de f), qui utilise la figure et l’encadrement classique par des rectangles comme dans la
praxis  P2. Mais il est attendu des étudiants qu’ils exercent le niveau de rigueur de
l’université,  c’est-à-dire  qu’ils  justifient  les  propriétés  habituellement  lues  sur  la
figure  en s’appuyant  sur  l’axiomatique  (voir  partie  empirique).  La  dernière  tâche
généralise  le  résultat  aux  fonctions  continues  quelconques,  ce  qui  nécessite  de
raisonner en termes de ε et  𝛿 comme de coutume dans les praxéologies d’analyse à
l’université.

La  troisième  partie  vise  à  construire  une  mesure  vérifiant  l’axiomatique,  ce  qui
nécessite  de  définir  la  notion  d’ensemble  quarrable  du  plan.  Cette  construction,
proposée par Lebesgue (1935), s’appuie sur des quadrillages du plan, de plus en plus
fins, pour définir des mesures “extérieures” et “intérieures” des sous-ensembles du
plan,  lesquels  sont  dits  quarrables  en  cas  d’égalité.  A l’aide  des  praxéologies  du
domaine des suites numériques, on étudie la quarrabilité de certains ensembles (les
rectangles,  l’ensembles  des points  à coordonnées rationnelles du carré unité)  puis
démontre que la mesure satisfait les propriétés que pose l’axiomatique. La dernière
tâche de cette partie consiste à prouver un critère de quarrabilité : une surface S est
quarrable si et seulement si il existe deux suites de polygone (Pn) et (Qn) telles que :

 (1)  ∀ n  ∈ N, Pn et Qn sont quarrables; 

(2)  ∀ n  ∈ N, Pn  ⊂ S  Q⊂ n; (3) lim μ(Qn)-μ(Pn) = 0.

La fonction de ce critère apparaît par la suite. 

En  effet,  on  montre  dans  la  dernière  partie,  en  appliquant  ce  critère,  que  Ωx est
quarrable (sous l’hypothèse f ≥ 0). Comme précédemment, on commence par le cas f
monotone. On effectue une subdivision de l’intervalle [a,b] de pas (b-a)/n : les unions
des rectangles que l’on obtient par la praxis P2 donnent deux suites qui répondent au
critère. En fait, il s’agit de l’analogue de la preuve que les fonctions monotones sont
Riemann-intégrables.  Cette  tâche  permet  donc  de  relier  le  logos  Λo au  logos  de
Riemann ΛR.

ETUDE EMPIRIQUE

Nous avons donc soumis  ce problème à 19 étudiants  de  Master  MEEF, dans  les
conditions du concours (épreuve de 5 heures sans document). Nous analyserons les
productions des étudiants relativement à des tâches issues des deux premières parties
du problème : il s’agit de tester la capacité des étudiants à mobiliser le logos Λo  pour
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justifier d’une part des calculs d’aires (première partie), d’autre part les inférences qui
permettent d’établir le TFA (deuxième partie) dans le cas d’une fonction monotone
positive. 

Etant  donnée  une  mesure  μ vérifiant  l’axiomatique,  la  première  tâche  consiste  à
démontrer l’assertion suivante : (X  ⊂ Y  ⇒ μ(X) ≤ μ(Y)) pour toutes parties quarrables
X et Y.  Si l’axiomatique n’est pas celle d’une mesure stricto sensu (au sens de 𝜔L),
cette tâche peut néanmoins être considérée comme une instanciation du type de tâche
“montrer qu’une mesure générale est croissante”. La technique privilégiée consiste à
faire  un  découpage  classique  (en  théorie  de  la  mesure,  comme  en  théorie  des
probabilités) :  Y=XU(Y\X), ce qui donne directement le résultat par additivité de la
mesure, puisque μ(Y\X) ≥ 0. Il s’agit donc essentiellement d’un bloc praxique relatif à
𝜔L.  Sur  les  19  copies,  5  étudiants  ont  utilisé  la  technique  décrite  ci-dessus  pour
réaliser la tâche, 5 ont proposé une preuve partielle en affirmant que Y pouvait être
partitionnée en deux parties disjointes, sans expliciter davantage le raisonnement, et
deux étudiants manifestent des conceptions erronées (confusion de la mesure avec la
cardinalité,  introduction d’une relation d’ordre sur  les éléments,  ce qui  n’a aucun
sens). Nous considérons que 10 étudiants sur les 19 ont su mobiliser la praxis relative
à 𝜔L.

La deuxième tâche étudiée est : “montrer que la mesure d’un carré de côté 3 est 9”.
Là encore, l’axiomatique de μ est sollicitée : les étudiants peuvent soit décomposer le
carré  en  9  carrés  disjoints  ou  bien  utiliser  une  homothétie  et  la  propriété
d’homogénéité de la mesure. On remarque que la technique de découpage est peu
utilisée puisque seulement 3 étudiants l’utilisent comparativement à 12 étudiants qui
utilisent  une homothétie.  Enfin,  2 étudiants appliquent une formule d’aire,  ce qui
revient  à  admettre  le  résultat.  A part  ces  derniers  qui  n’ont  pas  cerné  l’enjeu  de
l’axiomatique, nous pouvons donc considérer que les étudiants ont su s’approprier la
définition formelle de mesure d’une partie quarrable.

La  troisième  tâche  étudiée  consiste  à  démontrer  le  TFA,  ce  qui  revient
essentiellement  à  reprendre la preuve vue en lycée en justifiant  soigneusement,  à
l’aide de l’axiomatique, les propriétés de l’aire habituellement lues sur la figure.

Figure 1. Enoncé des tâches relatives à la preuve du TFA

Plusieurs  sous-tâches  sont  à  réaliser  :  d’abord  remarquer  que  μ(Ωx0+h)-μ(Ωx0)
représente la mesure de Ωx0+h\ Ωx0 grâce à l’axiome d’additivité de μ , puis encadrer
Ωx0+h\ Ωx0 par deux rectangles de largeur h et de longueurs respectives f(x0) et f(x0+h).
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Bien que la justification de cet encadrement  soit possible (et attendue) à l’aide de
l’algèbre, le passage au cadre graphique permet surement d’obtenir plus facilement
cet  encadrement.  On  peut  faire  l’hypothèse  que  si  l’encadrement  est  obtenu  par
l’étudiant,  le  registre  graphique  a  été  mobilisé  au  moins  au  brouillon.  L’avant
dernière étape mobilise à la fois la croissance de μ et la formule de la mesure d’un
rectangle (de façon similaire à la praxis P2 des sommes de Riemann) afin d’aboutir à
l’encadrement hf(x0) ≤  μ(Ωx0+h\ Ωx0) ≤ hf(x0+h). Enfin, la dérivabilité (à droite) de la
fonction t ↦μ(Ωt) en x0 est une conséquence du théorème des gendarmes. 

Sur  les  19  copies,  10  étudiants  ont  réussi  à  obtenir  l’encadrement  attendu  
hf(x0) ≤  S(x0+h)-S(x0) ≤ hf(x0+h). Seulement 3 étudiants ont effectivement tracé une
figure. On reconnaît le dessin que l’on trouve habituellement dans les ouvrages de
terminale,  lequel  constitue  un  bon  support  à  la  preuve  (figure  2).  Nous  faisons
néanmoins l’hypothèse que tous les étudiants qui ont su donner l’encadrement de
S(x0+h)-S(x0) ont mobilisé le cadre graphique,  ne serait-ce qu’à travers une image
mentale d’un tel dessin. Par exemple, l’étudiant dont le travail est présenté dans la
figure 3 note R1 et  R2 les deux domaines qui permettent d’encadrer l’aire sous la
courbe, notations qui font directement référence à la méthode des rectangles.

Parmi les 10 étudiants à avoir proposé le bon encadrement, seulement 3 d’entre eux
ont  évoqué  l’axiomatique,  par  exemple  en  utilisant  la  notation  μ (figure  3).
Cependant, la propriété de croissance de  μ n’est jamais explicitement utilisée et il
n’est pas fait référence au résultat précédemment établi sur la mesure des rectangles,
ce  qui  laisse  supposer  que  ce  dernier  a  également  été  mobilisé  sur  une  base
essentiellement intuitive.

Parmi les 9 étudiants restants et qui n’ont donc pas su donner l’encadrement attendu
de   S(x0+h)-S(x0),  cinq  étudiants  n’ont  pas  abordé  cette  question.  Les  autres
apparaissent bloqués ou mis en défaut par l’interprétation de l’ensemble Ωx0+h\ Ωx0,
sans  doute  face  au  grand  nombre  de  variables  et  paramètres  dans  les  écritures
algébriques. Par exemple, un étudiant a considéré l’ensemble Ωx0 comme étant un
rectangle.  Il  n’a  visiblement  pas  perçu  la  dépendance  en  x dans  l’expression  des
ordonnées,  ou mal interprété  cette dépendance dans la  conversion vers le registre
graphique. On peut donc faire l’hypothèse que le formalisme a été un obstacle majeur
pour ceux qui n’ont pas interprété directement S(t) comme une aire. 

Au final, aucun étudiant n’a justifié les inférences à l’aide de l’axiomatique ce qui
était  l’enjeu de cette question.  En particulier,  ni  la croissance  ni  l’additivité de  μ
n’apparaissent comme des éléments clés de la preuve. Nous faisons donc l’hypothèse
que les étudiants qui ont réalisé la tâche se sont appuyés sur un point de vue intuitif
de  la  notion  d’aire  et  n’ont  pas  compris  le  rôle  joué  par  l’axiomatique  dans  la
démonstration. Ceci est à mettre en perspective avec les attendus du programme de
Terminale  S  (2011) :  « On  s’appuie  sur  la  notion  intuitive  d’aire  rencontrée  au
collège et sur les propriétés d’additivité et d’invariance par translation et symétrie. »
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Figure 2. Exemple de réalisation de la 
preuve du TFA avec usage explicite du 
registre graphique

Figure 3. Exemple de réalisation de la 
preuve du TFA avec mobilisation de la 
notation μ

CONCLUSION ET PERSPECTIVES

Dans  le  contexte  institutionnel  de  la  formation des  enseignants  du  secondaire  en
France, nous avons élaboré un problème de CAPES qui vise à créer des liens entre
l’intégrale du Lycée o et les théories de Riemann 𝜔R et de Lebesgue 𝜔L enseignées à
l’Université. Ce problème répond à une demande institutionnelle, notifiée dans les
programmes  du  concours  de  recrutement,  d’aborder  les  objets  de  savoirs  du
secondaire avec le recul des connaissances de Licence (Bachelor). Interprétant cette
injonction  dans  l’esprit  du  plan  B  de  Klein  (comme  remède  à  la  seconde
discontinuité),  nous  avons  suivi  la  méthodologie  proposée  par  Winslow  et  ses
collaborateurs.  L’élaboration  du  problème  se  fonde  ainsi  sur  un  modèle
praxéologique de référence pour o, 𝜔R  et 𝜔L. Ceci a permis de construire des tâches
autour d’un nouveau logos Λo pour l’intégrale du lycée, à destination de l’enseignant.
Du point de vue historique, ce logos correspond à une formalisation de la mesure
antérieure  à  celle  de  la  théorie  contemporaine de  la  mesure  (celle-ci  inclut  la  σ-
additivité), mais reformulée en partie en termes de transformations du plan (rôle des
isométries et homothéties). Les liens que le problème cherche à établir ont été décrits
en termes de relations entre blocs du logos et de la praxis de praxéologies mobilisant
les différents  objets  o,  𝜔R  et  𝜔L et  de différentes praxéologies de calculus et  de
théorie des ensembles.

L’étude empirique a montré que les étudiants, dans leur majorité, ont réussi à se saisir
de l’axiomatique dans les premières questions du problème. On peut y voir l’impact
du travail sur les axiomatiques effectué à l’université, autant en algèbre qu’en analyse
(topologie, théorie de la mesure) ou en probabilités, mais aussi un transfert réussi de
techniques élémentaires travaillées à propos de 𝜔L. Le contraste est alors saisissant
lorsque ces derniers s’engagent dans la preuve du TFA en restant à un niveau de
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justifications faisant appel à des propriétés de l’aire lues sur la figure plutôt que de
mobiliser l’axiomatique. Dans ce contexte, la fonction de l’axiomatique semble non
perçue par les étudiants. Outre la persistance du contrat didactique du second degré,
ce phénomène peut également s’expliquer par l’obstacle du formalisme et un déficit
de flexibilité cognitive dans l’articulation entre les registres graphiques et formels.

En  conséquence,  notre  étude  confirme  que  le  transfert  des  connaissances
universitaires  en  des  connaissances  utiles  pour  l’enseignant  est  très  loin  d’être
automatique. La modalité en termes de problème de CAPES, si elle répond à une
demande institutionnelle, s’avère insuffisante pour produire les effets recherchés sur
les apprentissages, suite à une insuffisance de rétroactions du milieu. Ceci suggère
qu’une modalité sous forme de situation, dans l’esprit  de la théorie des situations
didactique de Brousseau, ou bien un processus d’étude permettant la mise en place
d’une dialectique fertile entre médias et milieux, dans la lignée des travaux récents en
TAD,  seraient  davantage  appropriés.  C’est  ce  travail  que  nous  nous  proposons
d’entreprendre, comme prolongement de cette première expérimentation. 
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INTRODUCTION TO TWG2 
The purpose of this report is to give an account of the work conducted within TWG2 
during the INDRUM2020 conference, which was held virtually from Bizerte (Tunisia), 
in September 2020. Initially, the group was composed of 43 registered participants 
from 16 different countries, with up to 28 participants simultaneously connected during 
the sessions. We had a total of 13 presentations, 11 papers and 2 posters, all of them 
addressing essential issues related to the teaching of mathematics for engineers, 
mathematical modelling or mathematics and other disciplines. In the three sessions of 
TWG2, the discussions were organised around three main topics covering five leading 
themes (Table 1). The three main topics delimited were about: (a) students and/or 
teachers-researchers’ practices (Theme 1 and 2); (b) the prevailing way to teach and 
learn university mathematics for engineers and for non-specialists (Theme 3 and 4); 
and, (c) looking for a change of paradigm in maths university teaching and learning 
(Theme 5 and 6). 

Topics Leading themes Papers 

(a) 
T1. Teaching and learning strategies for engineering students 2 
T2. Teaching practices of teachers-researchers at the university 2 

(b) 

T3. Analysing the prevailing conditions for the teaching and 
learning of Calculus for engineers 

2 

T4. Institutional analysis of mathematical modelling for non-
specialists 

2 

(c) 

T5. New perspectives for a renewed teaching and learning of 
mathematics: problem-posing activities and interdisciplinary 
projects 

3 

T6. Instructional proposals to move towards the paradigm of 
‘questioning the world’ 

2 

Table 1: Overview of the leading themes related to the main topics in TWG2 

This delimitation of the leading themes facilitated to group papers with similar aims 
and to make researchers interaction easier. The thematic group sessions were organised 
in five phases in order to make the discussions as fruitful as possible: presentation of 
the session, work in small parallel groups to discuss the themes and formulate 
questions, report of the groups, authors’ answers and general discussion. In light of the 
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quality of submissions, the substance and relevance of exchanges during the sessions, 
we can point important contributions to the development of research in the different 
topics and themes. The next sections summaries the contribution we had concerning 
each main topic and wants to report on the main issues and questions raised and 
discussed within TWG2. We conclude the report by highlighting some of the main 
open questions for future research that deserve more attention in the years to come. 
Focus on students or teachers-researchers 
The two first papers Liebendörfer et al. and Zakariya et al., in Theme 1, focus on 
teaching and learning strategies for engineering students. Several common issues have 
emerged from the corresponding presentations and discussions. They are both 
concerned with the specificities of studying the teaching and learning of mathematics 
for engineering students, and consequently, with the design of appropriate 
interventions to support these students. Both investigations propose relevant tools in 
order to differentiate engineering students’ learning strategies or attitudes in relation to 
their approaches to learn mathematics. Some are statistical tools used to interpret the 
quantitative and qualitative analyses and to locate correlational patterns among the 
data.   
Concerning Theme 2 about the teaching practices of teachers-researchers at the 
university level, we discuss two connected papers from Bridoux et al., Bridoux, de 
Hosson and Nihoul. Because their authors are involved in the same research project, 
they share several common aspects. Both investigations address theoretical and 
methodological issues to analyse teachers-researchers’ teaching practices, for ideal or 
declared practices (first paper) or in situ practices (second paper). In both cases, the 
purpose is to compare the practices of teachers-researchers from different disciplines 
(mathematics and others) in order to measure the influence of the disciplines involved, 
their epistemology or their didactics upon these practices. The second research also 
addresses the issue of detecting the possible effects of these practices on students’ 
learning during courses or tutorial sessions. 
Among other issues, the following questions give a pertinent account of the discussions 
that took place in relation to Theme 1 and Theme 2: 

§ What are the specific mathematical needs of engineering students? In which way 
mathematics teaching for future engineers is adapted to their future professions? 
What balance between proof-based teaching and applications in mathematics? 

§ Are there differences between applied and theoretical mathematicians’ teaching 
practices? How can we compare the practices of teachers from different 
disciplines? What is the influence of the discipline and its epistemology?  

§ What can theoretical and methodological tools help give an account of the 
restrictions experienced by teachers-researchers concerning their teaching? 
What are the conditions and constraints to use statistical tools to interpret 
quantitative and qualitative results in didactics research properly? 
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Focus on the prevailing way to teach and learn university mathematics for 
engineers and for non-specialists 
The second topic focuses on analysing the prevailing way of how mathematics is taught 
and learnt at the university for engineers and non-specialists. Different empirical data 
is here considered, from textbook analysis, course content analysis, students’ attitudes, 
among others, to analyse how some particular mathematical topics and taught and 
learnt for mathematics undergraduate courses. About the papers here discussed we 
have, on the one hand, two papers that analyse the specific conditions and constraints 
for the teaching and learning of Calculus for engineers, in particular, of integration. 
The paper from Nilsen analyses a group of first-year university engineering students 
and their sensemaking of integration and its symbolism. Through a semiotic approach, 
special attention is made on how students use and interpret symbols for integration. By 
their side, González-Martín and Hernandes-Gomes focus on developing a 
praxeological analysis, in the sense of the ATD, for analysing a course’s reference 
book, of a Strength of Materials course, to show the role that integrals have in logos 
block. This analysis is complemented by interviews with an engineering teacher to 
understand the dominant way how integrals are planned to be taught and learnt in a 
Calculus course for engineers. 
On the other hand, the other two papers are more specifically focused on the role of 
mathematical modelling for university mathematics teaching and learning for non-
specialists. In particular, the paper from Doukhan focuses on probabilistic modelling 
in the transition between secondary and tertiary education with first-year biology 
students. Through the analysis of students’ responses to a test, the paper shows the 
diversity of difficulties in the secondary-tertiary transition concerning probability and 
probabilistic modelling. Job discusses the prevalence of “applicationism” as the 
dominant way to understand mathematical modelling for economics. In particular, the 
paper describes a peculiar epistemological standpoint about the relationship between 
mathematics and economics, namely that of subordinating economics as an application 
of mathematics, may impact students’ views about the interplay between mathematics 
and economics. 
In the general discussion about this topic, we address relevant questions about the aims, 
contents’ selection and lack of specificity of the mathematical knowledge to be taught 
in the different specialities. In particular about: 

§ What is the main goal with the first-year Calculus courses? What kind of 
conceptual understanding is needed in different engineering specialities? 

§ What is important about calculus (integrals, sums, derivatives, …) for engineers, 
mathematicians, other university degrees? Could we find different rationales for 
their teaching and learning, depending on the university context? 

§ What elements of calculus, probability, mathematical modelling, etc., does each 
profession need? What elements have to be included in each undergraduate 
programme?  
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Focus on looking for a change of paradigm in maths university teaching 
Contributions related to the last topic refer to some instructional proposals for 
university mathematics to move towards a change of paradigm, such as problem-posing 
activities, interdisciplinary projects or study and research paths. The pursued aims are 
varied, but when looking at their complementarities, we found some common aspects. 
They all refer to the detection of conditions and necessities concerning the change of 
paradigm through the analysis of the student’s attitudes and competencies; the impact 
of alternative teaching proposals; and the viability of their implementation and long-
term dissemination.   
Radmehr et al. explore engineering students’ mathematical problem posing 
competencies in relation to integral calculus, and their attitudes towards mathematical 
problem posing. Answers from students to some tasks related to the Fundamental 
Theorem of Calculus and the notions of integral and area are explored, complemented 
by a questionnaire that explores students’ attitudes towards problem posing. The poster 
from Gaspar Martins presents an interdisciplinary project for computing engineering 
students about a car race, where Python appears as a means for programming language. 
The paper from Cumino, Pavignano and Zich presents an interdisciplinary project for 
first-year students in Architecture about the visualisation of mathematical objects 
through physical and digital models. The authors explore the appearance of varied 
models to improve the accessibility of interdisciplinary elements, building a common 
language for students with different backgrounds.  
About the proposal of study and research paths (SRPs) within the ATD, Barquero et 
al. focus on the analysis of several implementations of SRPs as an inquiry-oriented 
instructional proposal at the university level. This paper focuses on the different 
modalities of integration of SRPs into current university teaching, by linking inquiry 
to the study of knowledge organisations, without considering it only as a means to 
better learn the curricular content. The poster presented by Quéré presents a particular 
SPR guided by a chemistry lecturer about how we can be sure that a medical product 
meets the dosage as it is described on the package. The implemented SRP is discussed 
in terms of the usefulness of the developed praxeologies for the engineer’s professional 
context. 
Some critical questions discussed refer to the inherent assumptions in the design and 
implementation of the different teaching proposals, in particular: 

§ About problem posing: What do we consider a “good problem”? What does it 
mean to pose a problem for teachers-lecturers? For the students?  

§ About interdisciplinarity: What epistemological limitations appear when 
working in co-disciplinary or interdisciplinary contexts?  

§ About SRPs: How to find a “good” generating question for an SRP? Can the 
design and implementation of SRPs help us to rethink the contents of the course? 
Does the context of engineers’ university training offer better conditions to 
implement SRPs than others, due to their proximity to the profession?  
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CONCLUDING REMARKS AND FUTURE PERSPECTIVE FOR TWG 2  
The topics and leading themes addressed in TWG2 show the variety of research 
approaches and questions addressed. Since all those papers that are more focused on 
making the different “agents” (students and lecturers) react, to the ones working on the 
proposal of alternative teaching proposals to investigate about a change of the dominant 
pedagogical paradigm for the teaching of mathematics at university. Furthermore, the 
variety of theoretical frameworks provide a fruitful interaction to collectively 
understand phenomena related to the teaching and learning of mathematics for 
engineers, for other disciplines, and about the role that mathematical modelling can 
play to build bridges between disciplines. We want to finish this presentation by 
sharing some questions that were discussed in TWG2 about the future lines of 
development of our working group: 
Mathematics for engineers and other disciplines 

§ Is “mathematics for engineers” a too general term? How do we approach the 
specificities of each engineers’ context? 

§ What mathematics do university students need for their future professions? What 
communities may participate in the discussion of this crucial question?  

§ How has the use of technology (at university and in the workplace) accelerated 
the distancing between what is actually taught from actual professional needs? 

§ What are the theoretical and methodological possibilities to study teacher-
researchers’ practices and detect their possible effects on students’ learning? 

Need to rethink university mathematics curriculum  
§ How to make such a significant change in curriculum design at university (where 

we have a very “stable” curricula)? 
§ How to look at university mathematics curricula from an interdisciplinary 

approach? How can the perspective of mathematical modelling contribute to it? 
§ How to consider professional and workplace needs when designing mathematics 

curricula and defining its role in the different undergraduate programmes? 
Last but not least, a crucial issue is a necessary collaboration between different 
communities (mathematicians, didacticians, engineers, among other) to rethink 
university curricula, not only in terms of contents, but also thinking about the new 
needs, competencies and abilities that may be integrated. Who may participate in this 
discussion and what is the role of didactics research are also questions that may be 
addressed. And a more complicated and yet essential one can be the long-term 
collaboration of didacticians with researchers-lecturers from different disciplines to 
make this curriculum questioning evolve productively. 
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The implementation of inquiry-oriented instructional proposals at university level 
collides with many constraints related to the current pedagogical paradigm based on 
the transmission of previously established knowledge organisations. One of them is the 
fact that subject’s agendas are determined by a set of topics to study, not of questions 
to inquire about. Our research team has worked during this last decade in the design 
and implementation of an inquiry-oriented instructional format called study and 
research paths (SRPs) within the Anthropological Theory of the Didactic. This paper 
focuses on different ways of integrating SRPs in current university teaching, by linking 
inquiry to the study of knowledge organisations, without considering it only as a means 
to better learn the curricular content. 
Keywords: Teachers’ and students’ practices at university level, Novel approaches to 
teaching, curricular and institutional issues concerning the teaching of mathematics 
at university level, anthropological theory of the didactic, inquiry-oriented instruction. 
INTRODUCTION 
Current university instruction is mainly embedded in what has been called the 
paradigm of visiting works (Chevallard 2015), where teaching and learning goals 
always include a list of works of knowledge students have to study. Teachers know in 
advance the knowledge works or topics that determine the course content. Their 
responsibility consists in organising productive visits to these works for the students. 
The students, in turn, are required to encounter the works that shape the syllabus of the 
course and be able to activate them in certain situations, for instance, to solve problems, 
make analyses and elaborate on them. The paradigm of visiting works is nowadays 
evolving towards a new pedagogical paradigm that is characterised in the ATD as the 
paradigm of questioning the world. Instead of works to visit, this paradigm is based on 
the approach of open questions students carry out under the guidance of the teachers, 
thus developing inquiry processes characterised as study and research paths (SRP). 
As happens with other forms of inquiry-oriented instructional proposals, the 
implementation of SRPs at university level collides with many constraints linked to the 
current pedagogical paradigm of visiting works. One of them is the fact that university 
subjects are determined by a set of works of knowledge to study, not of questions to 
inquire about. In this situation, inquiry activities need to be related to previously 
established topics. Otherwise, they run the risk of appearing as “extracurricular” and 
end up disappearing. Relevant investigations about inquiry-oriented teaching in 
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undergraduate mathematics focus on given bodies of knowledge (differential calculus, 
linear and abstract algebra, differential equations, etc.) and show how inquiry processes 
help students create a better approach to them (Larsen, 2013; Rasmussen, Kwon, Allen, 
Marrongelle, & Burtch, 2006; Wawro, 2015; Zandieh, Wawro & Rasmussen, 2017). 
As stated by Kuster, Johnson, Keend and Andrews-Larson (2017, p. 3): 

[Inquiry-oriented] activities promote the emergence of important student-generated ideas 
and solution methods, which one can think of as the mathematical “fodder” available to 
the teacher for the progression of the mathematical agenda. 

This curriculum constraint can have as a consequence the consideration of inquiry 
activities as a means to better acquire a given content, without letting them being the 
core of the content to be taught and learnt. This reduction can explain why many 
investigations about inquiry-based teaching at the university seem to oppose it to more 
transmissive (or traditional) instructional formats as if one approach could only exist 
to the detriment of the other (see, for example, Khalaf, 2018). 
The approach in terms of SRPs do not oppose inquiry with transmission, but on the 
contrary relate them dialectically through the notions of “study” (consulting existing 
knowledge, attending lectures where the teacher acts as the main media to provide 
mathematical knowledge, etc.) and “research” (inquiry, problem solving, problem 
posing, etc.) (Winsløw, Matheron, & Mercier, 2013). As has been illustrated in 
(Barquero, Monreal, Ruiz-Munzón, & Serrano, 2018), SRPs need the interaction and 
combination of inquiry-based learning devices with others more based on the 
transmission of knowledge. This dialectic can also be seen as a reverse in priority: 
instead of using inquiry activities to help students learn a given work of knowledge, in 
an SRP, students have to learn works of knowledge to carry out their inquiry better. 
Our research team has worked during this last decade in the design and implementation 
of SRPs at university level (Barquero, Bosch, & Gascón 2011, 2013; Barquero et al., 
2018; Bartolomé, Florensa, Bosch, Gascón, 2018; Bosch, 2019; Florensa, Bosch, 
Gascón & Mata, 2016; Florensa, Bosch, Gascón, & Winsløw, 2018; Serrano, 2013; 
Serrano, Bosch & Gascón, 2010). We used different strategies to deal with the 
curriculum constraint and integrate SRPs into the current instructional organisations as 
official teaching and learning activities. This paper aims to examine these strategies 
and highlight some of their drawbacks and advantages. The research questions 
underlying the analyses can be formulated as: 

RQ1. How can SRPs be integrated into current university instructional formats that are 
subject to specific constraints of the paradigm of questioning the world? What elements of 
the SRPs’ organisation foster their sustainable implementation? What elements hinder it? 

RQ2. How does the implementation of SRPs affect the content organisation of the subject? 
What aspects of the knowledge works that define the agenda of the course evolve and how? 
Which other remain as constraints difficult to overcome? 
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These questions are addressed by considering seven implementations of SRPs as case 
studies. The research here presented is still in an exploratory stage, where the main 
indicators of the different cases are identified to formulate hypotheses about the 
problem of the ecology and sustainability of SRPs and, more generally, about the 
possible ways to foster the transition between the paradigm of visiting works and the 
paradigm of questioning the world. The next sections present the main elements of 
SRPs and the courses where they were implemented, considering three main 
modalities. A summary of these elements will be presented in the conclusion sections 
as preliminary propositions to be tested with further research.  
THE IMPLEMENTATION OF SRP: DIFFERENT MODALITIES 
SRPs are initiated by a generating question (Q0) addressed by a community of study (a 
set of students X and a set of guides of the study Y) that form a didactic system S(X, Y, 
Q0). The aim of the didactic system is to generate a final answer A♥ to question Q0. The 
work of the community of study and the knowledge involved can be described as a 
concatenation of derived questions and the development of their associated answers 
that will lead to the elaboration of A♥. The inquiry process will combine moments of 
study of information available in different sources – the media – with moments of 
research and creation of new questions and answers, including the adaptation of the 
information to the specific (initial and derived) questions addressed. Any kind of tools 
and knowledge productions used in the study and research process is progressively 
integrated into the milieu, which provides the resources needed to answer the initial 
question Q0. This process can be summarised in the following schema, where the Ai

◊ 

are bodies of knowledge accessible to the study community that help to answer the 
derived questions Qk using the already available works Wj: 

[S(X; Y; Q0) ➦ { A1
◊, A2

◊, …, Ai
◊, Wj+1, Wj+2, …, Wj, Qk+1, Qk+2, …, Qn }] ➥ A♥  

In the paradigm of visiting works, a predominance is given to the set of bodies of 
knowledge Ai

◊ students are required to study, while the questions Qk usually arrive at 
the end of the instructional process, as possible applications. In an inquiry process, 
what is important is the question Q0 that is to be answered, while in the paradigm of 
visiting works learning processes focus on some pre-existing answers Ai

◊. Of course, 
behind any work to visit there exist questions that were once important to elaborate the 
answers, but what is put forward are the works – the answers – not the questions. 
The contra posed role between questions and answers appears as an important 
constraint for a sustainable implementation of inquiry-oriented teaching processes. 
SRPs are not an exception.  
Table 1 presents a brief account of some SRPs that were implemented in university 
courses of mathematics and engineering subjects. We will focus on the different 
modalities adopted to integrate them into the traditional organisation of the courses. 
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SRP Subject / SRP questions Level and degree Period References 

SRP1 Mathematics 
Population dynamics 

1st-year Chemical 
engineering  

2005-
2009 

Barquero et al (2011; 
2013) 

SRP2 Mathematics 
Sales predictions;  
Organising a bike-sharing 
system 

1st-year Business 
administration  

2006-
2014 

Serrano (2013), 
Serrano et al (2010) 

SRP3 Mathematics 
Evolution of Facebook users 

1st-year Business 
administration  

2015-
2017 

Barquero et al (2017) 

SRP4 Strength of materials 
How to make a slatted bed 
base? 

3rd-year Mechanical 
engineering 

2015-
2018 

Bartolomé, Florensa, 
Bosch, Gascón (2018) 

SRP5 General elasticity 
How to make a bike part? 

2nd-year 
Mechanical 
engineering 

2015-
2018 

Florensa et al (2016) 
Florensa et al (2018) 

SRP6 Statistics 
Data analysis for an 
investigation on consumer 
behaviour 

2nd-year Business 
administration  

2018-
2020 

(in process) 

SRP7 Mathematics 
Progressive discounts 

1st-year Business 
administration  

2018-
2019 

(in process) 

Table 1. List of experienced SRPs 

SRP1 and SRP2 were organised as workshops that run in parallel to the regular annual 
course, as weekly 2-hour sessions for a total of 60 hours both, thus complementing the 
lectures and problem sessions. SRP3 was organised in a similar way but for a quarterly 
subject and run for a shorter time (9 sessions of 2 hours). In the three cases, the 
activities were inserted in an instructional device called “Modelling workshop”, to 
differentiate them from the lectures and problem sessions or tutorials. The subject of 
SRP4 was fully organized as an SRP lasting a whole 6 ECTS subject (17 weeks, 4 
hours per week). The last ones, SRP5-SRP7 were implemented at the end of the 
courses, after 8-10 weeks of traditional lectures, labs and problem sessions. SRP5 run 
for the seven last weeks of the course, thus covering a total of 28 h, while SRP6 and 
SRP7 only run during the three last weeks (12 h in total). In these three cases, the work 
done in the SRP was named as the “Final project” of the subject. 
We can, therefore, distinguish three modalities of integration: SRPs running in parallel 
to the traditional organisation of the subject (SRP1-SRP3, Modelling workshop); SRPs 
organised at the end of the subject (SRP5-SRP7, Final project) and a subject totally 
organised as an SRP (SRP4). 
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SRP IN PARALLEL TO THE COURSE: “MODELLING WORKSHOPS” 
SRP1 is fully presented in Barquero, Bosch and Gascón (2013). It was the first SRP 
experienced by our research team at the university level. It was implemented as a 
“Workshop of mathematical modelling” along the annual course “Mathematical 
Foundations for Engineering” for students of Industrial Chemical Engineering. The 
workshop was aimed to complement the regular lectures and problem sessions with 
connected activities focused on a vision of mathematics as a modelling activity. Two 
teachers were responsible for the subject: one preparing the lectures and the other one 
(first author of this paper) leading the problem sessions and the workshop. The syllabus 
was organised in a traditional way: one-variable calculus, several variable calculus and 
linear algebra. The design of the SRP considered this organisation and proposed a 
longitudinal inquiry starting with the generating question “How can we predict the 
long-term behaviour of a population size, given the size of a population over some 
previous periods of time? What assumptions should be made? How to forecast the 
population size’s evolution and how to test its validity?”. The SRP was divided into 
three subquestions depending on the assumptions made about the population (separated 
or mixed generations) and the time (discrete or continuous). In the first part, the 
forecast question for one population with separated generations motivated the use of 
numerical sequences, one-variable elementary functions (discrete time), derivatives 
and elementary differential equations (continuous time) that were introduced in the 
lectures and worked in the problem sessions in a rather synchronic way. In the second 
part, the case of mixed generations required tools from linear algebra (transition 
matrices, discrete time) and of systems of differential equations (continuous time). The 
workshop was implemented during four academic years. The alignment between the 
contents of the three instructional devices (lectures, problem sessions and workshop) 
appeared progressively. During the first ones, the workshop could be seen as an 
application or illustration of the tools introduced in the lectures and worked in the 
problem sessions. However, progressively, the workshop started leading the dynamics 
of the course: its needs were supplied by the lectures and problem sessions as soon as 
they appeared. We can consider this as an ideal situation in the paradigm of questioning 
the world: a course mainly based on an inquiry (or several ones) carried out by the 
students under the guidance of a teacher, the demands of the inquiry being supplied by 
other forms of knowledge dissemination (lectures, experts’ talks, readings, etc.).  
A similar structure was implemented a few years later in the annual subject of 
Mathematics of a 1st-year degree in Business Administration (SRP2). In this case, all 
the teachers were members of the research team. Therefore, it was easy to integrate the 
workshop into the global organisation of the subject. Lectures and problem sessions 
were not separated. The syllabus was organised in topics (one-variable functions, 
derivatives, integration, two-variable functions, optimisation, systems of equations, 
linear applications) and the topics introduced through modelling activities based on 
business or economical situations (incomes and costs, demand-supply equilibrium, 
optimisation of benefits, etc.). An SRP was organised during each term and was linked 
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to one of the main modelling situations of the course as if one of the problems 
approached in the course was devoted to a more in-depth inquiry. For instance, the first 
term SRP (one-variable calculus) was proposed from the generating question: “A firm 
registers the term sales of its seven main products for three years. What amount of sales 
can be forecasted for the next terms? Can we get a formula to estimate the forecasts? 
Which are its limitations and guarantees?” In the third term (linear algebra), the 
generating question was about the managing of a bike-sharing system in Barcelona, 
considering 3 park locations and the transfer of bikes from one to another. In both 
cases, one of the three-week sessions was devoted to work on the SRP (in a Modelling 
Workshop), one week for autonomous group work under the lecturers’ supervision and 
another to share the results obtained and collectively validate them. An important 
difficulty found was to organise an SRP for the second term (two-variable calculus) 
that could start from a question interesting to the students and involving some of the 
core contents of the term. 
SRP3 was implemented considering our previous experience with SRP1 and SRP2. It 
was initiated by a forecast question about the evolution of the number of Facebook 
users (Barquero et al., 2017). In this case, however, the Modelling Workshop was run 
independently of the course content, as a volunteer extracurricular activity that could 
give students an extra point (up to 10) to their final mathematics grade. The SRP 
combined online sessions (autonomous work) and face-to-face sessions (sharing results 
and deciding the new derived questions to follow). The workshops sessions were 
devoted to students’ presentations and the debate about the questions posed, new 
questions to inquiry and the models, tools and answers found out. 
AN SRP AT THE END OF THE COURSE: “FINAL PROJECTS” 
The second modality of integration is to incorporate the SRP at the end of the subject 
organisation. Of course, this option forces the researchers to reduce some of the 
activities implemented in the previous organisation of the course content. SRP5 was 
the first to follow this format: implementing the SRP in the last seven weeks of the 
semester and leaving a traditional organisation in the first 9. This SRP was 
implemented in an Elasticity course (6ECTS; 1 semester) in a Mechanical Engineering 
Degree in an Engineering School in Barcelona. To study the best options to fit the new 
teaching format, researchers conducted an epistemological analysis of the prevailing 
epistemology. This analysis revealed two main facts: on the one hand that the 
analytically solvable problems in this domain were only the ones including ideal 
situations detached from real workplace activity. On the other hand, the lab sessions 
were proposed because of the traditional character, and they presented isolated and 
non-functional knowledge. The SRP implementation initiated by the generating 
question “How to design (its shape and material) a bike part?” was intended to enable 
an engineering activity, closer to the workplace tasks and including the finite element 
method as one of the main mobilised tools. Even if the students only started the SRP 
at the final part of the course, the SRP was presented at the beginning of the semester, 
and it was explicitly used as the raison d’être of taught knowledge in the traditional 
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instructional organisation. This organisation caused the contents taught in the classical 
organisation to be presented as necessary for the SRP. However, once the SRP was 
initiated, the question became central, and the goal was to provide a suitable solution 
for the part of the bike while the contents were incorporated within the engineering 
activity. The SRP was assessed by means of weekly reports to describe the inquiry 
activity and a final report including the design and justification of the part. This first 
experience, implemented during the academic year 2014-15, has already been 
implemented in 5 editions with different generating questions around the design of 
machine parts. This modality seems to be one of the most sustainable proposals to 
incorporate SRP because it represents a balance between the two paradigms.  
SRP6 and SRP7 followed a similar modality: devoting the last weeks of the course to 
a final project to be carried out in the form of an SRP. SRP6 was implemented in the 
subject of Statistics (6 ECTS) for second-year students of a degree of Business 
Administration. It was organised as a three-week activity carried out by three groups 
of 30-40 students with a weight of 30% of the final grade. The generating questions of 
the SRP were linked to two final research projects of a Master in Marketing and a PhD 
work in the area of Marketing. The three MSc and PhD students were conducting an 
investigation on consumer behaviour and had prepared a survey to collect data about 
different issues: Barcelona residents’ attitudes towards tourism, streaming TV 
consumers and employees’ competences in service recovery processes. The generating 
questions of the SRP were related to each investigation and were to be approached 
through the analysis of the data collected with the survey. Students used all the 
statistical tools introduced during the course to elaborate a report for the Master and 
PhD students and present the results in a poster session on the last day of the course. 
During the sessions, students worked autonomously in teams of 3-4, with some 
collective activities to share their main results and difficulties with the rest of the teams. 
They had to present weekly reports to get feedback on the progress of their work. The 
teachers intervened to propose guidelines for the final reports and posters, to introduce 
new tools when necessary and to organise the dynamics of the SRP. The effect of the 
SRP in the global content organisation of the course has appeared this academic year, 
the teachers proposing an organisation of the subject centred on case studies to be 
carried out during two weeks (that can be seen as “micro-SRPs”) aimed at preparing 
the future work of the students in the final project. The results of this second edition of 
the SRP will be presented during the conference. 
SRP7 took place during the second quarter of the 2018-19 academic year in a 
mathematics course of 6 ECTS of the first year of the degree in Marketing and Digital 
Communities with a group of 70 students with a weight of 15% of the final grade. In 
the first seven weeks, the course was organised in lectures and problem sessions 
covering the usual agenda of one-variable differential calculus (families of functions, 
domains, derivation, limits, etc.). The last three weeks took the form of a modelling 
workshop with students working in small teams under the guidance of three teachers 
in sessions with half of the group-class alternated with sharing sessions with the whole 
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group-class. The generating question was an adaptation of the one proposed by Ruiz-
Olarría (2015) on progressive discounts. Starting from a press release on the impact of 
the marketing strategy of offering progressive discounts on the price according to the 
volume of purchase, the question was: “Are progressive discounts a good marketing 
strategy? Each team looked for an online company that offered discounts of this type 
with a minimum of two purchase tranches, and different questions were asked, for 
example: What is the final amount when the number of units increases? What 
percentage of discount is there when the number of units increases? As a client, I am 
interested in buying 100 or 101 units? And 500 or 501? As an entrepreneur, how much 
money am I losing? Etc.” In the last session of the course, the teams made a poster 
presentation in a public exhibition to explain the results to students of upper courses. 
The visitors could reward the team with the best poster and the best explanation.  
A COURSE ORGANISED AS AN SRP 
The third modality of integration is to incorporate the SRP to all the sessions of the 
course. SRP 4 that is presented in Bartolomé et al. (2018) was implemented for the first 
time in 2016/17 in a Strength of Materials course of the same Mechanical Engineering 
Degree as SRP5. The epistemological analysis of the prevailing epistemology of the 
course revealed that the course contents were presented isolated and that the problems 
proposed were far from real problems, leaving tasks such as the load estimation or 
geometry definition out of the students’ scope. The question that initiated the first 
edition was “You are working as an engineer in a company manufacturing slatted-beds. 
Your company supplies beds to an American client (a chain of motels). Recently, you 
have been commissioned to provide them with single slatted-beds, capable of 
supporting the weight of a 120 kg person.” The course – and the SRP – lasted 17 weeks 
in two 2-hour sessions per week. Sessions were structured into four parts. One to check 
the status of the project and decide the questions Qi that were considered relevant to 
the problem. Questions were distributed among the teams during the second part and 
addressed in autonomous work in the third part. Finally, in the fourth part, each team 
presented the answers obtained to the whole group. Students were assessed during their 
work in class and through the weekly reports submitted to the teacher. 

CONCLUSIONS: THE COEXISTENCE OF THE TWO PARADIGMS 
Our review describes three kinds of implementations of SRPs in different university 
institutions. The first modality (SRP1, SRP2 and SRP3) requires creating a specific 
timeframe to implement the SRP without modifying the previous organisation of the 
course. In this setting, the first moment of the implementation have little effects on the 
contents of the traditional course. However, the evolution of the SRP along the course 
modifies the way knowledge is presented in the lecture-problem sessions.  
The second modality incorporates the SRPs at the end of the course (SRP4, SRP6 and 
SRP7) causing important and faster changes in the traditional structure. The 
epistemological analysis of the previous organisation of knowledge is crucial to decide 
how to shorten the time devoted to the lecture-problem structure.  
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The final modality (SRP7) is the one requiring deeper changes in the organisation. In 
this setting, the institutional conditions play a crucial role and should involve not only 
aspects regarding the course but also the support of the university institution, including 
material aspects such as availability of different spaces and flexibility on the 
assessment method.  
We finish by stating some initial hypothesis regarding RQ1 and RQ2: 

• An important fragility on the SRPs implementation exists depending on the 
teacher being familiar with didactics or not. When non-didactician teachers 
take the responsibility of implementing SRPs, some constraints become more 
explicit and specific support seems necessary. 

• The implementation of SRPs can be seen as a process requiring deep changes 
into the didactic contract. Both teacher and students need to accept new roles 
and responsibilities that take time and effort. Research on new teaching and 
learning strategies and devices seems necessary at this respect.  

• To guarantee long-term incorporation of SRPs, non-researcher teachers need 
explicit training on the didactic design and on the use of tools to manage and 
describe the knowledge involved in inquiry processes (Florensa et al., 2019).  

• The more integrated the SRP is (such as SRP4 and SRP5), the stronger is the 
evolution of the taught knowledge. Consequently, a deeper epistemological 
analysis of the content at stake is needed, together with an explicit description 
of the new way to organise it.  
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In this contribution, we investigate which dimensions of the professional identity of the 
academic profession are reflected in the practices of two university teachers (UT), one 
in mathematics and the other in physics, and what are the consequences for the 
students' experience at the end of a course delivered by each UT. Our analyses show 
that the teaching practices of each UT are organized according to the representations 
they have of their discipline and the understanding expected from students. The 
analysis of the questionnaires administered to the students reveals regularities but also 
gaps between the objectives of the UTs and the way in which the students have 
experienced each course.  
Keywords : teachers and students practices at university level, preparation and 
training of university mathematics teachers, professional identity, epistemology. 
INTRODUCTION  
L’enseignement supérieur universitaire est devenu depuis plus de deux décennies et à 
l’échelle internationale, un objet d’étude investi par des chercheurs d’origines 
disciplinaires variées et relevant majoritairement des sciences humaines et sociales 
(sociologie, sciences politiques, sciences de l’éducation, etc.). Dans ce contexte, les 
politiques éducatives de même que les identités étudiantes et enseignantes ont été la 
cible de travaux divers visant à éclairer les dynamiques sociales, économiques, 
pédagogiques à l’œuvre dans un espace singulier où des enseignants peu ou pas formés 
pour enseigner sont pour la plupart chercheurs. Les pratiques d’enseignement des 
universitaires se sont vues investies elles aussi par des enquêtes issues principalement 
de la recherche en éducation dont peu d’entre elles prennent ou ont pris en charge la 
dimension disciplinaire de ces pratiques. Certaines études soulignent pourtant que la 
communauté des enseignants universitaires, particulièrement celle des enseignants-
chercheurs (noté EC dans la suite du texte), est « modelée » par la discipline 
académique dont elle se réclame, et qu’elle partage de ce fait « un même ensemble de 
valeurs intellectuelles, un même territoire cognitif » (Becher, 1994, notre traduction). 
Il apparaît donc nécessaire que des recherches sur les pratiques enseignantes 
universitaires se développent avec pour entrée la spécificité disciplinaire des acteurs et 
des savoirs (Berthiaume, 2007 ; Trede, Macklin, & Bridges, 2012). 
Le travail que nous présentons ici rencontre ce besoin de contextualisation 
disciplinaire. Il se déploie au sein d’un espace d’enseignement – le cours magistral, et 
pour deux disciplines académiques spécifiques : les mathématiques et la physique. Au-
delà des seules pratiques des enseignants concernés, nous interrogeons également la 
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manière dont ces pratiques et les intentions qui les soutiennent sont perçues par les 
étudiants. Plus précisément, nous cherchons à caractériser les choix opérés par les EC 
lorsqu’ils enseignent, à en comprendre les raisons et à les confronter au vécu des 
étudiants.  
OUTILS THÉORIQUES ET PROBLÉMATIQUE 
Notre recherche repose sur le postulat suivant : la manière dont un EC organise son 
discours pédagogique, la manière dont il « fait cours », dont il expose les connaissances 
à ses étudiants, est portée par un ensemble de convictions sur ce qui doit être su (et 
donc enseigné) et sur la façon dont cela doit être fait.  
Ce postulat se veut volontairement restrictif. Il exclut en effet un ensemble d’autres 
facteurs susceptibles d’influencer « l’agir pédagogique » (Leclercq, 2000) de l’EC et 
qui façonnent ce que les chercheurs en sociologie du travail désignent sous le concept 
« d’identité professionnelle ». Ce concept renvoie au sentiment d'appartenance d'un 
travailleur à son groupe professionnel (Dubar, 1996 ; Blin, 1997). 
La littérature scientifique concernant l’identité professionnelle des enseignants 
universitaires est assez abondante (Tickle, 2000 ; van Lankveld, Schoonenboom, 
Volman, Croiset, & Beishuizen, 2017) mais les recherches se distribuent selon des axes 
au sein desquels l’appartenance disciplinaire de l’EC est peu (voire pas) travaillée. Tout 
se passe (presque) comme si l’identité professionnelle des EC pouvait être étudiée 
indépendamment de la discipline qui porte à la fois leur activité de recherche et 
d’enseignement. Pourtant, et toujours selon Becher (op. cit.), « (...) les cultures 
disciplinaires sont la principale source d'identité et d'expertise des membres du corps 
professoral et comprennent des hypothèses sur ce qui doit être connu et comment les 
tâches doivent être effectuées ».  
Dans la mesure où le concept d’identité professionnelle a d’ores et déjà fait ses preuves 
pour éclairer les raisons pour lesquelles « les enseignants font ce qu’ils font » (Kogan, 
2000 ; Trickle, 2000) nous avons choisi d’inscrire notre démarche au sein de cet 
environnement théorique. Mais la prise en compte de la « culture disciplinaire » des 
EC, pointée comme un incontournable par Becher, par exemple, et qui intéresse 
également les chercheuses en didactique (des mathématiques, de la physique) que nous 
sommes, nécessite que le concept d’identité professionnelle soit spécifié au regard de 
cette culture, c’est-à-dire au regard du rapport que les EC entretiennent avec :  
1. la discipline dont ils sont issus (rapport de nature « épistémologique ») : ce que sont 
les mathématiques, la physique, par exemple mais également la manière dont les 
savoirs dans ces disciplines s’élaborent dans les laboratoires de recherche. 
2. la manière dont cette discipline (ou les savoirs qui en sont issus) doit s’enseigner 
(rapport de nature « pédagogique »), ce qui n’est pas indépendant des besoins qu’ils 
projettent sur leurs étudiants.  
Ce rapport sera d’autant plus facile à cerner que les chercheurs en charge de son 
exploration sauront « de quoi il est question », c’est-à-dire entretiendront une certaine 

180 sciencesconf.org:indrum2020:294961



 

 

 
familiarité avec les savoirs de la discipline concernés. La recherche en didactique 
disciplinaire apparaît, pour cela, relativement bien outillée. Ainsi, considéré au prisme 
disciplinaire, le concept d’identité professionnelle devient un outil opérant pour entrer 
dans les espaces d’enseignement par la porte des savoirs et enrichir, ce faisant les 
connaissances sur l’identité professionnelle des EC (de Hosson, Décamp, Morand, & 
Robert, 2015). De manière plus opérationnelle, l’identité professionnelle d’un EC 
spécifiée selon sa culture disciplinaire peut se voir inférée à partir :  

• des normes assignées à son métier et qu’il reconnaît comme telles (cela inclut 
les normes institutionnelles liées à son statut, à l’organisation des 
enseignements, à la manière dont les étudiants sont évalués, ou des normes plus 
tacites comme les types de savoir qu’il est nécessaire de connaître à tel ou tel 
niveau d’enseignement, etc.) ; plus généralement, cette dimension renvoie à ce 
que l’EC juge légitime / illégitime dans l’exercice de son métier. 

• des qualités jugées nécessaires pour exercer son métier (il peut s’agir de qualités 
pédagogiques – être à l’écoute des étudiants ou plus disciplinaires – bien 
maîtriser les savoirs que l’on enseigne, faire de la recherche, etc.) ; 

• des valeurs (ce que l’on apprécie particulièrement dans son métier, que l’on ne 
serait pas prêt à déléguer à d’autres – une thématique d’enseignement, par 
exemple, et inversement, ce que l’on déléguerait volontiers, que l’on considère 
comme ne faisant pas partie du cœur de son métier). 

En regard de ces éléments spécifiques (qui façonnent selon nous les choix et les 
pratiques d’enseignement des EC), la question des effets de ces pratiques sur les 
étudiants reste encore très peu étudiée (Duguet, 2015). Cela dit il est intéressant de 
mentionner que les chercheurs qui s’y sont intéressés soulignent de manière 
convergente qu’il existe un écart assez systématique entre ce que l’enseignant 
considère comme central dans son enseignement (ie : ce qu’il valorise le plus) et ce 
que les étudiants en retiennent (Lizzio, Wilson, & Simons, 2002). Les exemples 
mobilisés, considérés comme moteur de compréhension par les enseignants ne sont, 
par exemple, que rarement pris en note par les étudiants, les anecdotes passent 
inaperçues (Titsworth, 2004 ; Clanet, 2004) et les innovations n’ont pas nécessairement 
la portée motivationnelle attendue.  
Ce travail s’inscrit dans le prolongement de ces recherches. Nous formulons pour 
hypothèse qu’une bonne adéquation entre les intentions qui portent la pratique d’un 
enseignant et la manière dont celles-ci sont perçues par ses étudiants peut constituer 
l’un des moteurs de la réussite étudiante. À l’inverse, une inadéquation documentée 
pourrait permettre à l’enseignant de porter un regard différent sur les causes des 
difficultés de ses étudiants. Finalement, la question de recherche que nous nous 
proposons d’étudier est la suivante : quelles dimensions de l’identité professionnelle 
des enseignants-chercheurs sont perceptibles à travers leurs pratiques et quelles en sont 
les conséquences sur le vécu des étudiants ? 
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MÉTHODOLOGIE  
Notre travail prolonge les travaux du groupe « enseignement supérieur » du LDAR 
(Bridoux, de Vleeschouwer, Grenier-Boley, Khanfour-Armalé, Lebrun, Mesnil, & 
Nihoul, 2019). Nous nous inscrivons donc dans une visée comparatiste des pratiques, 
en choisissant comme disciplines les mathématiques et la physique. Notre 
problématique nous amène à étudier à la fois les pratiques d’EC lorsqu’ils enseignent 
mais aussi le vécu des étudiants concernés par ces enseignements. Pour ce faire, nous 
avons ciblé deux cours magistraux, un cours en mathématiques et un cours en physique 
à l’Université de Mons (Belgique), chacun donné par un EC de la discipline. Ces deux 
cours sont suivis par 17 étudiants d’une filière mathématique en première année 
d’université.  
Afin de saisir les normes, les qualités et les valeurs que chaque EC se donne pour 
exercer son métier d’enseignant (et caractériser ainsi les rapports épistémologiques et 
pédagogiques qu’ils entretiennent avec la discipline qu’ils enseignent), nous avons 
mené avant chaque cours observé un entretien individuel de trente minutes environ 
structuré autour des questions du tableau 1. Nous confrontons ensuite ces dimensions 
au vécu des étudiants recueilli à l’aide d’un questionnaire (voir tableau 1). À noter, 
certains éléments des cours in situ (supports utilisés, exemples cités, questions, etc.) 
viennent compléter l’analyse des perceptions étudiantes.  

 Questions aux EC Questionnaire Etudiants 

Normes Que faut-il que les étudiants  aient 
appris / compris ? Qu’est-ce qui est 
difficile / facile ? Que penses-tu de la 
séparation théorie/exercices ? 

Qu’est-ce qui t’a semblé facile / 
difficile ? Pourquoi ? Apprécies-tu 
le cours ? Pourquoi ? 

Qualités Qu’est-ce qu’un bon cours de maths 
/ de physique ? 

Apprécies-tu le cours ? Pourquoi ? 

Valeurs Quelle approche vas-tu adopter ? 
Quels supports vas-tu utiliser ? 
Quels exemples ? 

Les exemples, les dessins, t’ont-ils 
aidé à comprendre le cours ? 

Tableau 1 : mise en relation des dimensions (normes, qualités, valeur) de l’identité 
professionnelle à l’étude avec les questions posées aux EC et aux étudiants.  

QUELQUES ASPECTS DE L’IDENTITÉ PROFESSIONNELLE DES EC 
L’enseignant-chercheur de mathématiques 
Dans l’entretien qui s’est tenu avant le cours, l’EC explique qu’il va démarrer un 
nouveau chapitre portant sur les équations différentielles ordinaires. Il s’agit de 
présenter les notions d’équations différentielles et de solution. Selon cet enseignant, ce 
cours consiste en la présentation de nouveaux concepts et ne devrait pas poser de 
difficulté particulière aux étudiants. Dans l’entretien, l’enseignant confie viser une 
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compréhension approfondie de la part des étudiants. Il se donne comme objectif que 
ceux-ci donnent du sens aux notions. L’enseignant vise aussi à ce que son cours ne se 
limite pas à des aspects techniques qui pourraient amener les étudiants à retenir les 
définitions et les résultats sans essayer de les comprendre. Les extraits suivants issus 
de cet entretien témoignent de ce fait : 

M : … un cours de maths a priori ça doit être différent avant et après… ta manière 
de raisonner, ton intuition doit avoir évolué dans la pratique.  

M : … ce qu’il y a d’important c’est quoi, comment est-ce qu’on pense le truc, 
c’est quoi les voies directrices, comment est-ce qu’on interprète les formules 
un petit peu absconses, comment est-ce que on essaie de développer 
l’intuition, qu’est-ce qu’on fait quand on est bloqué dans une preuve ou qu’il 
y a un cas qu’on a pas vu, etc.  

Chez cet enseignant, il y a une tension entre ce qu’il attend des étudiants en termes de 
travail personnel et de compréhension et ce qu’il constate réellement (entre ses valeurs 
et les normes du métier) : 

M : … pour eux [les étudiants] c’est qu’est-ce que c’est la matière, qu’est-ce 
qu’on a à l’examen et comment je fais pour réussir. C’est pas comment je 
vais améliorer mes capacités de raisonnement, ma finesse, … comment je 
vais affiner mon intuition. 

Pour tenter d’amener les étudiants à donner du sens aux nouvelles notions, l’enseignant 
a l’intention de les introduire avec des exemples issus de la physique. Ce choix est lié 
au fait que l’enseignant estime que le cours de physique ne montre pas suffisamment 
rigoureusement les mathématiques cachées dans les équations différentielles qui 
décrivent l’étude de certains mouvements. Du coup, il veut combler ce manque en 
faisant tous les détails mathématiques pour montrer aux étudiants d’où viennent les 
équations qui décrivent ces mouvements : 

M : Ce que je vais faire, c’est d’abord présenter quelques exemples d’équations 
en essayant de lier au cours de physique, si possible, parce que la vérité ici 
c’est que dans le cours de mécanique, ils voient pas… enfin le concept 
d’équation différentielle ne ressort pas. Ils ressortent du cours sans savoir que 
F = ma est une équation différentielle.  

 

L’enseignant-chercheur de physique  
Dans l’entretien pré-enseignement, cet EC explique qu’il va démarrer un nouveau 
chapitre portant sur le flux électrique et le théorème de Gauss. Selon lui, c’est un 
chapitre très difficile pour les étudiants. Les notions de physique à introduire sont 
conceptuellement difficiles et les mathématiques nécessaires pour les aborder posent 
également des difficultés aux étudiants.  
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En termes de conceptualisation visée, les objectifs de cet enseignant sont de préparer 
les étudiants à l’évaluation et qu’ils retiennent les grandes idées développées dans le 
cours : 

P : … les gens qui n’avaient absolument pas envie de venir faire de la physique 
repartent avec quelque chose comme un bagage… même s’ils n’ont pas 
compris le détail ça c’est l’examen je vais dire. Moi finalement le bon cours 
de physique c’est ce qui reste deux mois après l’évaluation. 

En ce qui concerne les difficultés liées aux mathématiques, l’enseignant souligne qu’il 
n’attend pas une utilisation rigoureuse des mathématiques. L’enseignant sait qu’il ne 
les utilise pas « proprement », il ne s’en cache pas et le dit aux étudiants : 

P : … j’essaie de mettre les balises en leur disant attention c’est pas très propre 
d’un point de vue mathématiques… je pense que les maths élémentaires, le 
calculus leur pose vraiment des problèmes… vraiment. 

Quelques éléments comparatifs entre les deux EC 
Chez l’EC de mathématiques, l’ancrage épistémologique est fort et se transpose sur ce 
que l’enseignant attend des étudiants. Il souhaiterait que toute la rigueur mathématique 
dont il fait preuve se transmette aux étudiants. L’EC de physique cherche plutôt à être 
structuré et à développer des méthodes que les étudiants pourront appliquer seuls, y 
compris le jour de l’évaluation, mais sans forcément les comprendre en profondeur. 
Chez cet enseignant l’ancrage épistémologique apparaît moins marqué.  
Ainsi, l’EC de mathématiques a un profil que nous qualifions de « profil 
épistémologique » alors que l’enseignant-chercheur de physique a un « profil 
méthodologique ». Dans leur recherche sur les EC de physique, de Hosson, Manrique, 
Regad et Robert (2018) avaient repéré des profils semblables. Nous allons maintenant 
regarder comment ces profils peuvent influencer les pratiques des deux enseignants en 
relatant quelques aspects frappants dans les deux cours que nous avons observés. 
DÉROULEMENT DES COURS  
L’étude exploratoire que nous menons ici ne vise pas une analyse fine du discours des 
deux enseignants pendant le cours. Nous décrivons dans les grandes lignes le 
déroulement de chaque séance, de manière à montrer jusqu’à quel point il est conforme 
aux propos des EC recueillis dans les entretiens. 
Dans les deux cours, les enseignants vont mobiliser à la fois des mathématiques et de 
la physique, principalement dans les exemples qu’ils présentent. Le recours à ces 
derniers était d’ailleurs considéré par chacun des enseignants comme influencé par leur 
activité de recherche. Toutefois, le profil très différent des deux enseignants va 
fortement influencer le traitement des exemples dans les deux cours.  
Dans le cours de mathématiques, l’enseignant présente, comme annoncé dans le pré-
entretien, des exemples issus de la physique. D’une part, il fait l’hypothèse que les 
étudiants ont le bagage nécessaire en physique pour les comprendre et d’autre part, il 
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intègre tous les détails mathématiques permettant de décrire les mouvements physiques 
avec des équations différentielles. Or, le traitement mathématique très rigoureux des 
exemples est trop éloigné des acquis en physique d’un étudiant générique d’une 
première année universitaire. Ainsi, tout se passe comme si l’extraction de la physique, 
par l’EC de mathématiques, lui conférait de nouvelles praxéologies (nouvelles théories, 
nouvelles tâches). Cet EC utilise le tableau, les étudiants prennent des notes, un 
polycopié est à leur disposition. Nous n’avons pas étudié dans quelle mesure le 
polycopié est conforme au cours magistral.  
Les exemples abordés dans le cours de physique sont finalement très formels et les 
mathématiques prennent beaucoup de place. Toutefois, comme l’enseignant ne traite 
pas ces mathématiques rigoureusement, le sens physique des objets se perd derrière 
une préoccupation forte de l’enseignant de faire acquérir des techniques de résolution 
de problèmes aux étudiants. Le cours est ainsi structuré en méthodes à retenir en 
fonction des cas. Cette fois, le cours est beaucoup plus proche des acquis et des 
étudiants. L’enseignant projette un diaporama qu’il complète ponctuellement en direct, 
en soulignant certains mots importants, en complétant certaines figures ou en ajoutant 
certains détails de calculs. Les étudiants ont avec eux le diaporama déjà complété. Ils 
prennent très peu de notes complémentaires. 
Nous allons maintenant confronter ces déroulements au vécu des étudiants juste après 
le cours.  
VÉCU DES ÉTUDIANTS  
Nous avons ciblé ici trois questions en lien avec les aspects des déroulements 
précédemment relatés. Nous avons ainsi demandé aux étudiants s’ils appréciaient les 
séances de cours, ce qui leur avait semblé difficile et comme les deux EC valorisaient 
beaucoup la présence d’exemples, nous avons demandé si ces exemples les avaient 
aidés à comprendre le cours. Nous avons recueilli 17 questionnaires. 
82% des étudiants qui suivent le cours de mathématiques apprécient peu l’exposition 
magistrale. Ils sont nombreux à évoquer que c’est durant les travaux dirigés qu’ils 
comprennent les notions vues dans le cours et à quoi elles servent. La rapidité du cours 
et une présentation qui a semblé peu claire aux étudiants sont cités comme des sources 
de difficultés pour suivre le discours de l’enseignant. Ce sont précisément les liens 
entre les mathématiques et la physique qui étaient difficiles à cerner dans le cours. De 
plus, des aspects liés à l’épistémologie de la discipline que l’enseignant avait déclaré 
mettre en valeur dans son cours induisent des difficultés chez les étudiants, comme 
l’exprime l’étudiant suivant qui apprécie peu les séances de cours tout en reconnaissant 
leur utilité : 

E1 : … le cours est quand même utile et nous apporte une démarche plus 
scientifique (prouver des choses, se poser des questions).  

En physique, ils sont 47% à peu apprécier les séances de cours. Un point souvent 
évoqué comme étant difficile est la concentration. Rappelons que les étudiants 
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disposent du cours complet qui est projeté par l’enseignant, les seules notes qu’ils 
pourraient prendre viennent de commentaires oraux et non écrits parfois ajoutés par 
l’enseignant. Cependant, le mode d’enseignement choisi est un point positif relevé par 
plusieurs étudiants :  

E2 : Elles nous permettent de vraiment bien cibler la matière et de comprendre le 
pourquoi du comment on a introduit tel ou tel outil au fur et à mesure du 
cours.  

87% des étudiants estiment que les exemples donnés par l’EC de mathématiques n’ont 
pas aidé à comprendre le cours. Les étudiants expliquent qu’ils ne voyaient pas les liens 
entre les exemples issus de la physique et les mathématiques qui en découlent, comme 
le montre l’extrait suivant : 

E3 : … à part le fait qu’on utilise les différentielles en physique, les exemples 
n’ont servi à rien.  

En physique, 70% des étudiants estiment que les exemples ont aidé à la bonne 
compréhension du cours. L’étudiant suivant en donne la raison : 

E4 : Cela permet de voir comment on applique directement les notions qu’on a 
vues.  

BILAN ET PERSPECTIVES  
Cette première étude de cas montre que les pratiques des deux EC s’organisent en 
fonction de certaines dimensions de l’identité professionnelle telles que la 
représentation de leur discipline (norme), les valeurs qu’ils lui associent, comme par 
exemple la compréhension attendue des étudiants, des besoins qu’ils projettent sur les 
étudiants mais aussi des qualités, comme par exemple la présentation d’exemples et de 
dessins pour illustrer les notions introduites. Ces résultats confirment l’étude menée 
par de Hosson et al. (2018) dans laquelle elles mènent une analyse du discours de deux 
EC de physique en cours magistral. 
En mathématiques, les choix qui portent sa pratique semblent contraints par le rapport 
qu’il entretient avec sa discipline. L’enseignant souhaitait partir d’exemples issus de la 
physique et montrer rigoureusement les mathématiques qui se cachent dans l’étude des 
mouvements. De ce fait, il donne énormément de détails oralement sur les notions 
mathématiques qu’il introduit et fait comme si les notions de physique dont il a besoin 
étaient totalement disponibles chez les étudiants. De notre point de vue, l’enseignant 
s’adresse à un étudiant « modèle » qui n’est sans doute pas l’étudiant physiquement 
présent dans la classe. Nous avons observé un décalage entre l’intention de l’enseignant 
de donner du sens aux notions mathématiques avec des exemples issus de la physique 
et le vécu des étudiants. Le décalage entre le discours de l’enseignant et les acquis des 
étudiants est trop important et les étudiants ne s’y trompent pas, les exemples ne les 
ont effectivement pas aidés à comprendre le cours.  
En physique, les choix de l’enseignant semblent plus contraints par des préoccupations 
de nature pédagogique, le « sens » des concepts introduits pendant le cours disparaît 
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derrière l’application de techniques présentées comme des méthodes à appliquer par 
les étudiants. Ces choix amènent l’enseignant à être plus proche à la fois des acquis des 
étudiants et de leur manière de travailler. Nous avons pu voir que les étudiants sont 
ainsi plus enclins à adhérer aux choix de l’enseignant et ils pensent avoir été aidés par 
les exemples pour comprendre le cours. 
Cette étude de cas montre qu’il y a une certaine cohérence entre les objectifs des 
enseignants et le déroulement du cours. Toutefois, les étudiants sont davantage mis en 
difficulté lorsque la compréhension visée requiert une certaine profondeur et donc 
lorsque l’enseignement est le fruit d’une pratique de nature épistémologique. Les 
pratiques des deux EC sont ainsi influencées par les objectifs et la compréhension visés 
par l’enseignant. Enfin, nous n’avons finalement que peu d’éléments sur les 
apprentissages des étudiants, raison pour laquelle nous parlons plutôt de leur vécu et 
pas de leur compréhension.  
Il s’agit maintenant de compléter notre corpus de manière à dépasser l’étude de cas 
pour parvenir à une spécification de portée plus générale des pratiques enseignantes, 
sans doute plus variées que celles décrites dans ce texte, et de les mettre en relation 
avec les conceptualisations visées. 
REFERENCES 
Becher, T. (1994). The significance of disciplinary differences. Studies in Higher 

Education, 19(2), 151-161. 
Berthiaume, D. (2007). Une description empirique du savoir pédagogique disciplinaire 

des professeurs d’université. In Vers un changement de culture en enseignement 
supérieur. Regards sur l’innovation, la collaboration et la valorisation (pp. 179-
181). Actes du 24e congrès de l’AIPU, 16 au 18 mai, Université de Montréal, 
Montréal. 

Blin, J.-F. (1997). Les représentations professionnelles : un outil d’analyse du travail 
[Professional representations: a tool for analysing work]. Education permanente, 
132, 159-170. 

Bridoux, S., de Vleeschouwer, M., Grenier-Boley, N., Khanfour-Armalé, R., Lebrun, 
N., Mesnil, Z., & Nihoul, C. (2019). L’identité professionnelle des enseignants-
chercheurs en mathématiques, chimie et physique. In M. Abboud (Ed.), Actes du 
colloque EMF 2018 (pp. 540-547). Paris : IREM de Paris.  

Clanet, J. (2004). « Que se passe-t-il en cours ? » Éléments de description des pratiques 
enseignantes à l’université. In E. Annoot & M.-F. Fave Bonnet (Eds), Pratiques 
pédagogiques dans l’enseignement supérieur : enseigner, apprendre, évaluer (pp. 
93-125). Paris : L’Harmattan.  

Dubar, C. (1996). La socialisation : paradigmes, méthodes et implications théoriques. 
In B. Franck & C. Maroy (Eds.), Formation et socialisation au travail (pp. 25-39). 
Bruxelles : De Boeck. 

187 sciencesconf.org:indrum2020:294961



 

 

 
Duguet, A. (2015). Perception des pratiques pédagogiques des enseignants par les 

étudiants de première année universitaire et effets sur leur scolarité. Revue française 
de pédagogie, 3, 73-94. 

de Hosson, C., Manrique, A., Regad, L., & Robert, A. (2018). Du savoir savant au 
savoir enseigné, analyse de l’exposition des connaissances en cours magistral de 
physique : une étude de cas. Revue internationale de pédagogie de l’enseignement 
supérieur, 34(1).  

de Hosson, C., Décamp, N., Morand, E., & Robert, A. (2015). Approcher l’identité 
professionnelle d’enseignants universitaires de physique: un levier pour initier des 
changements de pratiques pédagogiques. Recherches en didactique des sciences et 
des technologies, 11, 161-196. 

Kogan, M. (2000). Higher education communities and academic identity. Higher 
Education Quarterly, 54(3), 207-216.  

Leclercq, G. (2000). Lire l'agir pédagogique: une lecture épistémolofgique. Revue des 
sciences de l'éducation, 26(2), 243-262. 

Lizzio, A., Wilson, K., & Simons, R. (2002). University students’ perceptions of the 
learning environment and academic outcomes. Studies in Higher Education, 27(1), 
27-52. 

Tickle, L. (2000). Teacher induction : The way ahead. Buckingham. Philadelphia : 
Open University Press 

Titsworth, B. S. (2004). Students' notetaking: The effects of teacher immediacy and 
clarity. Communication Education, 53(4), 305-320. 

Trede, F., Macklin, R., & Bridges, D. (2012). Professional identity development : a 
review of the higher education literature. Studies in Higher Education, 37(3), 365-
384. 

van Lankveld, T., Schoonenboom, J., Volman, M., Croiset, G., & Beishuizen, J. 
(2017). Developing a teacher identity in the university context: A systematic review 
of the literature. Higher Education Research & Development, 36(2), 325-342. 

188 sciencesconf.org:indrum2020:294961



  

Architectural Heritage between Mathematics and Representation: 

studying the geometry of a barrel vault with lunettes at a first year 

Bachelor’s in Architecture 

Caterina Cumino1, Martino Pavignano², and Ursula Zich² 

1Politecnico di Torino, Department of Mathematical Sciences “G. L. Lagrange”, 

Italy, caterina.cumino@polito.it; ²Politecnico di Torino, Department of Architecture 

and Design, Italy, martino.pavignano@polito.it, ursula.zich@polito.it.  

We present an interdisciplinary activity, directed to students of the first year 

Bachelor’s in Architecture, about the visualization of mathematical objects through 

physical and digital models, with specific regard to surfaces generated by intersections 

of cylinders. We focus on the geometrical structure of barrel vaults with lunettes and 

propose the use of various kind of models to improve the accessibility of 

interdisciplinary elements and to translate specialistic knowledge, building a common 

language for students with different backgrounds. The work is a result of a broader 

research project, dedicated to enhancing the relationship between Mathematics and 

Architecture through Geometry and Representation. 

Keywords: Geometry for Architects, Surfaces, Models, Representation, Visualization. 

INTRODUCTION 

In the field of Italian university Mathematics education, the need to set up a dialogue 

within other disciplines in which Mathematics is taught (Architecture, Engineering, 

Biology, etc.) is increasingly felt. Teaching Mathematics to non-Mathematics learners 

means teaching it as a service subject, hence as a tool to model systems of the domain 

and to solve the associated problems (Howson, Kahane, Lauginie & Tuckheim 1988). 

We are interested in the role played by Mathematics in courses of the bachelor’s degree 

program in Architecture. In this context, basic mathematical tools are conveyed by the 

first year Calculus course: here students learn topics which are preparatory and in 

support of the parallel course of Architectural Drawing and Survey Laboratory (and of 

the subsequent courses of building physics, real estate evaluation, as well as of the 

structural matters). 

TEACHING PROBLEMS 

One of the main teaching problems is that students, in their first year of academic study, 

come from diversified educational backgrounds and have different skills (or lack of 

them) about mathematical and graphic language; as for Mathematics, they may not 

understand where and when the proposed abstract mathematical topics will be 

concretely applied. It should be necessary to create a perception of their use value in 

the wider sense, in order to avoid the traditional insularity of Maths in the technical 

faculties (see e.g. Harris, Black, Hernandez-Martinez, Pepin, Williams, & TransMaths 

Team 2015; or Rasmussen, Marrongelle, & Borba 2014) and to promote a synergistic 

relationship that fills the gaps between the various languages. For example, the 
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increased relevance of digital and parametric modelling in Architecture (see e.g. 

Calvano 2019) has created a need for developing the education of future architects 

through a greater integration of mathematics and disciplines which are specific of 

Architecture. Another problem is students’ previous mathematical experience in facing 

university studies, depending on whether they were more or less oriented to the 

formation of spatial visualization capacity. Important difficulties appear in the 

transition from 2D to 3D analytical representations of geometrical objects (Cumino, 

Pavignano, Spreafico, & Zich 2019): for example, from the 2D analytical 

representation of a straight line or, more generally, of a plane curve to the 

representation of a plane or cylinder having that curve as a directrix. Students have the 

concept of cartesian equation based on their experience from high school Mathematics, 

but some of them may not accept that the same equation represents different set of 

points passing from 2D to 3D. Such phenomena can be related to those of «tacit 

models» mentioned by Fischbein (1989), who refers to representations of certain 

mathematical, abstract notions developed at an initial stage of the learning process 

which continue to influence, tacitly, reasoning and interpretations of the learner, hence 

the need to help students to control the (possibly negative) impact of these models.  

So, a myriad of problems of cognitive nature (type of background, crystallized 

information, gaps between disciplinary languages) or of didactic nature (teaching 

strategies, disciplinary content and courses organization) are to be taken in 

consideration, before being able to concretize any proposal for teaching interventions. 

Investigations in this direction, related to this particular context, seem to have been 

somewhat limited, mainly in connection with other disciplines, while correlations 

between spatial imagery information processing, spatial visualization and geometrical 

figure apprehension have been the subject of a number of studies, see e.g. the 

comprehensive review by Jones and Tzekaki (2016) and Kovačević, N. (2017), about 

recent research in Geometry education. On the other hand, it is fundamental to 

overcome the aforementioned problems, not only from the point of view of basic 

mathematical education: when approaching the study of the built form, the architecture 

student should acquire interdisciplinary knowledge -thus developing basic skills- for 

its analysis and it is important to underline how the knowledge that ‘flows’ into an 

architectural design is not only related to its specific disciplines but includes a variety 

of methodologies and interpretations derived from other subjects. Therefore, in 

students’ educational path, it seems worthwhile to set up study activities having an 

interdisciplinary approach.  

In this contribution, we present an attempt in this direction, focusing on the Geometry 

education of architecture students and its role in connection to geometrical 

comprehension of architectural shapes and spatial visualization ability and we highlight 

the importance of mathematical thinking in the formalization of architectural 

structures, in particular of roofing systems constituted by vaults.  

We also refer to Duval’s analysis of visualization process and its interactions with 

geometrical reasoning, adapting it to the particular educational context; in this sense 
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we follow the idea of construction as a process dependent only on the connections 

between mathematical properties and technical constraints of the used tools. 

VAULTS AND GEOMETRY 

Most of the Italian Architectural Heritage was built with masonry structures and vaults 

are roofing elements mainly used for covering rooms of a building. Original vaults 

were as simple as the surfaces of rotation and/or of translation that were used to design 

them. Then they became more complex systems, reaching different forms (subtended 

by as many geometries).  

In Architecture, the use of Geometry and its elements, such as points, lines, planes, 

then surfaces and solids [1], as the result of a learning path has its roots in the ancient 

past; i.e. Leon Battista Alberti, Francesco di Giorgio Martini, Andrea Palladio, 

Vincenzo Scamozzi and Guarino Guarini wrote about these issues in their treatises 

(Spallone-Vitali 2017, pp. 88-90), see Figure 1. The variety of the vaults compositions 

is briefly exemplified in Figure 2a, b.  

Figure 1: Historical examples of geometric and graphic description of some vaults. 

Palladio 1570, p. 54; b) Guarini 1737, tav. XXVII, c) Guarini 1737, tav. XXVIII. 

The study of these constructive elements plays an important role: we should provide 

students with some critical tools useful for the conceptual investigation of these 

structures, even for starting from their graphic formalization. 

During the 17th century Guarino Guarini, architect and mathematician, in his treatise, 

Architettura Civile, states that: «vaults […] are hardest to be invented, to put in drawing 

and to build» (Guarini 1737, p. 183). Again, Guarini states that: «in each of its 

operations Architecture uses measures, then it relays on Geometry and deserves to 

know at least its fundamentals» (Guarini 1737, p. 3). His ideas clearly highlight the 

close relationship between geometry and the architectural artefact.  
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Figure 2:  simple and compound vaulted systems: a), b) Bertocci, Bini 2012, pp. 265, 

266; c) Fallavollita 2009, pp. 453, 455. 

For example, Guarini sometimes used to describe the composition of a vaulted system 

by junction of parts of different surfaces cut by the same plane (Spallone-Vitali 2017). 

This idea is still used today. Figure 2c shows this kind of construction applied to square 

based groin and cloister vaults and to triangle-based groin vault, without caring about 

the problem of intersections. Recent bibliographical references for the geometric-

conceptual study of vaults offer an almost always 3D or pseudo-3D set of views, with 

textual descriptions. Many authors represent these elements with axonometric views 

(see e.g. Docci, Gaiani, Maestri 2011; Fallavollita 2009) which immediately convey 

the idea of the three-dimensionality of these elements, but often neglect its geometrical 

genesis. 

METHODOLOGY TO STUDY A BARREL VAULT WITH LUNETTES 

In light of previous considerations, the complexity of the form needs a discretization 

of its characteristic and descriptive elements through the graphic language that, in 

being an expression of synthesis, risks to become an excessive simplification of its 

features. Consequently, at the base of the training path of the architectural student, there 

is the study conducted between the representation of a theoretical model and its 

analytical description.   

We propose four teaching tools to enhance students’ critical shape-reading skills 

referring to architectural heritage: a tangible model to introduce the problem; a graphic 

representation to investigate the relationship between drawing and shapes; a virtual 

model obtained by a dynamic geometric software (DGS), constructed through an 

analytical description; a physical model as outcome of the preceding three steps. These 

tools are in order to promote students’ ability in switching between different registers 

of representation (see Duval 1999). 

We identified a family of composite vaults -which can be traced back to intersections 

of barrel vaults with coplanar and orthogonal axes, see Figure 3- as having an explicit 

formative value in this context. 
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Figure 3: Cylinders intersections. a) barrel vault; b) groin vault; c) cloister vault; d) 

barrel vault with cloister heads; e) barrel vault with lunettes. Pictures of Royal 

Residence of Venaria Reale (Torino). 

Graphic Analysis 

Figure 4 shows the graphic study of intersection between two circular right cylinders 

of different radius with coplanar and orthogonal axes. The random nature of the choice 

of which cutting planes could be used for this study leads to subjective results, affected 

also by different graphic tools (for example manual drawing or Computer Aided 

Architectural Design (CAAD) bring different typologies of error) [2]. The auxiliary 

planes, here, were chosen to respect the uniformly distribution of the information about 

the development of the surface starting from the angular subdivision of the circular 

section.  

 

Figure 4: CAAD orthographic projection of the intersection between two barrel vaults. 
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DGS Analysis 

Over the last few decades, the appearance of DGS has renewed Mathematics education 

providing computational and visual tools available in software environments like 

Geogebra, (Arzarello, F., Bartolini Bussi., M. G., Leung, A., Mariotti, M. A., & 

Stevenson, I. 2012).  

In our context visualization is a crucial matter, in particular in 3D Geometry, but 

analytic methods may lead to heavy and unilluminating computations and students’ 

mathematical background does not allow them to be autonomous in the visualization 

of mathematical objects. In the specific case, a surface generated by an intersection of 

cylinders can be studied in an interdisciplinary activity, making a joint usage of CAAD 

together with a DGS, which gives the possibility of approaching problems from 

different perspectives, connecting algebraic and geometrical views, facilitating 

constructions of mathematical objects and also the direct manipulation of them. 

Due to the learners’ small knowledge about 3D Analytic Geometry, a ready-made 

GeoGebra model is proposed, which is realized using an analytical description based 

on parametric equations of the involved geometric objects. 

Let 𝐶1 and 𝐶2 be two semicircular cylinders with coplanar orthogonal axes and 

different radiuses 𝑅1 > 𝑅2. Let 𝛾 = 𝐶1 ∩ 𝐶2 be the intersection curve of the two 

cylinders (see Figure 5), where 𝐶1is the cylinder generated by translation along the 𝑥-

axis of the semi-circumference with center in the origin and radius 𝑅1, in the 

plane (𝑦𝑧) and 𝐶2 the cylinder generated by translation along the 𝑦-axis of the semi-

circumference with center in the origin and radius 𝑅2, in the plane (𝑥𝑧); taking 

parametric representations 𝐶1: (𝑥, 𝑦, 𝑧) = (𝑣, 𝑅1 sin(𝑢) , 𝑅1cos(𝑢)) and 𝐶2: (𝑥, 𝑦, 𝑧) =

(𝑅2 sin(𝑢) , 𝑣, 𝑅2cos(𝑢)), −
𝜋

2
≤ 𝑢 ≤

𝜋

2
, the quartic skew intersection curve 𝛾 =

𝐶1 ∩ 𝐶2 may be represented by:  

𝛾: (𝑥, 𝑦, 𝑧) = (±√𝑅2
2 − 𝑅1

2cos2(𝑢), 𝑅1 sin(𝑢) , 𝑅1cos(𝑢)) 

In order to visually understand the surface, GeoGebra dynamics are exploited, see 

Figure 5. As the software enables to rotate a still picture using the mouse, the drawing 

in Figure 6 shows how to visualize the orthographic projections of the intersection 

curve 𝛾 = 𝐶1 ∩ 𝐶2. 

 
Figure 5: Frames from the dynamic DGS model using a slider to change the red cylinder 

radius.  
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We may compare the graphic outcome above with the GeoGebra one: it is clear that 

the DGS representation is univocal in contrast with the graphic one that is affected by 

approximations due to drawing choices. 

  

Figure 6: Top view of the barrel vault with lunettes obtained by GeoGebra. 

Another way to enhance students understanding is to introduce a real parameter t, 

replacing the given cylinder 𝐶2 with a 1-parameter family of cylinders: in this way, a 

slider bar enables to manipulate directly the surface thus generated (see Figure 5, 6) 

and to follow in particular the deformations of the curve 𝛾, as the parameter varies, 

while, by suitably rotating this dynamic picture, as it was done in Figure 6, the 

orthographic projection of 𝛾 on the plane (xy) appears easily as subset of a 1-parameter 

family of hyperbolas. 

Physical Models 

Starting from the same analytic description as above, a physical model of a barrel vault 

with lunettes has been realized, using acetate or paper (Figure 7a, c).  

 

Figure 7: Physical model of a barrel vault with lunettes. a) acetate model; b) 

developments of the same intersection curve thought as belonging to C1 or C2; c) 

disassembled paper model (similar to the acetate one).   
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If the semicircular cylinders have the same radius, their intersection is a plane curve 

(generating a cloister or a groin vault, see Figure 3, b and c) and in this case students 

can realize that its development is a sinusoidal curve using basic elements of 

trigonometry (see Cumino et alii 2018); if the radiuses are of different lengths, the 

intersection curve of the cylinders is in general a skew curve, therefore, to obtain its 

development in the plane requires more sophisticated mathematical tools (e.g. the 

concept of development of a spatial curve on the plane and the arc-length calculation, 

see e.g. M. P. Do Carmo (1976), which do not belong to a standard Calculus course 

program. Nevertheless, the model may be used as a tangible object to communicate the 

particular shape of the surface under consideration, because it facilitates the geometric 

perception of the shape as a whole and also the understanding of the geometric 

properties of the intersection curve; in fact, disassembling the model one observes that 

this skew curve develops on the plane in two distinct ways (see Figure 8b), depending 

on whether it is considered belonging to the cylinder 𝐶1  or to cylinder 𝐶2 . Then 

introducing the arc-length formula, the development of 𝛾 on the plane (xy), as a curve 

on 𝐶1, may be represented by 

𝛾′: (𝑥, 𝑦, 𝑧) = (±√𝑅2
2 − 𝑅1

2cos2(𝑢), 𝑅1u, 0) 

 

In a similar way the development of 𝛾 as a curve on 𝐶2, may be represented by 

𝛾": (𝑥, 𝑦, 𝑧) = (𝑅2u, ±√𝑅1
2 − 𝑅2

2cos2(𝑢), 0) 

With respective cartesian equations  

𝛾′: 𝑦 = ± 𝑅1 cos−1
√𝑅2

2 − 𝑥2

𝑅1
  and   𝛾": 𝑦 = ±√𝑅1

2 − 𝑅2
2cos2 (

𝑥

𝑅2
) 

CONCLUSIONS AND OUTLOOK 

In the present paper, we considered how mathematical thinking may contribute in the 

formalization of architectural structures, using the specific case of barrel vault with 

lunettes. Our activity was born in an Architectural Drawing and Survey Laboratory, 

whose main purpose is to make students understand the use of drawing as a tool of 

analysis and synthesis and as a means to communicate and visualize geometrical 

objects. The dialogue between Mathematics and Architecture has brought to light a 

way of interpreting and using Geometry different from that usually practiced by 

Mathematics teachers.  

We took into account Duval's analysis of visualization process and its interactions with 

geometrical reasoning, adapting it to the particular educational context in regard to 

2D/3D graphical representation of a real object and exploration of geometrical 

situations via physical or digital model; we exploited  the experience of teaching 
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Mathematics in order to make students aware of  the variability of representations of 

an object (depending of the variety of physical or semiotic systems producing them) 

versus the invariance of the object itself. We present the geometrical reasoning that 

underpin strategic choices in the graphical description process. To do this, the teacher 

has to choose a specific set of points and lines that best describe the considered shape; 

to disclose how to make these choices, physical or digital models are employed, 

constructed according to a mathematical recipe: the same model which is used by the 

Mathematics teacher as a tool to teach Geometry. Therefore, the model appears to be, 

in a sense, a translator between the two disciplinary approaches. Further research in 

this direction may provide new means to promote a stronger interdisciplinary 

educational system and to enhance students’ spatial and visualization abilities. 

 NOTES 

1. There might be a connection between the idea of tacit model and the architectural design process: 

if we think of architectural artefacts as results of the creative application of Geometry and its basic 

elements. In this sense, such elements could act as tacit models for the first architectural 

composition/shapes recognition exercises. 

2. «It is not possible to consider all the points of a surface when you need to represent it. The same is 

true for all the lines that belong to it. In order to proceed, it is necessary to transform the surface into 

a discrete set of lines: those that best lend themselves to describe its geometry», Migliari 2001, p. 

160. 
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Abstract. The work presented here focuses on probabilistic modelling at the secondary-

tertiary transition. Concerning the university level, I am interested in non-specialist 

students, more precisely first-year biology students. I have written and submitted a test 

on discrete probabilities to Grade 12 and to biology students. I present here the a priori 

and a posteriori analysis of one exercise of this test. The analysis of the students' 

responses to this exercise allowed me to establish initial results on possible difficulties 

in the secondary-tertiary transition. A first point is that students, in these modelling 

activities, have difficulty linking task and type of task. Another result is the very high 

use of probability trees by students in their modelling of the probabilistic situations 

proposed.  

Keywords: mathematics in other disciplines, modelling, probabilities, secondary-

tertiary transition, students’ activity 

INTRODUCTION 

The study of the secondary-tertiary transition is not new in mathematics education 

research (Gueudet & Thomas, 2019). Many authors have focused on the difficulties 

encountered by students in the fields of calculus or linear algebra (e.g. Vleeschouwer 

& Gueudet, 2011). There are fewer studies on the topic of probability. However, 

probabilities are taught in many university courses, particularly for non-specialists such 

as biology students. My study takes place in France and I have chosen to focus on 

biology students who study probability from the first year of university.  

In the following section, I present the context of my research and previous works about 

the teaching and learning of probabilities on which I based my study. Then in the third 

section I present my theoretical framework. In the fourth section I present the 

methodology I used in my research. In the fifth section I present my results. Finally, in 

the last section I present the conclusions of this study.  

RELATED WORKS  

I focus here on the secondary-tertiary transition in the particular context of mathematics 

in service courses, especially for biology students.   

The relationships between biology and mathematics have been studied extensively 

(Lange, 2000) because they are quite complex and important. Biology has long been a 

mainly descriptive science and the recent development of new mathematical modelling 

tools has had an impact on this science by making it highly mathematical, especially 
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giving to it a predictive and decision-making role. Mathematical modelling and 

probabilities are widely used by biologists (Duran and Marshall, 2019).  

The good mastery by biology students of these mathematical contents is an objective 

of the biology studies at university. That's why general probability courses are designed 

for biology students from the early years of university to allow them to take courses in 

statistics or biostatistics in subsequent years. 

Several issues are raised by the teaching of mathematics at university for non-specialist 

students. The difficulties encountered by non-specialist students in mathematics 

courses would be an important factor in dropping out of their programmes. Previous 

works have evidenced that the lack of links between these mathematics courses and the 

future professional practices of these non-specialist students. This lack of links leads 

them to consider mathematics as too abstract, and to have difficulties to mobilize 

mathematical tools (González-Martin, Gueudet, Barquero & Romo-Vazquez, to 

appear). 

Concerning more precisely biology students, Viirman and Nardi (2018) highlighted 

that their involvement in mathematical modelling activities is a motivating factor in 

their learning of general mathematics courses. 

I have therefore chosen to focus my work on mathematical modelling aspects and in 

particular the use of probability trees. In order to expose my analyses in the fourth part, 

I will present in the following my theoretical framework.   

THEORETICAL FRAME  

In this research, I choose an institutional perspective and consider that secondary 

school and university are two different institutions. 

I use the Anthropological Theory of Didactics (ATD, Chevallard, 2006) and more 

particularly the concept of praxeology.  A praxeology consists of four elements: a type 

of task; a technique to accomplish this type of task; a technology which is a discourse 

explaining and justifying the technique; and a theory. The comparison of praxeologies 

in secondary school and at university is very useful because it allows me to highlight 

possible difficulties for students during this transition. For example, it is interesting to 

consider the technique produced by the student when it is not explicitly requested; or 

to look at the technology used- or not- by the student in his/her solution of an exercise. 

I also use Activity Theory and its adaptation to mathematics education (Vandebrouck, 

2008) to allow me to look more closely at the complexity in the student’s activity for a 

given task. I use here the notion of task as described in the Theory of Activity, i.e. 

referring to the object of the activity and its description. This theory has allowed me to 

highlight that the complexity, for a student, of linking a task proposed to a type of task 

is a feature of the secondary-tertiary transition. In my analyses below, I will give 

examples of this process. 
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MATHEMATICAL MODELLING IN PROBABILITY  

I consider here the activity of mathematical modelling in general for the theme of 

probabilities (it can be the activity expected by the text of an exercise or the actual 

activity of students). This is what I call "mathematical modelling in probability". 

Usually it starts with a random situation described in natural language. It is then 

necessary to identify the events at stake, name them and determine their probabilities. 

According to the situation, the use of a probability tree can be relevant or not. 

Mathematical probability modelling mixes recognition activity (recognizing the task 

to be accomplished and linking it to a certain type of task for which a technique is 

known), changes of register (moving from natural language to probability formalism) 

and entanglements of techniques (I will illustrate this probabilistic modelling activity 

later on).  

I claim that associating concepts from the Activity Theory and the Anthropological 

Theory of Didactics contributes to a precise understanding of this mathematical 

modelling in probabilities and will illustrate it below. 

Based on the theoretical tools developed above, I present as follows my research 

questions: 

How do students build a probabilistic model for a situation from a biological context? 

How to describe these probabilistic modelling activities using praxeologies?  

METHODOLOGY OF THE RESEARCH  

My research takes place in France, in secondary school in a rural environment and in a 

middle-sized university. Mathematics courses are offered to biology students from the 

first year, including a course entirely devoted to probabilities (14 hours of lectures with 

about 300 students and 14 hours of tutorials, which are sessions dedicated to exercises 

in groups of 30 students).  

For this research, I was particularly interested in this course and attended two lectures 

and two tutorial sessions on the following probability topics: "independence and 

conditioning" and "continuous random variables". I also observed a class of Grade 12 

in the science section of the secondary school (called "scientific section") for seven 

one-hour sessions on these same probabilities’ themes.   

I chose these two probability themes because they are part of the Grade 12 curriculum 

and are taught again at the university for biology students. Probabilities are present in 

the secondary school curriculum (there are discrete random variables in the Grade 11 

curriculum, conditioning and independence in Grade 12 and continuous random 

variables in Grade 12 as well) (Ministère de l'Education Nationale, 2011). The 

probability course in biology at the university is quite general, it includes notions seen 

in secondary school (conditional probabilities and independence, discrete random 

variables, continuous random variables) but it also contains chapters devoted to new 
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concepts (such as probabilistic model and probabilized space, independence of random 

variables, limit theorems and their applications, law approximation). 

I have chosen to study the secondary-tertiary transition through the chapter of discrete 

probabilities "independence and conditioning" common to both curricula. In a previous 

study (Doukhan & Gueudet, 2019), I have evidenced through textbooks analyses that 

the same probability content (discrete random variables in this study) can lead to very 

different praxeologies in secondary school and at university. Applying similar methods 

here (analysis of the resources collected during my observations, such as films of the 

course, course handouts and textbooks) evidenced the interest of a focus on modelling 

and probability trees.  

I designed a test and submitted it to secondary school students and to first-year biology 

students. This test (see Appendix) consists of three exercises on the theme 

"Independence and conditioning".  

The test was administered to all the students (29) from the class of Grade 12 observed, 

during the fifth session on the topic of "Independence and conditioning", students had 

half an hour to do the test. The test was also offered to first-year biology students prior 

to their probabilities course of the second semester, with 25 of them participating for a 

similar duration.  

I carried out a quantitative analysis of all the students’ productions, which allowed me 

to highlight first results concerning mathematical modelling in probability at the 

secondary-tertiary transition, I also analysed students’ answers. I have chosen here to 

focus only on the analysis of the second exercise, which reads as follows: "You are the 

director of the Minister's Office of Health. A disease is present in the population, in the 

proportion of one sick person out of 10,000. The manager of a major pharmaceutical 

company comes to you to tell you about his new screening test: if a person is sick, the 

test is positive at 99%; if a person is not sick, the test is negative at 98%. Do you 

authorize the marketing of this test?". This exercise is a classic application of the 

Bayes’ Theorem with an important modelling work left to the student: statement is in 

natural language, events to be identified, etc. (more details in the a priori analysis in 

the following section) 

I have chosen this exercise because it requires an important probabilistic modelling 

work, and then because is linked with a biology context.  

MAIN RESULTS 

A priori analysis   

I present here the a priori analysis of the second exercise of the test.  

The main types of tasks I have identified for this exercise are, first, to perform 

probabilistic modelling based on a natural language statement; second, to calculate a 

conditional probability; and finally, to interpret the numerical result in order to answer 

the question in natural language.  
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Each of these types of tasks contains several subtypes of tasks with which particular 

techniques are associated. The difficulty of each subtype of task depends on the precise 

teaching context. In order to analyse how students will link tasks and types of tasks, I 

have to associate AT and ATD because an analysis in terms of ATD would be 

insufficient for my purpose, for this reason I also use task analyses developed in 

Activity Theory.  

The associated subtypes of tasks for the first type of task: "perform probabilistic 

modeling of a natural language statement", are as follows: identify probabilistic events, 

associate their probabilities to each of the events, identify contrary events and calculate 

their probabilities. All these types of tasks entirely within the scope of a probabilistic 

modelling activities as defined in a previous section. 

For the second type of task "calculate the probability of being sick knowing that the 

test is positive", the associated subtypes of tasks are as follows: interpret the question 

in terms of probability, calculate the corresponding conditional probability. 

The task is complex, as there are many subtypes of tasks for each of the task types 

identified above. In this exercise, identifying all these subtypes of tasks and organizing 

their reasoning are the student's responsibility. Here the combination of AT and ATD 

allows me to see how the complexity of the task impacts the praxeological organization 

and in particular the complexity of the technique to be implemented. 

The techniques associated with these types of tasks are as follows: identify the events 

involved, associate the numerical data of the statement with events, calculate the 

missing probabilities (use of the probability of the complementary), identify the 

probability that must be calculated in order to respond, calculate this probability (for 

this it is necessary to calculate an intersection and use the Bayes formula); finally, 

interpret the result. The technique of representing the situation by a probability tree is 

a technique expected in secondary school but is no longer part of the praxeology at 

university. Here is a representation of the situation by a tree: 

 

Table 1: probability tree 
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Here are some technological elements that justify the choice of the probability to be 

calculated, PT(M). What I am interested in here is whether the test is effective from the 

point of view of a caregiver. A patient comes for a test to find out if he/ she is sick or 

not. If his/her test is positive (respectively negative), it is important to know if he is 

really sick (respectively not sick), i.e. if the test is reliable. The test is reliable if the 

probability, knowing that the test is positive, that a person is indeed sick, is  close to 1. 

The goal is therefore to calculate PT(M), for this it is necessary to calculate an 

intersection and use the Bayes formula, their uses can be justified by the associated 

theory or by the use of a probability tree. These technological elements go beyond 

mathematics, the fact of calculating PT(M) is entirely at the students' expense and is 

based on technological elements linked with a socio-medical context.   

The context of the exercise, which is the study of the effectiveness of tests on sick and 

non-ill populations, is rather a context that is familiar to students. Indeed, there are 

many exercises in this context in secondary school textbooks. In this exercise they have 

to interpret the question by proposing the probability of an event themselves, then 

interpreting the numerical result obtained. In secondary school textbooks it is rather 

common to have in the first question "calculate the probability of such an event" and 

in the second question "interpret the result". Here, therefore, calculating PT(M) requires 

an important initiative from the student.  

The techniques to be used by the students are all based on knowledge being acquired 

and already applied in other situations encountered in secondary school. On the other 

hand, recognizing this complex praxeological structure and organizing oneself 

accordingly is entirely at the student's expense because there is no intermediate 

subquestion associated with each of the subtypes of tasks described above. The very 

strong modelling activity left to the student is not something usual for them, so I expect 

to find difficulties for this exercise in the a posteriori analysis.  

A posteriori analysis 

I present here the a posteriori analysis of the second exercise of the test.  

This exercise was tackled by 91% (49 students) of the students who answered the test 

(54 students). Both Grade 12 students and biology students encountered a lot of 

difficulties and proposed erroneous solutions. I expected these results from my a priori 

analysis above. The diversity of responses is very high, the probability most often 

calculated by Grade 12 students is P(M and T) (5 responses); there is no dominant 

answer among biology students. An example is presented in Figure 2. 
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Figure 2: Example of a student’s production. “The probability that the test goes wrong 

is of 0.019, meaning 19%. We do not authorize the test” 

Even if the students did not answer correctly many of them have correctly identified 

the events at stake (32 of them, or about 65%). A slightly fewer amount  of them 

represent the situation with a probability tree (26 of them, or about 53%). On the other 

hand, all the students who chose to represent the situation by a tree correctly identified 

the numerical values of the statement with the corresponding events and correctly 

calculated the probabilities of the complementary events. Considering here that 

correctly modelling the situation means identifying all the events at stake and 

associating their probabilities to them; therefore, in this exercise, only half of the 

students who responded did a correct modelling of the situation. 

Concerning the interpretation of the question and the answer given by the students, 41 

of them (or about 84%) have formulated a response in natural language. Of these, 17 

relied on their previous probability calculations to answer. In contrast, 8 students 

answered the question in natural language based solely on their representation of the 

situation through a probability tree. Sixteen of them (about 33%), 10 Grade 12 students 

and 6 biology students answered the question without having previously made any 

probability calculations or probabilistic modelling (like probability tree). These 

students were unable to identify in the task prescribed to them the different subtypes 

of tasks to be performed. Here is an example of such a response:  

"No, because the margin of error is enormous for a population of 10,000. Out of 10000 

there could be 200 people who are reported as sick when not at all. This is related to the 

98%. If the disease was 1 in 100 people, it would have been more interesting." 
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More specifically, with regard to probabilistic modelling activities, students highly use 

probability trees in this exercise while there is  no indication anywhere in the statement 

that a tree could be used to answer as can be seen on the student copy excerpt (see 

"table2"). This is an important observation which is linked with a secondary-tertiary 

transition issue.  

Indeed, since secondary school, students have become accustomed to use this type of 

representation. The construction and use of a probability tree are skills that are widely 

developed in the official mathematics curriculum of the Grade 12 class (Ministère de 

l'Education Nationale, 2011). 

Probability trees also play a very important role in the Grade 12 course I observed, the 

outline of the course handout distributed by the teacher for the chapter "Conditional 

Probabilities", consists of three main parts: "Conditional Probabilities", "Probability 

Trees" and "Independence of Two Events". The rules for building the tree are detailed 

with technological elements, here is an example: "Rule 3 (total probability formula): 

the probability of an event is equal to the sum of the probabilities of each of the paths 

leading to it". Moreover, the official Grade 12 mathematics curriculum states that: "a 

properly constructed probability tree is a proof", which is no longer conceivable at the 

university. 

CONCLUSION 

I have seen through the analysis of students’ answers of this exercise that probabilistic 

modelling is an important issue in the secondary-tertiary transition.  

First, it should be noted that students seem to have appropriated the use of probability 

trees. Indeed, through the analysis of this exercise and the two other exercises of the 

test that I have not developed here, I saw that the use of trees allowed students to 

respond better afterwards. The non-use of probability trees at university in appropriate 

situations could therefore prove to be one of the causes of the difficulty of students in 

the secondary-tertiary transition.   

Through this example of exercise, I have seen that the recognition of the task by 

students as part of a succession of types of tasks is complex and not always immediate.  

Here are the two main results that I can draw from this analysis. First, during the 

secondary-tertiary transition, the greater the complexity of linking the task to a type of 

task, the more difficult it is for students. 

Second, the probabilistic interpretation of natural language statements poses 

difficulties for students, in particular when it comes to identifying the events at stake. 

In my future research, I will design and evaluate a teaching aiming to overcome these 

difficulties.  
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Appendix: English version of the test given to the students 
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This paper provides an overview of the various stages of our research, which seeks to 
better understand the use of calculus in university engineering courses. We first 
illustrate the use of integrals in a classic task (sketching a bending moment diagram) 
in a Strength of Materials course, showing that although integrals appear in the 
theoretical block, they are not explicitly used in the practical block. Our analysis of the 
course’s reference book shows that this situation is replicated for all notions defined 
as integrals. This leads us to seek further information by examining teaching practices 
and by considering mathematical and didactic praxeologies. Our preliminary results 
indicate that, although integrals are present in the knowledge block of the course, their 
presence in the practical block and in the evaluation is significantly weaker. 

Keywords: Teaching and learning of mathematics for engineers, teachers’ and 
students’ practices at university level, textbooks, Anthropological Theory of the 
Didactic, integrals. 

INTRODUCTION 

Recent research in mathematics education and in engineering education has shown that 
university engineering students encounter a number of difficulties in mathematics 
courses in their early years of study, resulting in high failure rates and dropouts (Ellis, 
Kelton, & Rasmussen, 2014; Rooch, Junker, Härterich, & Hackl, 2016). Neubert, 
Khavanin, Worley, and Kaabouch (2014) state that efforts should be made to increase 
student retention in engineering courses in the first years of a programme (particularly 
in first-year non-engineering courses), as this is when most dropouts happen. It is 
important to note that, in many engineering programmes around the world, 
mathematics and physics courses are generally taught in the first years, with specific 
engineering courses appearing in later semesters. This classic structure separates 
‘basic’ and professional disciplines, and can aggravate students’ difficulties, reducing 
their ability to make links between concepts and negatively affecting the teaching-
learning process (Perdigones, Gallego, Garcia, Fernandez, Pérez-Martín, & Cerro, 
2014). For instance, Loch and Lamborn (2016) report that in engineering programmes, 
first-year mathematics courses often focus “on mathematical concepts and 
understanding rather than applications” (p. 30). Authors such as Flegg, Mallet, and 
Lupton (2011) highlight this lack of connection between mathematics content and 
engineering content among engineering students, which can lead the latter to view their 
mathematical courses as irrelevant. We believe this situation may contribute to 
students’ lack of interest and motivation in their mathematics courses. Faced with these 
problems, the mathematics and engineering education communities have been engaged 
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in research and discussion, not only on which topics engineering students should study, 
but also on what kind of mathematical knowledge and skills are needed by engineers, 
with an eye towards improving engineering students’ mathematics training 
(Bingolbali, Monaghan, & Roper, 2007). 

Among the pioneering works on this topic, Noss (2002) identified that structural 
engineers do not “‘use mathematics’ of any sophistication in their professional careers” 
(p. 54). Providing testimonies from engineers to support his findings (“an awful lot of 
the mathematics they were taught, I won’t say learnt, doesn’t surface again,” p. 54), 
Noss suggests that university mathematics content often goes undetected in real-world 
engineering practices, although it underlies basic, frequently used operations. For 
instance, with respect to civil engineers, Kent and Noss (2003) conclude that in “95% 
of the work [they] do, the mathematics is basic” (p. 18) and that many of them do not 
even use calculus. In particular, the authors suggest that although calculus can play an 
important role in engineers’ education by helping them grasp basic engineering 
principles, it may rarely be used explicitly in the workplace. Kent and Noss call for 
further research on engineers’ use of mathematics (calculus in particular) — a pressing 
concern given the high failure rates in university calculus courses. 

In line with the previous, and in order to identify mathematical skills used in 
engineering, in recent years we have investigated how single-valued integrals are used 
in engineering courses. We seek to reveal potential ruptures between how notions are 
first introduced and used in calculus, and how they are later applied in introductory 
engineering courses. Initially, we analysed how these notions are presented in 
engineering textbooks, working under the assumption that many university teachers 
plan their teaching using textbooks as an important resource (e.g., Mesa & Griffiths, 
2012). At previous conferences, we presented our results regarding the use of integrals 
to define first moments of an area (Q), moments of inertia (I), polar moments of inertia 
(J), bending moments (M), and centroids (C) in a Strength of Materials course for Civil 
Engineering (González-Martín & Hernandes-Gomes, 2017, 2018, 2019). Our analyses 
show that, although these notions are defined using integrals, the practices employed 
either use very basic calculus techniques or eschew them completely (more details are 
provided in the Data Analysis section below). This echoes Noss’ (2002) and Kent’s 
and Noss’ (2003) results. Having analysed the entire reference textbook used for this 
particular Strength of Materials course, in this paper we present a summary of our 
results, as well as some initial results concerning the teaching of this course and the 
effective use of integrals, based on interviews with an engineering teacher. 

We note that the preliminary results from our analyses of how integrals are used in 
relation to bending moments, first moments of inertia, and centroids are consistent with 
Faulkner’s (2018) results. Faulkner analysed the entire coursework of a first-year 
engineering course (Statics), showing that only seven out of the 84 exercises (8%) 
required some explicit knowledge of calculus, with five of these seven exercises 
appearing in the same chapter. This means that a student with no knowledge of calculus 
content could still achieve a grade of A- in this course. We are not aware of other 
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research investigating engineering courses in their entirety, and our work aims to fill 
this gap. Moreover, although some existing research does involve analysis of course 
material or interviews with engineers, we are not aware of any work of this nature that 
also examines the classroom practices of engineering teachers or the latter’s use of 
calculus content in their courses. The existing research generally focuses either on the 
calculus courses that serve as prerequisites for engineering courses or on workplace 
practices; however, what happens in the middle (the teaching of professional courses) 
is usually overlooked. Therefore, our research programme seeks to answer the 
question: how is calculus content used in engineering courses, both in course materials 
and in teachers’ practices? 

THEORETICAL FRAMEWORK 

As we are interested in variations in practices between mathematics activity and 
engineering activity, our research uses tools from the anthropological theory of the 
didactic (ATD – Chevallard, 1999), which considers human activities to be 
institutionally situated. A key element of ATD is the notion of praxeology, which 
allows for the modelling of human activity. A praxeology is formed by a quadruplet 
[T/τ/θ/Θ] consisting of a type of task T to perform, a technique τ which allows the task 
to be completed, a rationale (technology) θ that explains and justifies the technique, 
and a theory Θ that includes the discourse. The first two elements [T/τ] are the practical 
block (or know-how), whereas the second two [θ/Θ] form the knowledge block that 
describes, explains, and justifies what is done. Although ATD distinguishes between 
different types of praxeology, due to space limitations we only present our analyses in 
terms of tasks. 

Moreover, teaching practices can also be modelled using praxeologies. In the case of 
didactic praxeologies, Chevallard (1999) identifies six moments: 1) the first encounter 
with the content to learn; 2) the exploration of the type of tasks and the elaboration of 
a technique relative to these tasks; 3) the constitution of the technological/theoretical 
environment relative to these tasks; 4) the technical work, which at the same time aims 
to improve the technique making it more powerful and reliable, and to develop the 
mastery of its use; 5) the institutionalisation; 6) the evaluation of what was learned. We 
use these moments in our analysis of the interview with the teacher. 

METHODOLOGY 

Our research project involved the collaboration of an engineering teacher who holds 
bachelor’s and master’s degrees in Civil Engineering and who has extensive experience 
in structural systems and reinforced concrete. This teacher works in a Brazilian 
university, where Strength of Materials (SM) for Civil Engineering is taught as a 
second-year course in the engineering programme (part I, SM-I, in the third semester, 
and part II, SM-II, in the fourth semester). This course is taken once students have 
completed differential and integral calculus courses in their first year. In Brazilian 
universities, SM is mandatory in engineering: it is part of basic engineering training 
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and serves as a prerequisite for advanced engineering courses such as Stability of 
Construction, Concrete Structures and Prestressed concrete. For the data presented in 
this paper, the methodology was applied in three phases: 

 First, we analysed the general structure of the content related to integrals in first-
year calculus courses at the engineering teacher’s university, using a hard copy 
and an electronic version of the course reference book (Stewart, 2012). We 
identified the main tasks concerning integrals proposed to students, the 
techniques used to solve them and the rationales (technology) employed (see 
González-Martín & Hernandes-Gomes, 2017, 2018). 

 Second, we analysed a classic international SM textbook used at the same 
university (Beer, Johnston, DeWolf, & Mazurek, 2012), also examining the 
electronic and hard copy versions. For this book, we identified all notions that 
are defined as an integral, using keyword searches in the electronic version, and 
pinpointed all appearances of the symbol “ ∫  ” in the hard copy version. For all 
content defined using a single-valued integral, we identified the tasks involving 
the latter, as well as the techniques and explanations present. For examples about 
bending moments and first moments of an area, see González-Martín & 
Hernandes-Gomes (2017, 2018, 2019). 

 Third, we interviewed the engineering teacher on four occasions (I1: March 
2016, I2: November 2016, I3: August 2019, I4: September 2019), and had access 
to his lecture notes. Interviews were conducted in Portuguese; they were audio-
recorded and transcribed, with excerpts translated into English. During these 
interviews, we discussed the specific case of bending moments and how it is 
presented to students, as well as the tasks and techniques explained. We also 
discussed the course overall and the use of integrals and calculus content: how 
frequently this content is used to complete the various tasks presented in the 
course, and how much this content factors into the students’ evaluation. 

Due to space constraints, this paper provides a summary of the main results from our 
textbook analyses on bending moments, followed by an overview of the use of integrals 
throughout the entire book. We end by providing data from the interviews concerning 
the use of integrals throughout the entire course. 

DATA ANALYSIS AND DISCUSSION 

Phases 1 and 2: Calculus and bending moments 

At this university, single-variable courses follow the structure of Stewart (2012). The 
content concerning integrals is organised into two blocks (see González-Martín & 
Hernandes-Gomes, 2017, 2018). The first block introduces a repertoire of techniques 
for calculating indefinite integrals (from immediate integration to more complex 
cases), with theoretical elements mostly absent. The second block introduces Riemann 
sums to formally define integrals and interpret them as areas, and leads to the 
Fundamental Theorem of Calculus and the calculation of definite integrals using 
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Barrow’s rule; this leads to some applications of the integral (area, volume…). Many 
of the techniques used here are derived from the first block. 

Regarding bending moments (introduced in SM-I), generally, loads are perpendicular 
to the axis of a beam (transverse loading). These transverse loads can be concentrated, 
distributed, or both. When beams are subjected to transverse loads, any given section 
of the beam experiences two internal forces: a shear force (V) and a bending couple 
(M). In the case of distributed forces, V is defined as the integral of the load (w) and M 
is defined as the integral of V. The latter creates normal stresses in the cross section, 
whereas V creates shearing stresses. Therefore, one of the main factors to consider in 
designing a beam for a given loading condition is the location and maximum value of 
the normal stress (M) in the beam. For students to determine this location, techniques 
for sketching bending-moment diagrams are introduced. These techniques produce 
diagrams such as the one in Figure 1. 

It is important to note that although these notions are defined 
as integrals, the actual technique does not rely on content or 
techniques derived from the calculus course (the graph of M 
in the lower portion of Figure 1 is the graph of the 
antiderivative of V, which itself is shown in the middle 
portion). The technique consists of obtaining values for 
specific points using basic formulae and calculations and 
then connecting them with a free-hand sketch (see points A, 
B, C at the top of Figure 1—distribution of the load—and 
how these points determine other points in the two graphs 
below them). After an initial example, the rationale 
(technology) for this technique is given: “Note that the load 
curve is a horizontal straight line, the shear curve an oblique 
straight line, and the bending-moment curve a parabola. If 
the load curve had been an oblique straight line (first degree), 
the shear curve would have been a parabola (second degree), 
and the bending-moment curve a cubic (third degree). The 
shear and bending-moment curves are always one and two 
degrees higher than the load curve, respectively. With this in 
mind, the shear and bending-moment diagrams can be drawn 

without actually determining the functions V(x) and M(x)” (Beer et al., 2012, p. 362). 
Although this rationale is based on content from calculus, we note that, as given, this 
rationale can be used to apply the technique without referring to integrals. 

Our results concerning the introduction of bending moments (for more details, see 
González-Martín & Hernandes-Gomes, 2017) seem to confirm Noss’ (2002) and 
Kent’s and Noss’ (2003) findings: although calculus underlies the technique used to 
sketch the above diagrams, the technique itself consists of basic calculations and free-
hand sketches. To investigate this phenomenon further, we analysed the entire 
reference book. 

Figure 1: Task 
concerning bending 
moment diagrams in 

Beer et al. (2012,     
p. 364) 
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Phases 1 and 2: Calculus and SM  

According to the university’s curricular guidelines, the content of SM-I, focuses mainly 
on analysing internal forces, sketching and interpreting their diagrams and studying 
pieces subjected to flexion and stresses. In SM-II, the content focuses mainly on 
deepening the study of pieces subjected to flexion (studying different types of flexion), 
determining tensions and sketching their diagrams and studying torsion, deflexion, and 
rotation in beams. Both courses follow the structure of Beer et al. (2012), in which each 
chapter is divided into different sections: theory, concept applications (CA), sample 
problems (SP), and several homework assignments. Both CAs and SPs appear in the 
theory sections, focusing on specific topics and helping to illustrate the application of 
specific content. In our first analyses, we focused on the topics of first moment of an 
area (Q), moment of inertia (I), polar moment of inertia (J), bending moment (M) and 
centroid (C). Our results showed that integrals are mostly used in the theoretical 
sections, to introduce and define these notions, as well as to deduce certain properties 
(see González-Martín & Hernandes-Gomes, 2019). Figure 2 shows that although these 
notions are defined as integrals, they are involved in praxeologies where, for the most 
part, students can use the tables and formulae provided to find the values needed to 
solve tasks. The actual technique does not rely on using integrals, and it is only if we 
seek to find the rationale for the technique (technology) that integrals make an 
appearance. However, as illustrated above with bending moments, explicit 
justifications of these techniques, when they occur, rely on a professional discourse 
and are not (at least for the student) explicitly related to explanations and properties as 
they are taught in calculus courses. 

 Theory Concept Application (CA) Sample Problem (SP) 
 A B C A B C A B C 
First Moment 12 7 0 10 0 1 7 0 0 
Moment of Inertia 12 5 0 6 0 3 9 0 1 
Polar Moment of Inertia 5 2 1 3 0 1 1 0 0 
Bending Moment 33 15 6 15 0 13 24 0 11 
Centroid 21 2 0 11 0 0 12 0 0 

 * Column A: the notion appears without any explicit connection to integrals. 
 Column B: the notion appears connected to the integral symbol, with no calculation. 
 Column C: the notion appears and an antiderivative is calculated. 

Figure 2: Frequency of integrals in theory, CA and SP.  

The scenario is replicated throughout the book with all notions defined as integrals. 
Moreover, in the few cases where an integral needs to be calculated in a CA or an SP, 
the functions involved are constants, xn, (x – a)n, 1/x, sin(ax), or cos(ax). These results, 
which are coherent with Faulkner’s (2018) concerning a Statics course, prompted us to 
interview our teacher about the actual use of integrals in his course and to study the 
level of similarity between the mathematical praxeologies in his teaching practices and 
those in the reference book. 

Phase 3: Interview and lecture notes of the engineering teacher 

In this section we provide some details about the mathematical and didactic 
praxeologies that are present in the teaching of SM, based on our interviews with the 
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engineering teacher. The latter agrees that the course employs a number of basic 
mathematical tools: 

T-I1: Thinking about Strength of Materials, we use, for example, proportionality, the 
Pythagorean Theorem, and basic trigonometry. 

Newton’s binomial is also used in the course. Although these notions sometimes appear 
in praxeologies where deductions are necessary to arrive at a needed formula, and while 
some complexifications are used to study certain phenomena, the teacher adds that “we 
do not ask these deductions in the exams.” Regarding the use of calculus in the course, 
he confirmed that it appears in the introduction of topics. For instance: 

T-I1 At the beginning of Strength of Materials [I], we start studying distributed loads. 
To deduce the resultant, which we call mechanically equivalent force, I will use a 
concept of Calculus: the infinitesimal. Then you calculate the value in infinitesimal 
chunks, and the resultant of all this is the integral of [w(x)dx]. […] So, I'm using 
this and all... And again, it's a little bit of Calculus.  

The teacher confirms that integrals appear in the course when covering the topic of 
internal forces in a beam, and when studying the relationships between load (w), shear 
force (V), and bending moment (M), which are used to sketch bending-moment 
diagrams. He says he highlights the use of integrals in the theoretical part, as in the 
textbook. However, he confirms that integrals are set aside during the practical part: 

T-I4: This way of doing things [deducing forces using integrals] is set aside when we 
start sketching. At each point where loads change, we can determine the values of 
the [shear force and bending moment]. And if we know these values in the 
extremities of each section [we can perform the task] […] On this beam, you have 
a uniformly distributed load; if I know the shear force on the left and right [end] 
of the section, then we know that dV/dx = [w] constant. What thing, when derived, 
gives a constant? A linear function. Then, if I know that in the extremities [the 
values] are 40 and -60, how does it vary? Linearly, I know it is linear. So, these 
two points define a straight line. Then, I can start sketching the diagram directly. I 
don’t need to find the equation [of the straight line]. […] From here, for the 
[bending] moment, I know its value in extremities and I know the load is constant, 
the shear [force] is linear, [then] the [bending] moment is parabolic, a quadratic 
function. […] So, we get to sketch that directly, too. 

The teacher confirmed that the calculation of integrals is not necessary throughout this 
entire section of the course. Moreover, although he makes a connection to derivatives 
in explaining the technique, the teacher provides students with the rationale from the 
book (which offers no explicit connection to integrals or derivatives), explaining that 
this rationale is the one they need to use. Nevertheless, he states that knowledge of 
integrals is useful “as training, but for many things I don’t need to use the integral, 
although I need to understand it” (I4). We see that, regarding this content, the explicit 
use of integrals seems to appear in the moments, exploration of the type of tasks and 
constitution of the technological/theoretical environment; however, integrals disappear 
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during the technical work and its institutionalisation. This led us to question the extent 
to which integrals are used explicitly in the evaluation moment. 

As taught by this teacher, the SM-I course has two midterm exams (M1 and M2) and 
one final exam (FE), totalling 10 points each. To pass the course, the condition 
((M1+M2)/2 + FE)/2 ≥ 7.5 is necessary, which means that (M1+M2+2FE) ≥ 30. M1 
contains a question (two out of 10 points) about bending moments and shear forces, in 
which students must provide a solution recalling the theoretical explanation using 
integrals. M2 contains a question (worth approximately six points) on the sketching of 
bending moment diagrams, which can be solved using the given technique without 
resorting to integrals. Integrals are not explicitly used in the FE. Therefore, in this case, 
only 5% of the final mark relates to the explicit use of integrals, which is coherent with 
Faulkner’s (2018) results concerning a Statics course. We therefore see that although 
integrals are present in some moments of the teacher’s didactic praxeologies, their 
presence in the technical work and evaluation moments is weak. It seems that this 
teacher’s praxeologies are similar to those present in the book. 

FINAL CONSIDERATIONS 

As stated in the Introduction, more research is needed to determine the actual 
mathematical knowledge and skills that are applied in a typical engineering workplace. 
Pioneering researchers (Kent & Noss, 2003; Noss, 2002) have already suggested that 
most engineers just need ‘basic’ mathematics, and that university mathematics content 
is “transformed into something else” (Noss, 2002, p. 54). Recent research analysing 
the content of engineering courses seems to confirm this. Faulkner’s (2018) analysis of 
a Statics course revealed that explicit use of calculus is only necessary in 8% of the 
course. There is a paucity of works analysing and assessing actual (classroom and 
professional) engineering practices, which would help to clarify how much (advanced) 
mathematical content should actually be necessary to pass courses. 

Using tools from ATD (Chevallard, 1999), we took a holistic approach to analysing an 
engineering course, Strength of Materials: first, we examined the way the course is 
organised around specific topics; second, we examined the course reference book in a 
global way; third, we looked at the teaching practices and mathematical and didactic 
praxeologies activated during teaching. Due to space limitations, we only provide some 
data on the general aspects of the course, concerning integrals; however, the results of 
our three stages of analysis seem consistent. Although integrals are used in the course, 
primarily in the knowledge block, their explicit use is less necessary in the practical 
block: most techniques (although implicitly based on the use of integrals) rely on basic 
calculations, the use of tables or given formulae, and geometric considerations. In 
addition, knowledge of integrals does not factor much at all in the students’ final 
assessment. We believe that this disconnection between practices in calculus courses 
and in professional courses may reinforce students’ views of their mathematical 
courses as being irrelevant to their training (Flegg et al., 2011). 
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We highlight the fact that our teacher states integrals are needed “for anything that goes 
beyond the trivial”, but in the workplace, practices usually follow standardised rules. 
This seems consistent with the results of Kent and Noss (2003), who suggest that 
employers look for balanced teams and that “it may be more cost-effective to contract 
out unusually complex analysis to a specialist design consultancy […] whereas civil 
engineering consultancies need more, but still only perhaps 10-20% need to have 
specialist skills in analysis” (p. 18). This is also coherent with recent results from Quéré 
(2019), who, in a survey of 261 French engineers, found that only 129 (49.9%) used 
(university) mathematics in their workplace. Of these 129 respondents, only 43% 
(21.24% of the overall sample) said they used calculus content in their daily practice. 

Finally, our results suggest that, regarding the SM course, although content concerning 
integrals is necessary, it is rather the knowledge block aspects that seem essential for 
gaining a better understanding of engineering techniques. We intend to deepen our 
analyses of the interviews with the teacher to gain further insight into this phenomenon. 
We also intend to pursue analysis of other engineering courses. Both avenues of 
research will be the source of future publications. 
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We are interested in the professional identity of teacher-researchers and in 

particular the influence of their discipline on their teaching practices. In this 

article, we present a multidisciplinary research based on this issue and report 

on its results for teacher-researchers in mathematics. First, we introduce the 

concept of professional identity in order to clarify our research problem. Then, 

we present our methodology and illustrate our results with excerpts from 

interviews with teacher-researchers from various institutions in France and 

Belgium. We compare these results with those obtained with teacher-

researchers in physics and suggest some perspectives. 

Keywords: teachers’ and students’ practices at university level, preparation and 

training of university mathematics teachers, teacher-researchers, professional 

identity. 

INTRODUCTION 

Many French universities have created professional development structures for 

higher-education teachers with a perspective of “pedagogical transformation” in 

order to respond, in particular, to the diversity of the student population 

(Endrizzi, 2011). While research has focused primarily on the pedagogy of 

teaching practices (Annoot & Fave-Bonnet, 2004), this issue has seldom been 

addressed through an approach based on the discipline of teacher-researchers 

(Henkel, 2004; Neumann, 2001), even though several authors stress the need for 

it (Becher, 1994). In this context, we have conducted a research based on three 

academic disciplines (Mathematics, Physics, Chemistry) (Bridoux et al., 2019): 

in this contribution, we report on the results of this research for teacher-

researchers (TRs) in mathematics. Our objective is to better know this 

community of teacher-researchers by highlighting several aspects of their 

professional identity, be it transversal aspects or aspects related to mathematics. 

                                         

1
 Laboratoire de Didactique André Revuz (LDAR, EA 4434), Université Artois, CY Cergy Paris Université, 
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This could be a first step for building teacher training courses that take into 

account the values and qualities they emphasize and specific elements of 

knowledge they enhance. By this approach, we hope to encourage the 

transformation of teaching practices and to understand teacher-researchers’ 

expectations about students or the secondary-tertiary transition.  

THEORICAL FRAMEWORK AND RESEARCH QUESTIONS 

The concept of professional identity is complex and appears in the literature 

under different approaches. From the standpoint of pedagogical practices, the 

higher-education teacher is a researcher before being a teacher (Fave-Bonnet, 

1999;  Musselin, 2008; van Lankveld, Schoonenboom, Volman, Croiset, & 

Beishuizen, 2017).  In mathematics education, the concept of identity of 

mathematics’ teachers is defined in various ways and has been extensively 

studied (Graven & Heyd-Metzuyanim, 2019). From the point of view of 

sociology of work, professional identity is defined as “a set of specific elements 

of professional representations, specifically activated according to the 

interaction situation and to respond to an aim of identification/differentiation 

with societal or professional groups” (Blin, 1997). This relation with the 

community is found in Cattonar (2001) who defines the professional identity as 

“the characteristics that identify him as a teacher and that the teacher shares with 

other teachers, which he shares in common with other teachers because he 

belongs to the same professional group”. In this context, de Hosson, Décamp, 

Morand and Robert (2015) have retained several dimensions of professional 

identity understood as “the way in which an individual teacher is defined in 

relation to his or her professional teaching practice” and have highlighted 

tensions among TRs in physics. The dimensions retained in this work are related 

to the profession: norms, qualities and skills required, values (Dubar, 1996). 

Other studies show that teachers identify strongly with their research disciplines 

(Henkel, 2004). In the latter case, tensions appear, with TRs valuing the 

research. Drucker-Godard, Fouque, Gollety and Le Flanchec (2013) have shown 

that French TRs feel “a conflict between values they initially approve (freedom, 

independence, autonomy, public service) and  new values emerging from recent 

reforms of the university system (scientific productivity, effectiveness, 

efficiency, individualization of the career, fairness and unequal treatment and 

esteem” (p. 19). The perception of this conflict seems to be common to many 

TRs, regardless of their research and teaching disciplines. It is reinforced by the 

results of de Hosson et al. (2015) who find that the professional identity of the 

physics TRs [...] interviewed appears to be strongly marked by tensions [...] that 

sometimes appear under the form I know that this should be done and yet I do 

the opposite. However, we may wonder if there is a discipline imprint on values, 

and thus on these tensions, whether at the level of public values – the 

epistemology of each discipline leads to potentially different beliefs and 
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organizations –, or at the level of individual values that can influence each TR in 

the choice of his/her discipline. 

Van Lankveld et al. (2017) also mention that teacher training is perceived as 

positive in terms of teaching capacity through peer-to-peer exchanges, making 

them more credible in their institution. This socialization effect is all the more 

pronounced among teachers who have not received initial teacher education 

(Goodson & Cole, 1994). However, professional identity can be negatively 

affected when teacher education is perceived as a supervisory mechanism (van 

Lankveld et al., 2017). 

The aim of our research is to study the following research question for TRs in 

mathematics: what is the discipline's imprint on teaching practices at the 

university? We have two main motivations for conducting this study. On the one 

hand, we would like to understand the way in which the interviewed TRs 

perceive training courses in “university pedagogy”. On the other hand, we 

would like to know their expectations towards students in terms of difficulties 

they mention. These motivations are thus taken into account in both the design 

of the interview protocol and the analysis of the interviews. Our methodology 

will also allow us to test the relevance of the following assumptions: a TR is a 

particular teacher because of its multiple missions, the research discipline is a 

marker of its professional identity, or even of the institution in which he works. 

METHODOLOGY 

Our data are taken from the anonymous transcripts of 12 semi-directive 

individual interviews, lasting between 30 and 90 minutes. To see if the 

institution or the length of service has any influence with respect to our question, 

the volunteer interviewees come from four universities
2
 and have teaching 

experiences of varying length (3 to 40 years). The interview protocol was  

initially constructed in such a way that we can identify the norms, qualities and 

values assigned by the TR to his teaching practices (de Hosson et al., 2015), 

which give a pertinent access to his teaching professional identity by hypothesis 

(Cattonar, 2001; Dubar, 1996). We have amended the initial interview protocol 

to take into account the teaching discipline, in particular mathematics. In the 

table below, we give examples of questions that are related to each of these 

dimensions (norms, qualities, values, discipline).  

Dimension Questions 

Norms What is the objective of a course? How do you ensure that the objective is 
achieved? What is the purpose of an evaluation?   

Qualities What do you find difficult in your job as a teacher? Do you feel the need to 
be trained as a teacher? 

Values What do you enjoy most about being a TR? What would you be willing to 
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delegate/not delegate? 

Discipline What are the sources of difficulty for students? What is a good course? 
What is a good teacher? 

Table 1 - Some examples of questions related to study dimensions 

During the interviews, we discussed the following topics: organization of 

teaching, innovative practices, difficulties and evaluation of their students, TRs’ 

training, the profession of TR, didactic questions (objective and content of a 

course). To analyze the interviews, we have conducted an empirical 

categorization by identifying verbatim excerpts that seem to be relevant for our 

research question. We consider a verbatim excerpt as a unit of meaning (Bardin, 

1977), which may fall within several significant categories related to the 

discipline of the TR interviewed and to the attributes of its research activity. We 

have thus tried to spot regularities and variabilities that are intra or inter-

disciplinary. More specifically, we have looked for verbatim statements 

reflecting the influence of the research profession on the teaching profession, 

student assessment or teacher training. We have thereby tried to identify 

elements that refer to a researcher posture in teaching practices (creativity, 

freedom, collegiality, peer review and peer learning) or to the transposition of 

research methodological elements into the activities proposed to students 

(problem solving, reflexivity, student presentations, group work, etc.). We have 

also identified tension elements (de Hosson et al., 2015) often stemming from 

contextual factors (institution, relationship with students, teacher training). 

RESULTS 

Different aspects emerge that allow us to provide various types of answers to 

our research question. 

Mathematical difficulties and transversal competences 

During the interviews, TRs were asked to identify students’ difficulties when 

entering university. Whereas the answers to this question are varied, we can spot 

regularities that concern either mathematical difficulties or mathematical 

conceptions and skills that are related to their researcher position. 

Concerning mathematical difficulties, the majority of TRs point to gaps with 

specific concepts taught in secondary school: continuity, derivation, tangent to a 

curve, lack of logical knowledge.... Thus, students have “learned to perform 

calculations” and do not “know how to pass from an equation to a straight line 

or from a curve to an equation”. The fact that students misunderstand, forget or 

have compartmentalized knowledge is mentioned by some TRs, with doubts 

concerning the origin of their difficulties. 

M7:  And so we cannot know whether students’ difficulties are due to the 

fact that they have not seen or assimilated these notions, or that they 

have assimilated and forgotten them. 
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Most TRs also highlight examples of high school mathematical practices that 

they see as blocking factors at the university level: favoring “recipes” rather than 

understanding the concepts, having a local understanding of courses rather than 

a global vision, having problems with formalizing an intuition. Many TRs also 

speak of a particular difficulty in mathematics related to the production and 

understanding of proofs. This is both an epistemological (understanding what a 

proof is) and mathematical issue (understanding the different statements inside a 

proof and the relations between them). 

M5:  I think that, at least unconsciously, we think that the students know 

what a proof is, when to say that something is true or false, etc. and 

they didn't actually learn that in secondary school. 

In particular, TRs deplore a difficulty for students to enter into an abstraction 

and formalization process, and to conceive the relations between the different 

mathematical objects. The different excerpts show a tension among TRs 

between a will to present a rich and complex mathematical universe and a 

feeling that students are rather in a process of learning in a “fragmented way” 

without trying to “put the pieces back together”. 

M7:  More and more, a level     course deletes skills from the level   

course. 

Most TRs agree that the attitudes of many students in courses or in exercise 

sessions do not allow them to overcome all these difficulties: lack of personal 

work, difficulties with concentration or attention, lack of autonomy or self-

confidence, difficulties to concentrate, be attentive, or to master the language. 

Some TRs, however, find mitigating circumstances for some students: financial 

hardship, lack of time, transportation difficulties, having a part-time job.  

M8:  There are some people who have a job, for example, so they have little 

time to work or etc. There are others who just don't have a job and do 

nothing. 

However, what seems to be important for the TRs interviewed, is not that 

students work more, but rather that they really try to confront themselves to 

exercises or questions, so that they can “become theirs”. 

M3:  The work during exercise sessions cannot replace personal work, for 

example the course or even trying to do exercises by yourself. 

For some TRs, the most important thing in a course is to insist on study 

processes in order to encourage students to continue the work personally, and to 

equip them methodologically for such a work. 

M2:  The subject matter itself is important, but it is somewhat the 

mechanism that students need to learn in thinking that can be 

interesting. 
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For some TRs, this contradicts students’ expectations: to have a well-structured 

course and a clear identification of the elements that will be evaluated. 

All TRs point the difficulty for students to adapt to university mathematics. For 

a large majority of TRs, they “do not do math” in secondary school, in the sense 

that there is a change in mathematical practices between secondary school and 

university, “that they do not speak the same language”.  

M8:  I think we have a lot of students who don't know what it's like to do 

math and who are in this kind of attitude where they're going to try to 

learn a little bit of algorithmic things, some ready-made methods, that 

they will reproduce in a very similar context without any thought on 

the substance… 

The following excerpt illustrates a mathematical activity that seems unsuitable 

for higher education. 

M1:  In the first year, perhaps, I think that there is a first difficulty in 

adapting to our requirements. Which is not necessarily related to the 

matter itself but which is linked to when we define a concept, what 

does it mean to understand a concept? 

This inadequacy is sometimes expressed as a difference between a research 

practice that requires almost permanent questioning, and students' expectation of 

a reassuring practice. 

M4:  As a teacher-researcher, the researcher is not safe because he or she is 

looking for a way to disrupt everything he or she knows, as soon as 

there are things he or she doesn't understand, he or she is often faced 

with difficulties. That's what we'd like to do in our classes.  

Assessment practices  

The actual evaluation practices of TRs are quite diverse. The assessment may 

consist of a written and/or oral examination or of a continuous assessment 

followed by a written examination. It may concern questions about the course, 

exercises closely related to those presented in exercise session, new problems or 

a combination of these possibilities. Although the practices differ from one TR 

to another, we identify a similarity between them: they are generally not 

satisfied with the way they evaluate students.  

M5: Then I'd like to evaluate them on their ability to look a little bit, ask 

questions that are more open than those I’m actually asking in the 

exam, where they would look, think, etc. and we don't have time to do 

that. The exam is too short. 

The ideas developed in this excerpt are shared by most of the TRs. In fact, for a 

large majority of interviewees, the main objective of the evaluation is to 

determine if students have a thorough understanding of the courses. For this 

224 sciencesconf.org:indrum2020:295257



reason, many people want to assess this understanding, particularly through 

problems in a different context from the exercise sessions. However, they do not 

do so because of several reasons: lack of time, lack of staff or because it would 

require too much investment on their part to the detriment of research. In 

addition, they want to mix various evaluation methods such as continuous 

monitoring, lectures, homework, mid-semester midterms, etc. The following 

excerpt clearly shows this trend. 

M6:  The ideal is still to have a mix of continuous evaluations and 

evaluations, say at the end of semester or possibly mid-semester. 

As a result, very few TRs assess what they really want to test and they seldom 

vary the forms of assessment. In our view, this reflects a tension between what 

they value as evaluation methods and what they actually practice. In addition, 

they are aware that students’ success or failure at an examination is not 

significant in terms of their understanding of the course 

M3:  It seems horrible to me, but at the same time I can't put the whole 

system back into play like this, this is the way it works, so I find that 

sometimes the grades aren't, apart from the very good and the very 

bad students, but sometimes the grades don't always correspond to the 

student's understanding of what he's doing. 

In the analysis of the interviews, we then identify two tensions related to TRs’ 

assessment practices: one between what is valued and what is evaluated in the 

exam and another between students' understanding and success. 

Teacher-researchers’ training 

TRs were asked whether they thought it was desirable to have access to 

continuing education and if so, what form it could take. A first striking aspect is 

that all TRs agree that, in the case where there is such a training, it must 

necessarily be non-disciplinary. Indeed, mastery of discipline is taken for 

granted in the profession of TR.  

Second, two major trends emerge from the interview analysis. The first concerns 

TRs who believe that the training of higher-education teachers is not useful. 

This concerns about half of the respondents. Some TRs also question what 

“learning to teach” might mean, as the following excerpt shows: 

M9:  There is nothing that trains to teach in the strict sense. At the same 

time, I believe that in a university context, it's not really necessary... 

when someone knows his field well and... spends time preparing for 

his course... it's very rare that they actually make a bad course. 

The other half of TRs are not opposed to continuing education, provided it has 

practical aspects that take many forms in their comments. For example, training 

could cover aspects that are not necessarily disciplinary, such as managing a 

group of students or how to get them to work more effectively.  
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M10:  I think, for example, of the possibilities to use the ENT
3
, computers, 

this kind of thing, it's a little bit up to each person to go and discover it 

for himself […], let's say, but nothing very pedagogically precise.  

Finally, some TRs mention their lack of knowledge concerning didactics and 

believe that it would be positive to better understand this field of research 

through training. 

DISCUSSION AND PERSPECTIVES 

In this contribution, we have deliberately limited ourselves to presenting results 

in mathematics. We return here to our general issue concerning the impact of the 

discipline on teaching practices by pointing out some comparisons between our 

results and those of Physics. 

We have identified that the vision of the discipline is clearly reflected in the 

statements made by TRs in mathematics, particularly when they point out 

students’ difficulties (difficulties in entering into an abstraction and 

formalization process, in questioning themselves, etc.). In addition, their posture 

as researchers is highlighted when they evoke the elements they propose (or 

would like to propose) to students (research problems, for example). They also 

raise tensions in the way in which students are evaluated at university. 

Thus, the norms, qualities and values mobilized by TRs are strongly marked by 

the image they have of their own research discipline. They are also marked by 

the institutional constraint represented by the evaluation standard, particularly at 

the beginning of university. Similar results have been obtained among TRs in 

physics that have been interviewed, such as a tension between what they value 

in terms of forms of assessment (oral, open-ended questions, etc.) and the 

evaluations they actually propose. Although mathematics are seen as an obstacle 

for learning physics, TRs in physics say that they still manage to “do physics” 

with their students: this contrasts with TRs in mathematics who do not manage 

to “do math” with theirs. For TRs in physics, it is possible to “do physics” 

because their discipline is at the crossroad of several disciplines and very much 

related to phenomena that can be observed in everyday life. We also find a 

strong imprint of their discipline in teaching objectives and practices (group 

work, reflexivity, creativity, etc.). 

These first comparative results between mathematics and physics show some 

disciplinary disparities but also a strong anchoring of the research profession in 

teaching practices. In this respect, we find similarities with the theoretical 

framework presented above, which we need to deepen: the influence of the 

previous experiences of the TRs interviewed, identification with the research 

discipline (particularly in relation to learning), the socialization effect, 

                                         

3
 ENT : digital work environment. 
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particularly in teacher training. Through a more detailed comparison between 

the three disciplines, it would be necessary to analyze our results on the basis of 

the five psychological processes that influence teachers’ professional identity 

(van Lankveld et al., 2017). At least, we observe certain similarities with these 

processes, thus reinforcing our research hypothesis. 

In addition, this research should allow us to identify enough variables to design 

an online questionnaire (simple or multiple responses, or simple text) to confirm 

or refute our results and move towards statistical representativeness of the TR 

population. Another objective is to study in situ TRs’ practices in order to refine 

our results (van Lankveld et al., 2017). 

Finally, the results presented in this contribution are also encouraging to provide 

some answers to the problem of university pedagogy mentioned in the 

motivation for this study. This would enable us to report on the results obtained 

on TRs in universities where interviews were held, or even during training 

courses dedicated to university pedagogy. The objective here would be to show 

TRs a representation of their own practices in order to initiate a discussion on 

different aspects that could better capture the complexity of practices. Here 

again, the disciplinary aspect is highlighted, in particular by the desire expressed 

by some TRs in the three disciplines to deepen their didactic knowledge. 
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How applicationism impact modelling in a Belgian school of economy 

and the viability of an alternative epistemology 
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1Ichec Brussels Management School, Ladichec, Belgium, pierre.job@ichec.be; 

This paper deals with the following issue. Showing students how mathematics can be 

applied to economy in an applicationist way seems to make them unable to grasp the 

relevance of using mathematics to study economy. In other words, we expose an 

example of how a peculiar epistemological standpoint about the relationship between 

mathematics and economy, namely that of subordinating economy as an application of 

mathematics, may impact students’ views about the interplay between mathematics and 

economy. We give an example to illustrate this issue and then conclude by giving hints 

as to an alternative way to articulate mathematics and economy, namely using 

economy as a semiotic foundation of mathematics. 

Keywords: teachers’ practices, applicationism, IBME, modelling, economy, ATD. 

INTRODUCTION  

According to Florensa and al. (2019), Inquiry based Mathematics Education (IBME), 

has spread, across the world, over the last two decades, being promoted by 

governments and international organizations through different means. Among these, 

curricula reforms and specific programs: for instance, PRIMAS and Fibonacci in 

Europe. Belgium is no exception to this trend and has, over the years, seen its curricula 

reformed, at the primary and secondary education level, to take into account different 

aspects of mathematics embodied in IBME, such as mathematical modelling and its 

relationship to the world. Despite this shared trend, implementations of IBME may put 

on various clothes, even at the research level, as noted by Artigue and Blomhoj (2013). 

This variety of approaches justifies that we take a closer look at the Belgian context 

and thus contribute to the study of IBME. In this paper we will focus on the tertiary 

level of education and more precisely on the setting of a Belgian high-school1 in 

economy, business and management (school of economy in short). We will rely on the 

following research questions as guidelines. What form does IBME take in a school of 

economy? In particular, what kind of relationship does a school of economy have with 

mathematical modelling and economy? What are the factors that might impede or on 

the contrary facilitate the diffusion of an IBME approach in a school of economy? The 

aim of this paper is not to answer those questions in a definitive manner but more 

modestly to provide the following elements of a response. In section 3, we show how 

difficult it can be for mathematics teachers to engage in genuine modelling activities 

relevant to economy and how their relationship to mathematics tends to turn modelling 

into a form of applicationism (Barquero et al., 2013). In section 4, on the other hand, 

we explain how economy itself might provide a platform to implement a form of 

 
1 In Belgium, a high-school is university level institution.  
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IBME, namely a study and research path (Chevallard, 2015). Before getting to these 

sections we present our theoretical framework as well as relevant literature that puts 

our research questions in perspective. 

THEORETICAL FRAMEWORK 

Our theoretical framework is the Anthropological Theory of the Didactic (ATD) 

developed by Chevallard (1992). The use of the scale of levels of didactic co-

determination (Chevallard, 2002) has proved to be a fruitful formalism to study 

didactic phenomena through the lenses of constraints acting upon institutions and 

knowledge. In relationship to IBME, Chevallard (2015) puts forward a high-level 

constraint to the diffusion of IBME. In short, IBME can be considered as an expression 

of a certain didactic paradigm, that of questioning the world (QW). And this rather 

novel QW paradigm conflicts with a much older one, that of visiting works (VW) which 

is still more spread and rooted in, at least, our western culture. The VW paradigm 

amounts to approach knowledge as a “monument that stands on its own, that students 

are expected to admire and enjoy, even when they know next to nothing about its 

raisons d’être” (Chevallard 2015, p.175). On the other hand, the QW paradigm 

(Chevallard 2015, pp.177-180) starts with a generating question tackled by a set of 

students and a set of guides of the study that together form a didactic system whose 

aim is to generate a final answer to the generating question. This final answer is the 

culminating point of moments of study of available information and moments of 

research that generate intermediate questions and answers. This particular relationship 

to knowledge delineates what Chevallard calls a research and study path (SRP). From 

these descriptions we can see that these two paradigms are mostly mutually exclusive. 

Barquero and al. (2013) go further and deal with constraints specific to university level 

in natural sciences in Spain. Among other things, they show how a certain dominant 

epistemology called applicationism, which considers that “mathematics has to be 

introduced by itself, having its own rationale, before being applied to extra-

mathematical situations” (Ibid, p.317), tends to greatly restrict how mathematical 

modelling is understood (Ibid, p.317): “Under  its  influence [applicationism], 

modelling activity is understood and identified as a mere application of previously 

constructed mathematical knowledge or, in the extreme, as  a  simple  exemplification  

of  mathematical  tools  in  some  extra-mathematical contexts artificially built in 

advance to fit these tools”. Do similar restrictions apply in our context of a Belgian 

school of economy? If yes, to what extent? 

APPLICATIONISM IN HIGH-SCHOOL: THE BUDGET LINE EXAMPLE 

To answer those questions will shall look into the first mathematical course students 

have to attend in our school, the way it was given between 2012 and 2017. Although it 

underwent many changes over the years, in terms of teachers, numbers of students, 

number of dedicated hours and even content, one topic remained the same. It is that of 

first-degree equations and lines (lines in short). We will focus on this topic as an 

invariant of the course able to inform us about the relationship to applicationism and 
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modelling over a substantial period of time. The content of the chapter devoted to lines 

summed up to exposing the mapping between equalities of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐 and 

lines in a Cartesian plane. It was structured using the following mould. First the theory 

was recalled and then some routine exercises were provided for students: an equality 

was given and they had to draw the corresponding line in a plane and vice versa.  

In 2013, an attempt was made for a brief period of time (a few sessions) were teachers 

decided to reverse the traditional order between theory and exercises. They did so 

because they had to face the fact that students were losing interest in the theoretical 

part of the course, in part because students were familiar with lines since their 3rd year 

in secondary school (14-15 years old) and were recalled for 4 years in a row the same 

topic. This departure from the norm turned out to be a failure. Students were not able 

to solve the exercises (no more or no less than when they were first given the theory) 

but this time they moreover complained they didn’t have any theory to rely on and 

apply. Teachers felt guilty and entrapped because the only perceived way to keep the 

course going was for them to recall the theory anyway. This episode reinforced most 

of the teachers in their believe that “theory then exercises” was the only way to go. 

This shows a first linkage to applicationism. For most teachers in our school, the only 

possible way to teach mathematics is to expose the abstract theory and then apply it to 

some routine exercises, because their students don’t have the required mathematical 

autonomy to learn outside the framework of a well-established theory. 

A second linkage to applicationism is the following. It was no conceivable for teachers 

to leave aside the chapter on lines because lines were to be used in a subsequent chapter 

were elementary linear programming problems were solved using a geometrical 

presentation based on lines. Thus, students had to master the theory of lines before they 

could possibly encounter linear programming problems in a fruitful way. In other 

words, these teachers did not conceive that it could have been possible to teach 

mathematics in a manner that does not mimic its deductive architecture. The meaning 

of concepts is not driven by problems but rather by their logical embedding which is 

considered as the quintessential level of rationality of mathematics. 

This reduction of teaching mathematics to architectural aspects had deep consequences 

on how modelling was treated by teachers as well. Being in a school of economy, 

teachers felt important to deliver a course that would be closely linked to economy. 

This desire to relate the two subjects was implemented by inserting “economic 

applications” into the course. They felt that doing so they contributed to introduce 

students to mathematical modelling, thus showing the relevance and importance of 

mathematics to economy. In the case of lines, the mathematical application considered 

was that of a budget line.  

It was presented to students in the following manner. First a numeric example was 

given to them: “If two goods can be bought at respective prices of 2 and 5 euros, and 

if we have to buy a quantity 𝑥 of the first good and a quantity 𝑦 of the second in order 

to spend exactly 100 euros, then the equality 2𝑥 + 5𝑦 = 100 must hold true. Thus, 100 
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euros outlays can be represented by a line in the plane of all possible outlays. This line 

is called a budget line”.  

Following this numeric example, a “general” version with letters was given in exactly 

the same way leading to 𝑝1𝑥 + 𝑝2𝑦 = 𝐵 with 𝑝𝑖 standing for the unit price of good 𝑖, 
𝑥 and 𝑦 being the respective quantity and 𝐵 the budget at disposal. 𝑝1𝑥 + 𝑝2𝑦 = 𝐵 

could also be represented by a line according to the theory that had been recalled earlier 

in the course. The budget line application was then over and students were given 

exercises like “Draw the budget line that represents the outlays related to two goods 

that can be bought at respective prices of 7 and 14 euros with a given budget of 1400 

euros”. 

The way budget lines were introduced is very informative as to the impact of 

applicationism on modelling activities. Let us turn to students’ relationship to budget 

lines to better understand the underlying mechanisms.  

If we start with the exercises on budget lines like the one mentioned above, students 

behaved in a similar fashion as with exercises on abstract lines as soon as they had 

understood that they had to take 𝑝1 = 7 and 𝑝2 = 14 and 𝐵 = 1400 to solve the 

exercise (and they did because teachers told them when they were stuck). They were 

then able to comply to the teachers’ expectations by relying on the didactic contract 

(Brousseau, 2002) when they were not able to understand on their own what was 

required from them to solve the exercise.  

But when we interacted with students, asking them what was the point of these budget 

lines according to them, many of them told us that they didn’t feel at ease. For them, it 

was like they couldn’t grasp the difference between budget lines and abstract lines, 

only in one case they had to use some economy related terminology (budget line, 

goods, …) but not in the other case. They could not figure out was budget lines were 

really useful for but they didn’t bother too much with these concerns, because they 

could do the exercises and convince themselves that it is natural in a school of economy 

to have some economic terminology percolate through mathematical courses. 

With this example, we can measure the gap that sets up between students and teachers, 

gap hidden under the appearance of the ordinary functioning of a regular course. 

Essentially, for students, budget lines don’t make much sense and are definitely not the 

end product of a modelling activity as would be the case in a genuine study and research 

path. Indeed, there is no economic problem to which budget lines are an appropriate 

answer, the way the course was given, despite the fact that such problems seem pretty 

obvious and a priori within the reach of students. The following questions for instance 

might contribute to design an SRP. Is this possible to buy that amount of these two 

goods given that budget? What budget would be required to be able to buy that amount 

of these two goods? In other words, presenting budget lines the way they were lacks 

some fundamental character in the sense of Brousseau (2002). How did we get to that 

point? 
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The prevalence and naturality of the VW epistemology among teachers, of which 

applicationism is an offspring, tends to hide in the back open questions and problems 

in favour of a theory whose power to solve closed questions and problems (questions 

and problems designed to be solved by that theory) will justify its prominence. As a 

consequence, the idea to develop mathematics from the need that arise to solve an 

initially open problem is mostly absent. Instead teachers tend to reduce and focus 

teaching on the design of the best outfitting in which a theory should be dressed to 

minimize students’ reluctance. The more energy they put in the design of such 

outfitting, the more they are unable to get in touch with their students’ epistemic 

concerns because, from their teachers’ point of view they made everything possible for 

students to understand the theory. This outfitting can take on the form mentioned above 

of using concrete numeric examples before using letters for the theory. This way, 

teachers feel they are really engaging in mathematical modelling and making it 

accessible to students, whereas students don’t understand what is the point of budget 

lines besides learning some economic related terminology. It shows the mechanism by 

which the applicationist point of view deprives itself from the ability to design an 

economic problem where a mathematical model would be relevant to solve a genuine 

economic problem. 

Chevallard (2015) relates the VW epistemology’s long prevalence to the “social 

structure of formerly undemocratic countries” (p. 175) among other aspects. In the case 

of the interplay between economy and mathematics we may invoke another reason. 

The famous title of Wigner (1960) “The Unreasonable Effectiveness of Mathematics 

in the Natural Sciences” is symptomatic of a train of thought that dates back to at least 

Galileo stating that mathematics is the natural language of nature and thus by extension 

the signature of any approach that would qualify as scientific. Although complex, the 

penetration of mathematics within economy can be partly related to this trend. 

Economy had its proponents to turn it into a hard science and not a “mere” social and 

human science and thus mathematize it: “« Avec sa théorie de la valeur, Debreu 

développe une approche résolument axiomatique dont le critère exclusif est la 

cohérence logique et non le rapport à la réalité » (de Vroey, 2002). In this context, 

being able to subordinate economy as an application of formal mathematics may be 

considered an achievement that equals the historic refoundation of physics and 

geometry based on “pure” mathematics. Thus, the way mathematics and economy 

interact at a pedagogic level is tainted by the means through which economy 

established itself as a hard science. From the perspective of economy that wants to 

establish itself as a hard science, the ability to be subordinated to mathematics is 

considered as a mark scientificity and this translates to mathematical courses given to 

economy students. These courses tend to be display economic application the way it is 

illustrated above with the budget line e.g. “pure” mathematics are developed with no 

connexion with economy and then “applied” to economy. 
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USING ECONOMY AS A POSSIBLE SEMIOTIC PLATFORM TO DEVELOP 

A STUDY AND RESEARCH PATH 

In this section, we provide empirical data showing that economy itself might be used 

to develop a modelling activity where the meaning of mathematical concepts relies on 

the semantic of economic ground and thus showing a possible way out of strict 

applicationism. During the period 2012-2017, part of a chapter dealing with linear 

programming problems was devoted to the teach students that inequalities of the form 

𝑎𝑥 + 𝑏𝑦 ≤ 𝑐 could be represented by half-planes and vice versa. This result was then 

used to give a geometric representation of linear programming problems that would 

allow to solve them geometrically. The argument used by the teachers was purely 

mathematical with no reference to economy and relied on the decomposition 
{(𝑥, 𝑦)|𝑎𝑥 + 𝑏𝑦 ≤ 𝑐} = ⋃

𝑘≤𝑐
{(𝑥, 𝑦)|𝑎𝑥 + 𝑏𝑦 = 𝑘}. The idea was to show students that 

a half-plane can be seen as a stacking of lines and thus reduce the study of the geometric 

representation of inequalities to that of lines (which had been recalled in a previous 

chapter). It turned out that students agreed on the geometric idea of a half-plane being 

a “stacking of lines” but irrespective of the above decomposition. They didn’t not 

understand why the decomposition was used to assert that a half-plane is a “stacking 

of lines” as for them it was self-evident. As consequence they didn’t understand either 

how to use the decomposition to draw the half-plane representing a given inequality. 

Teachers themselves had much trouble understanding what students couldn’t 

understand in their argument. All in all, teachers felt pushed to leave aside the theory 

of inequalities and fall back on teaching what algorithm to apply to draw half-planes 

from inequalities. In 2017-2018, we had the opportunity to depart from the way the 

course was taught during the period 2012-2017 and were able to experiment on a small 

scale a different approach to inequalities and half-plane. This experiment is rather 

modest but nevertheless meaningful in our context because being in charge of hundreds 

of students does not allow much room for ideas that would be considered as “failures”, 

by the institution. So, we had to make adjustments in the course very cautiously, in a 

step by step fashion, that would make changes not appear as dramatic modifications. 

The economic context used is the following. We have a budget of 400€ that allows to 

buy two types of tea. The first type 𝑇1costs 5€/100g and the other one 𝑇2 costs 4€/100g. 

The experiment can be divided in steps. We will fly over the first steps as we do not 

have enough space to details all of the experiment and focus on the steps directly related 

to the mapping between inequalities and half-planes. Step1. Through a set of questions 

like the following, students are led to calculate numerical expenditures: can you give 

expenditures spending the entire budget, can you give give expenditures spending more 

than the budget, given two expenditures which one is more costly, etc. This step allows 

students to feel at ease in the chosen context and relate the required calculation to an 

economic context that makes sense to them. Step 2. It also prepares them for the next 

step which seeks to make them move from the numerical register to algebra with the 

use of questions asking them to reflect upon expenditures like the following: what 

calculation do you have to make to determine if an expenditure spends the entire 
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budget? This step leads to ostensive objects like 5𝑞1 + 4𝑞2 = 400 where (𝑞1, 𝑞2) 
denotes a certain expenditure. Students are then asked to give a geometrical 

representation of 5𝑞1 + 4𝑞2 = 400 in a plane so as to be able to visualize all the 

expenditures spending the entire budget. Given their previous acquaintance with the 

topic, students are well aware that it gives rise to a line, even if they may have trouble 

drawing that line. The next step is what interests us most for our purpose. Step 3. Based 

on the following economic we lead students towards inequalities. In one company, the 

workers which to spend all the allotted budget for tea because at the end of the year, 

the amount that hasn’t been spent returns to the company. In another company, budget 

is handled in a different way. If the budget is not spent entirely the remaining is left to 

the workers. The only condition imposed by the company is to not spend more than the 

initial budget. This second context leads to the expression 5𝑞1 + 4𝑞2 ≤ 400 which 

models whether or not an expenditure (𝑞1, 𝑞2) will exceed the allotted budget. Student 

are then asked to also give a geometric representation of 5𝑞1 + 4𝑞2 ≤ 400 and contrast 

it to the previous context of 5𝑞1 + 4𝑞2 = 400. At this point students are not 

accustomed to expressions like 5𝑞1 + 4𝑞2 ≤ 400 even though they have already met 

inequalities in secondary school. What is interesting for our purpose is that some 

students were able to give a geometric meaning to 5𝑞1 + 4𝑞2 ≤ 400 based on an 

economic reasoning. The trail of their reasoning is the following.  

• Some students note, for instance, that 𝑞1 = 40 and 𝑞2 = 50 exhausts the 400 € 

budget. 

• It thus means that any increase of 𝑞1 or 𝑞2 will exceed the budget. And any 

decrease will no exhaust the budget. 

• The geometric consequence is that starting from a point on the line representing 

5𝑞1 + 4𝑞2 = 400 like 𝑞1 = 40 and 𝑞2 = 50, increasing wether 𝑞1 or 𝑞2 or both 

at the same time, will give birth to a point in the plane (𝑞1,𝑞2) that will be located 

“above” the line. A similar conclusion can be drawn while decreasing those 

quantities. Such points will all be located “below” the line. 

• From these considerations, students are able to give an economic meaning to the 

interplay between algebra and economy. Expenditures spending less than the 

budget verify 5𝑞1 + 4𝑞2 < 400 and are geometrically located “below” the line 

represented by 5𝑞1 + 4𝑞2 = 400. Points exceeding the budget verify 5𝑞1 +
4𝑞2 > 400 and are geometrically located “above” that same line. 

• Thus geometrically, 5𝑞1 + 4𝑞2 ≤ 400 can be divided into points on the line 

5𝑞1 + 4𝑞2 = 400 and points “below” it 5𝑞1 + 4𝑞2 < 400. 

The way these students reasoned about the geometric meaning of 5𝑞1 + 4𝑞2 ≤ 400 is 

remarkable in our institutional context for several reasons. First it shows that it is 

possible for students to take responsibility of a fragment of interplay between algebra 

and geometry. To the best of our knowledge, it never happened in our institution in the 

framework of the course we are studying in this paper: all theoretical aspects have 

always been taken in charge by teachers. It means that students can be made much 

more responsible than thought and have the ability to contribute to the development of 
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a theory. Second it shows that applicationism is not the only “possible” way to teach 

mathematics in a school of economy. Third, the mapping between algebra and 

geometry performed by students relies on economy i.e. economy is used to give a 

geometric meaning to algebra. We would like to stress this aspect because it shows not 

only that something different than applicationism is feasible but that the subordination 

of economy to algebra and geometry is not inescapable. Economy can be envisioned 

as a stepping stone on which mathematics can be build whose objects’ semiotic relies 

on economy like for instance inequalities. 

CONCLUSION 

We showed how much applicationism is rooted in our school of economy. It means 

that it underlies the whole course that has been studied but more than this, that teachers 

feel difficult to teach another way because attempts to modify the “theory then 

exercise” model turned out to be failures. One reason for this failure worth exploring 

in another paper would be the idea that teachers lack other levels of rationality than the 

deductive one which deprives them from envisioning the teaching of mathematics 

according to other organizing principles. As a consequence of their failed attempts, it 

seems to comfort them with the idea that teaching mathematics mostly consists in 

thinking about which outfitting should be used to wrap the theory they want to teach 

in a way that minimizes frictions with students. From this perspective, the “theory then 

exercise” model appears to be a generic outfitting that allows to use exercises as a mean 

to discharge students from taking responsibility and making sense of the theory: when 

students are successful at exercises it is considered as a mark of understanding. 

We also showed of much applicationism impacts modelling. It reduces mathematical 

modelling of economy to applying “pure” mathematics to economy. This has a 

potential impact on students’ perception of economic applications. The case of budget 

lines suggests that presenting them as a mere application of mathematics deprive 

students for the ability to consider this application as meaningful. This leads to a 

vicious circle. Teachers feel that economic applications give more credit and substance 

to the usefulness of their course by tightly interacting with economy, when in fact, the 

very way it is presented to students has the reverse effect on them as it deprives them 

from the possibility to understand which relevant economic problem has been tackled. 

These results around applicationism and modelling are in line with those found in 

Barquero and al. (2005). It would be interesting to study the extent to which such 

phenomena apply in other institutions in Belgium and around the world but also within 

our institution in other courses which we so far had no access to. 

Lastly we showed that it is possible, even if it was experimented on a small scale, to 

develop some mathematics starting from economy where economic can act as a milieu 

which students can interact with to construct a semiosis that connects first order 

inequalities to half-planes thereby showing the possibility to deconstruct the 

applicationist paradigm and opening to a tighter integration between mathematics and 

economy. 
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The ability to make mathematics rely on economy is, as noted before, an important 

result, at least in the context of our institution. It nevertheless raises a question that 

might at first seem to downplay the relevance of this result on which we will end this 

paper. To what extent the use of economy as the semiotic foundation of mathematics 

might contribute to create epistemological obstacles? Indeed, if we imagine a course 

entirely built on economy, it might lead students to not be able to grasp the meaning of 

mathematical concepts in any other way than being rooted in economy. We think for 

instance of mathematical structures that emerge from needs internal to mathematics.      
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We analyse the impact of learning strategies on engineering students’ performance in 

mathematics. Learning strategies play an important role in self-regulated learning and 

are a possible predictor of student performance. Especially for mathematics-related 

learning strategies, the question arises how such strategies can be measured and how 

they relate to mathematics performance. Therefore, we present a new learning strategy 

questionnaire that takes into account the specifics of mathematical learning at 

universities. We then present correlational data of a longitudinal study with n = 403 

engineering students. We further regress their performance on students’ use of their 

learning strategies as well as their prior performance. The results indicate which 

learning strategies help students succeed. 

Keywords: Teachers’ and students’ practices at university level, Teaching and 

learning of mathematics for engineers, Learning strategies, Students’ performance.  

INTRODUCTION 

Mathematics is still a big hurdle for many students entering university across different 

study programs. Heublein (2014) reports that at German universities, 36 % of all 

bachelor-students in engineering drop out and the most prominent reason for drop-out 

is their problematic performance. Improving students’ performance is not only 

important with regard to drop out but can rather be seen as the major goal of university 

teaching. 

One variable to explain students’ performance is their use of strategies. The learning 

of mathematics at universities usually involves many self-study phases in which 

students have to self-regulate their learning. However, we lack a clear understanding 

of what strategies should be recommended and what strategies explain performance, 

especially when it comes to mathematics courses for engineering students. Only few 

studies have used instruments that take the characteristics of university mathematics 

into account and many results are based on cross-sectional but not longitudinal data. 

Liebendörfer et al. (submitted) have developed the LimSt questionnaire (Learning 

strategies in mathematical studies) to measure students‘ learning strategies specifically 
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in higher mathematics. They showed that several strategies could be empirically 

discerned. The question of how these strategies explain students’ performance is still 

open. In this paper, we use these strategies to predict performance. 

THEORETICAL BACKGROUND  

Learning strategies  

Students’ use of learning strategies is usually framed within self-regulated learning 

(Pintrich, 1999) and examined with questionnaires like the “Motivated Strategies for 

Learning Questionnaire” (MSLQ; Pintrich, Smith, Duncan, & McKeachie, 1993) or 

the German adaption “Inventar zur Erfassung von Lernstrategien” (LIST; Schiefele & 

Wild, 1994). These questionnaires operationalize cognitive and resource management 

strategies. They also include metacognitive strategies, which we do not focus in this 

paper. Cognitive strategies are strategies for the processing of information. The MSLQ 

distinguishes rehearsal strategies (such as repeating words or other items to remember 

them) elaboration strategies (such as paraphrasing or summarizing to build internal 

connections between items), organization (such as outlining or clustering to select 

appropriate information) and critical thinking (Pintrich et al., 1993). Resource 

management strategies regulate the use of internal resources, such as time and effort 

management, and external resources, such as peer learning and help seeking.  

University mathematics, however, has some specialties that lead some researchers to 

either use only parts of the general instruments (e.g., Griese, 2017 dropped the scale 

for critical checks from the LIST) or completely design new scales (e.g., Kaspersen, 

2015 developed a new scale on working conceptionally with mathematics).  

 

Figure 1: Structure of the LimSt scales used for this research 
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Important specifics of university mathematics are the multifaceted role of proof 

(Auslander, 2008; Jones, 2000; Weber, 2014) and the role of procedural knowledge, 

e.g. in performing calculations (Bergsten, Engelbrecht, & Kågesten, 2017; Hiebert, 

2013). To address the specialties of university mathematics, Liebendörfer et al. 

(submitted) developed an instrument similar to the LIST and MSLQ that adds and 

differentiates more forms of learning strategies to cover these specifics of mathematics.  

The LimSt questionnaire 

The LimSt questionnaire (Fragebogen zur Erhebung von Lernstrategien im 

mathematikhaltigen Studium; Liebendörfer et al., submitted) maintains the distinction 

between cognitive and resource management strategies, as well as the subdivision in 

rehearsal, elaboration, organisation strategies, internal and external resources 

respectively, see Figure 1. However, these strategies have been refined with regard to 

the specifics of mathematics at the tertiary level. Item examples are given in Table 1. 

Rehearsal strategies may refer to the repeated reading, writing or saying aloud of 

content to be learned. For the learning of mathematics, the rehearsal strategy of 

practicing is also relevant, which refers to carrying out procedures and algorithms in 

various examples in order to learn how to perform them. The difference between 

repeating and practicing strategies is not necessarily due to the content to be learned, 

since one could also learn about procedures by repeating, e.g. saying aloud the steps in 

their order. However, practicing is considered necessary for the acquisition of 

procedural knowledge.  

With regard to the elaboration strategies, building connections includes comparing 

content, relating it to content already learned and finding analogies. For mathematics, 

two specific forms of connections are particularly relevant. The first form is the use of 

mathematical examples to illustrate general rules and phenomena or constructions and 

procedures. The second form refers to the establishing of real-world connections, e.g. 

via mathematical modelling.  

Organization strategies were subdivided in the use of proofs and the simplifying of 

contents. Using proof refers to any activity that includes the proofs given in lectures or 

learning materials. Although proof is the central organizing principle of academic 

mathematics, students often focus on facts and procedures only (Göller, in press). The 

strategy of simplifying refers to transformations of complex content into less complex 

forms, even if they are not perfectly correct, like essential ideas that can be memorized 

more easily.  

Resource management strategies include the management of inner resources like 

students’ effort. Whereas effort is often described in terms of time investment, we 

discern pure time investment from resisting frustration during the learning, which 

refers to different inner resources like volition or self-control. Finally, peer learning 

makes use of peers as external resources, like seeking help or collaborating in solving 

tasks. 
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Learning strategies and performance 

The driving motive for the development of theories of learning strategies is the 

assumption, that different ways of learning may explain different results, in particular 

differences in students’ performance. Students who tend to use some but not other 

strategies may thus tend learn the content to more effectively. In the literature, some 

studies on learning strategies and their connection to student performance in service 

mathematics can be found. We complement our review by the meta-analysis of 

Schneider and Preckel (2017). 

Correlational data show positive connections of working on exercises (focusing 

procedural knowledge) with performance in exams (Eley & Meyer, 2004). Since 

working on exercises can be seen as following a surface approach, this may explain, 

why although surface learning is generally related to minor success in higher education 

(Schneider & Preckel, 2017), this is only sometimes the case for mathematics (Griese 

& Kallweit, 2017), but sometimes not (Laging & Voßkamp, 2017; Liston & 

O’Donoghue, 2009).  

Theoretically, elaboration strategies are expected to improve study performance 

because they lead to deep processing of the information, which should lead to deep and 

stable knowledge. Correlational data show connections of gaining an overview (i.e., 

using elaboration strategies) with performance in one study on mathematics (Eley & 

Meyer, 2004); however, this connection could not be confirmed in several other studies 

(Griese, 2017; Griese & Kallweit, 2017; Laging & Voßkamp, 2017; Liston & 

O’Donoghue, 2009; see also Schneider & Preckel, 2017 for results across different 

domains). Similarly, organization strategies do not correlate with students’ 

performance (Griese, 2017). 

Students’ management of internal resources (effort) is an important predictor of 

academic performance both across different domains (Schneider & Preckel, 2017) and 

in university mathematics (Griese, 2017). In contrast, peer learning as a form of 

managing external resources has proven helpful in various domains (Schneider & 

Preckel, 2017) but not mathematics (Griese, 2017). 

In sum, these findings from studies of service mathematics show that students’ effort 

is the only strategy having a consistent connection to their performance. We should 

note, however, that except for the study by Laging und Voßkamp (2017), the presented 

findings were not based on longitudinal data that include a measure of prior 

performance, which is generally known to explain much of the future performance 

(Schneider & Preckel, 2017). Since there are no earlier studies on the relation of the 

LimSt scales and students’ performance, it is an open question, whether the more 

specific scales may reveal that specific strategies predict students’ performance. 
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Research Questions 

Given the new LimSt scales and the few results from longitudinal studies that take 

students’ prior performance into account, we want to explore the connections of 

students’ learning strategy use to their performance. We have two research questions:  

RQ1:  Which learning strategies correlate with students’ performance?  

RQ2:  Which learning strategies predict students’ performance?  

METHOD 

We draw on data gathered in summer 2015 in a second-semester course on 

mathematics for engineers at the University of Hanover (Germany) that follows a first-

semester mathematics course. The cohort consists of students from electrical 

engineering, civil engineering, mechanical engineering and similar programs. The 

topics of the first-semester course included analytic geometry, complex numbers, linear 

algebra (as far as eigenvalues) and univariate analysis (sequences and series, 

differentiation and integration). In the second semester, multivariate analysis up to 

integral theorems and ordinary differential equations followed. 

In both the course on mathematics in semester 2 and its preceding course in semester 

1, students were offered to take four short exams spread over the semester that replace 

the final exam at the end of the semester (that still was offered). In each short exam, 

students could reach up to 10 points, so the possible maximum score is 40. The pass 

mark was 15 points and higher results yielded better grades. We use the sum of the four 

short exams in semester 1 as indicator of students’ prior performance and the sum of 

the four short exams in semester 2 as their performance in the second-semester course.  

The tasks focused mainly on calculations. Examples from the four short exams in the 

second semester are to investigate the convergence of power series, to give Taylor 

polynomials for given functions in one and two dimensions, to find extreme values, to 

calculate line integrals or to solve differential equations. In contrast, no task required 

proof. Students were not allowed to bring their notes or calculators. 

Students were further asked to answer a paper and pencil questionnaire during lecture 

time. We measured their learning strategies on Likert scales from the LimSt 

questionnaire described above ranging from 1 (strongly disagree) to 6 (strongly agree). 

Most of them were newly developed, only the time investment scale consists of four 

items of the LIST scale for effort (Schiefele & Wild, 1994) that focuses on time 

investment, supplemented by one more item, see (Liebendörfer et al., submitted) for 

details to all scales. All scales showed a high internal consistency, see Table 1.  

The learning strategies were assessed at the beginning of the course, so the students 

answered the questionnaire after having completed all short exams that measure their 

prior performance and prior to the short exam measuring their future performance. We 

analyse the data of the subgroup of all engineering students (more than 1000) who had 
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taken the short exams and agreed on sharing their results (n = 403; 93 % were in their 

second semester, 77 % were male).  

Both the questionnaire data and the short exam results were treated as metric data in 

the analysis; i.e. we give means and standard deviations and use Cronbach alpha and 

Pearson correlations as well as a linear regression analysis. This treatment may not 

perfectly match the ordinal data given, but is simple and seems to yield appropriate 

results. The methods are well known in the field and questionnaire data is often handled 

similarly.  

RESULTS 

Before answering the research questions, we give mean values and standard deviations 

in Table 1. The mean values show that students strongly report the use of the rehearsal 

strategies practicing and repeating as well as peer learning. In contrast, using proof is 

the strategy with the lowest mean, but highest standard deviation.  

Correlations 

To answer RQ1, we report the correlations of prior performance, performance and 

learning strategies in Table 1. The two rehearsal strategies repeating and practicing 

have positive correlations with performance. Of the elaboration strategies, only 

building connections has positive correlations to performance. Of the organization 

strategies, only using proof has a small positive correlation to prior performance. The 

two forms of effort, time investment and resisting frustration both show positive 

correlations to performance and peer learning has a small correlation to future 

performance. Note that generally, the correlations with prior performance and future 

performance are almost equal.  

Regression analysis 

To answer RQ2, we conducted a linear regression using all learning strategies and the 

prior performance as predictors of future performance. Together, these variables could 

explain 57 % of the variance of future performance (R² = .57). The non-standardized 

regression coefficients are displayed in Table 1. Prior performance is a clear predicator 

of future performance. Of the rehearsal strategies, repeating is a negative predictor, 

whereas practicing is a positive predictor. None of the elaboration strategies predicted 

performance. Of the organization strategies, simplifying is a negative predicator. 

Resisting frustration but not time investment predicts performance and finally peer 

learning does not predict performance. 
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 Item example Items α M SD rPP rP b 

Prior 

Performance 

 
   19.02 8.18 

  
 0.71 

Performance     15.81 8.71 .73  -- 

Repeating 

I repeatedly go through 

important content so that I 

will not forget it. 

3 .74 4.49 0.84 .21 .14  -1.35 

Practicing 

I learn algorithms by 

repeatedly performing the 

procedure. 

3 .77 4.43 1.16 .24 .23  0.66 

Building 

connections 

I try to understand how 

new content relates to what 

I have learned before. 

4 .82 3.99 0.98 .24 .21  0.26 

Using 

examples 

I search for application 

examples for formulas. 
4 .77 3.89 0.97 .06 .07 -0.02 

Connecting 

to practice 

I think about what one can 

practically do with new 

content. 

3 .74 3.20 1.30 -.08 -.02 0.29 

Using proof 
I try to understand the 

proofs of the theorems. 
3 .85 3.14 1.33 .12 .10  -0.11 

Simplifying 
I try to simplify difficult 

content. 
3 .75 4.36 0.93 .03 -.04  -0.76 

Time 

investment 

I take more time for 

learning than most of my 

peers. 

5 .79 4.15 1.01 .28 .29 0.21 

Resisting 

frustration  

I do not give up, even if the 

content is very difficult or 

complicated. 

3 .79 4.15 1.13 .34 .40 1.47 

Peer 

learning 

I meet with fellow students 

to develop ideas for 

solutions together. 

3 .78 4.48 1.23 .09 .13 0.35 

Table 1: Example item, Cronbach’s Alpha, mean (M), and standard deviation (SD) for 

students’ performance and the learning strategies measured, as wells as correlation 

coefficients for prior performance (rPP ) and performance (rP ) and the non-

standardized regression coefficient (b) for performance regressed on prior performance 

and learning strategies. Coefficients significant at p < .05 are in italics, they are bold if 

p < .01. 

244 sciencesconf.org:indrum2020:295823



 

 

 

DISCUSSION 

Based on a refined scale on learning strategies for mathematics and a longitudinal 

sample of engineering students, we investigated the relationship between performance 

and learning strategy use.  

Besides the significant and high correlation of performance and prior performance, the 

correlation analysis showed that the rehearsal strategies of repeating and practicing, the 

strategy of building connections, and the scales for time investment and resisting 

frustration showed high correlations to performance. It may seem surprising, however, 

that stronger students put much of their effort into rehearsal strategies that are often 

labelled surface strategies but not most of the elaboration and organization strategies. 

This result can be understood if we consider the kind of mathematics that was requested 

in the short exams, which is mainly procedural knowledge. 

The regression analysis showed that performance could mainly be explained by prior 

performance confirming the literature (Schneider & Preckel, 2017). Yet, some of the 

learning strategies can explain further parts of students’ performance. The rehearsal 

strategies practicing and repeating both are significant predictors. Surprisingly, while 

practicing is a positive predictor, repeating is a negative predictor. Of course, a negative 

coefficient does not mean here that a specific form of learning does not help the 

individual but that students who used this strategy learned less than the average of the 

student cohort, so the strategy may be effective but not efficient. This finding highlights 

the constructivist view that mathematics is an activity and learning mathematics means 

doing mathematics. From the elaboration strategies, only simplifying, which was 

highly used by students, is a significant (negative) predictor for performance. Whereas 

simplifying could help students to get a rough overview of a topic, it seems as if they 

do not get deeper into the content. From the internal resource management strategies, 

only resisting frustration is a (positive) predictor of performance.  

Comparing correlations and regression results, we see that repeating is something that 

rather good students do but does not help them getting better. Similarly, stronger 

students use proofs more often but that does not explain future performance. This fits 

the general consideration that the knowledge required in written exams can be mostly 

achieved through practicing strategies. In addition, stronger students invest more time, 

but that does not explain their performance. The quality of students’ learning may thus 

be more important than the quantity of their time invested.  

Our conclusion is that performance is raised by practicing but not repeating, and by 

resisting frustration but not simplifying. Doing the hard and frustrating work pays off.  

Strengths and limitations 

The strengths of our study encompass using a validated instrument that was specifically 

designed for higher mathematics, relying on longitudinal data in a large cohort taking 

into account prior performance, and a high ecological validity by using exam scores. 

This allowed revealing differences in related variables like repeating and practicing or 
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time investment and resisting frustration that can be clearly linked to engineering 

students’ performance in exams. 

Limitations include that we only analysed a subset of students that may have their 

specialties. Further, questionnaire data do not perfectly represent real behaviour and 

testing at the beginning of the semester does not cover later changes in students’ 

learning behaviour. This may have blurred some results. In addition, the exams we 

used as a measure of students’ performance focus on procedural knowledge. We should 

therefore limit our findings to the learning of procedural mathematics. 

Implications for theory and practice 

Besides the identification of relevant learning strategies, our theoretical differentiation 

of the individual mathematics-related learning strategies built a useful frame. In 

particular, rehearsal and effort were split into forms with different roles as predictors. 

Future research could explore the role of these refined strategies for the learning of 

other forms of mathematics, e.g. in teacher education. The longitudinal design further 

revealed that correlational patterns do not need longitudinal patterns so we should not 

take correlations of learning strategies as indicator of causality (see repeating or using 

proof).  

Our recommendation for students’ learning is to practice mathematics and work hard 

but not simplify and repeat (as many do according to the mean values).  
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This paper focuses on first year university engineering students and their sensemaking 
of integration and its symbolism. Through a semiotic approach, attention is given to 
two students and their attempt to verbally express their reflections on integration and 
the related meaning of symbols. Findings suggest that students tend to interpret the 
symbols mainly as operations, in terms of calculations to be carried out. They express 
uncertainty concerning what the symbols stand for, and the mathematical objects they 
represent. For example, the symbols ∫ and 𝑑𝑑𝑑𝑑 are respectively conceived of as “finding 
the integral with respect to x” and students are unclear on how Riemann sums connect 
to integration as a concept.  
Keywords: Teaching and learning of analysis and calculus, Teaching and learning of 
mathematics for engineers, Integration, Riemann sums, symbols. 

INTRODUCTION AND RESREACH QUESTIONS 
This paper is based on a study conducted as a part of MatRIC’s (Centre for Research, 
Innovation and Coordination of Mathematics Teaching) research activity, with the 
overarching goal of improving mathematics teaching and students’ learning in higher 
education. Integration constitutes a major part of first-year university engineering 
students’ calculus curricula, and students from computer and mechatronic engineering 
programmes constituted the target group of this study. The university teacher explicitly 
emphasized the importance of obtaining in-depth understanding of fundamental 
concepts and ideas of integration. A relevant object of study could therefore be to 
investigate if this could be traced in students’ reflections. At the same time, to 
investigate the challenges that students encounter while working with this topic in 
general, could be of great value for further developing teaching and student activities. 
Sofronas et al. (2011) point to three significant “sub-goals of the integral” as essential 
for students understanding: 1) the integral as net change or accumulated total change, 
2) the integral as area and 3) techniques of integration (p. 138). In this paper, the focus 
is a combination of 1) and 2), as students are asked to reflect on the Fundamental 
Theorem of Calculus (hereby denoted as FTC) and the symbols involved. Several 
aspects of conceptualizing integration have been dealt with in research, for example 
the importance that students conceive of integration as an accumulation function 
(Thompson & Silverman, 2008; Bressoud, 2011) and the use of Riemann sums towards 
obtaining this goal (Wagner, 2018). In line with these aspects and through a semiotic 
approach, this study aims to investigate on students’ perceptions of integrals and how 
their interpretations of the symbols ∫ and 𝑑𝑑𝑑𝑑 contribute to their perception on 
integration in general. The following research question guides the focus of this paper: 
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What characterizes students’ interpretations of the symbols involved in integration, 
and how do these interpretations affect upon their perception of integration as a 
mathematical concept? 
The term “characterizes”, indicates a focus on students’ own subjective interpretations 
of symbols and the analysis will be based on Steinbring’s (2005) epistemological 
triangle.  

THEORETICAL BACKGROUND 
Rooted within the socio-cultural perspective, I take the position that learning, and the 
use of language are inseparable phenomena (Vygotsky, 1978). Within this perspective, 
mediation describes the communicative interplay between tools and signs (Vygotsky, 
1978), where tools can be understood as physical utilities, like a piece of chalk or a 
pencil. Several approaches and models have been offered to explain the meaning of 
signs, like dyadic and triadic models. In dyadic models, the object (signified) is 
represented through a certain symbol (signifier), and the sign is constituted of both, 
taken together (Walkerdine, 1988). For this study, I will adapt a triadic model, as 
suggested by Steinbring (2005) in terms of the so-called epistemological triangle.  
Steinbring’s main idea is that mathematical signs do not have a meaning of their own, 
and therefore meaning should be “produced by students or teacher by establishing 
mediation between signs/symbols and a suitable reference context” (Steinbring, 2005, 
p. 22). In this sense, two functions can be associated with mathematical signs: 

1) A semiotic function: the role of the mathematical sign as “something which stands for 
something else”. 

2) An epistemological function: the role of the mathematical sign in the context of the 
epistemological interpretation of mathematical knowledge. 

(Steinbring, 2005, p. 21) 

 

Figure 1: The epistemological triangle (adapted from Steinbring, 2005, p. 22). 

The “object/reference context” in the epistemological triangle represents what the 
sign/symbol may refer to. In this model the epistemologically grounded mediation 
between the object/reference context and the sign/symbol is emphasized. At the same 
time, this mediation, with its epistemological possibilities and constraints, also allows 
for the construction of “new and more general mathematical knowledge” (Steinbring, 
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2005, p. 22). In the context of this study, the upper left corner is labeled “reference 
context” as I find this term more clearly to open for different interpretations among the 
students. The upper right corner, I label “signs”. Signs of course include symbols, but 
also open for other possibilities, like the use of technical terms, sketches or gestures. 
Within this framework, it is also possible to construct semiotic chains.  

Furthermore, one can accordingly draw up a sequence of epistemological triangles for the 
interaction, or a sequence of learning steps to reflect the development of interpretations 
made by the subject (Steinbring, 2005, p. 23).  

Examples of signs could be the symbols ∫ and 𝑑𝑑𝑑𝑑 and possible reference contexts for 
these symbols among the students might be “area under a curve”, “summation of small 
magnitudes” or a series of operations like “finding the anti-derivative”. The lower 
corner labeled “concept” is the mediated mathematical meaning gained from the 
interplay between the reference context and the signs. This could be subjective, and 
not necessarily in line with mathematically correct definitions. If a student for example 
link the concept “differential”, represented by the symbol 𝑑𝑑𝑑𝑑, solely to a reference 
context consisting of the convention “with respect to 𝑑𝑑”, it is not very likely that this 
student’s interpretation of 𝑑𝑑𝑑𝑑 fully covers the mathematically definition of 
differentials. Hence, in that example, the students’ “concept corner” of the 
epistemological triangle probably would differ from the mathematicians. 
Historically, in the context of symbols and integration, it should be emphasized that 
meaning of symbols in integration has changed. Ely (2017) points out that in most 
textbooks, 𝑑𝑑𝑑𝑑 and ∫ are still used, but without the meanings Leibniz assigned to these, 
rooted in the idea of infinitesimals. Instead, integrals are now often presented and 
accounted for in terms of limits. The original meaning of symbols in some sense then 
become vestiges and no longer directly represent quantities that students can 
manipulate. To overcome this dilemma, teaching projects like DIRACC (Developing 
and Investigating a Rigorous Approach to Conceptual Calculus) (Thompson, 2018) 
and “an informal approach to infinitesimals” (Ely, 2017) have been carried out. In 
DIRACC one emphasizes that variables vary smoothly, and that differentials are 
variables. Differentials are conceptualized by letting 𝑑𝑑 vary “by 𝑑𝑑𝑑𝑑 through intervals 
of length ∆𝑑𝑑” and be letting 𝑑𝑑𝑑𝑑 vary “at a constant rate with respect to 𝑑𝑑𝑑𝑑” (Thompson, 
2018, p. 2). Ely (2017) approaches differentials in similar terms, by letting the 
differentials refer to actual, small quantities that varies. The underpinning theory of 
hyperreal numbers, that mathematically justifies this approach, is not made explicit to 
the students and the approach is therefore labeled as an “informal infinitesimal 
approach” (p. 155). Common to both Thompson’s (2018) and Ely’s (2017) ideas for 
teaching, is that differentials are treated more like the historical origins of infinitesimals 
rather than limits, as opposed to what commonly is preferred in modern calculus 
textbooks.  
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METHODOLOGY 
By focusing on “how individuals make sense of the world” this research takes a 
phenomenological approach (Bryman, 2016). A qualitative study was carried out with 
the aim of gaining insight into several individual students’ reasoning and experiences 
with integration and could in this sense be regarded as a multiple case study. 15 
students were individually interviewed for about 40 minutes through semi-structured 
interviews. These were the students from four randomly selected “working groups” 
from an earlier research project, which in turn was selected based on voluntariness. 
During the interview, the students were asked to explain what an integral is, followed 
by the challenge of describing, in their own words, the content of the FTC as displayed 
in their textbook (figure 2). 

   

Figure 2: The Fundamental Theorem of Calculus as presented to the students 
(adapted from Adam & Essex, 2018, pp. 313-314). 

Follow-up questions were based on the students’ own statements. Subsequent to these 
rather “open” questions, the students were asked to interpret the meaning of the 
symbols in the expressions, respectively ∫ and 𝑑𝑑𝑑𝑑. Towards the end of the interview, if 
the students did not bring it up themselves, I asked them to reflect on Riemann sums 
and how these might relate to integrals.  
The interviews were coded and transcribed in several stages, focusing on students’ 
interpretations of meaning related to symbols and their accounts of Riemann sums and 
integration. In the analysis, these two parts of the interview are treated rather 
holistically, aiming to collectively account for the students’ interpretations of meaning. 
In this paper, I focus on two students, “Eric” and “Matt”. These two students are 
selected since they expressed multifaceted symbol interpretations, involving both 
conventions and conceptual aspects. Further, I found their conceptual challenges 
arising from the mediation between the symbols and the different reference contexts to 
be shared by several of the students involved in the study. It is therefore my aim that 
the insights gained from an analysis of Eric and Matt’s accounts, could contribute to 
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illuminate some core issues, relevant for several of the cases involved in this study. In 
turn, this might also contribute to raise some discussions relevant to students in 
introductory calculus courses, in general.  

ANALYSIS 
Based on the research question, the subsequent analysis is focusing on students’ 
reasoning and reflections, rather than teaching, but to provide some context, a small 
summary of the observed teaching is still offered. The introduction to integration took 
place during two lectures, each lasting for two hours. Briefly, Riemann sums were 
introduced, and examples of areas under curves, in terms of polynomial functions, were 
dealt with. These areas were calculated from concrete numbers, by using limits of areas 
of sums of bars, to be obtained from summation formulas already known to the 
students. Subsequently, the general Riemann integrals were introduced by taking the 
limit of such sums. Finally, a visual proof of the FTC was offered in terms constructing 
the accumulating area function, 𝐴𝐴(𝑑𝑑) for 𝑓𝑓(𝑑𝑑) and it was showed that the derivative of 
𝐴𝐴(𝑑𝑑) resulted in 𝑓𝑓(𝑑𝑑). 
The analysis to follow is based on interviews with two students from the computer 
engineering programme. As accounted for in the previous section, only a part of the 
interview is relevant for the subsequent analysis. The students were asked to explain in 
their own words what is meant by integration, followed by reflections on the 
Fundamental Theorem of Calculus, as displayed in the textbook (figure 2). They were 
asked to give a general comment in terms of verbally interpreting what they saw, 
followed by some specific questions giving attention to the symbols ∫  and 𝑑𝑑𝑑𝑑 from the 
first expression (figure 2). Drawings and sketching along with their verbal explanations 
were encouraged during the conversation. 
The case of Eric 
Eric expressed that he was uncomfortable with the definition of an integral, and to a 
large extent interpreted the symbols only as mathematical operations or conventions. 
Being presented with the FTC the focus in the following excerpt is on the first 
expression (figure 2). 

Interviewer: I wondered if you could take me through the use of symbols here [points to 
the expression] and tell me a bit about what they mean, and how you interpret 
them? 

Eric: […] Basically everything between the s [integral sign] and the dt that is what 
should be integrated. In this case that is ft 

Interviewer: Why does dt – 

Eric: -since it is dt instead of normally dx, this means with respect to t 

Interviewer: Is everything that could be said about dt, that the function should be 
integrated with respect to dt, the way you see it? 
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Eric: Yes 

This excerpt illustrates several students approach to the question of interpreting the 
symbols in this expression. From a semiotic perspective, in this case the signs primarily 
stand for a series of operations in terms of ∫ representing the process of integration 
through anti-derivates and 𝑑𝑑𝑑𝑑 is interpreted to mean “with respect to 𝑑𝑑”. The positive 
response to the last question combined with a holistic analysis of the interview, do not 
indicate that these symbols, in this setting, had any additional meaning to Eric. Later 
in the interview an attempt was made to approach the definition of Riemann integrals: 

Interviewer: Why is it, do you think, that the integral between two points, gives an area as 
an answer? Have you thought about that? 

Eric: I do not know why, I have only learned that that is the way it is, but I do not 
know the reason.  

Since it was known to me that Riemann sums and estimation of areas under curves had 
been dealt with in the lectures, I mention the word “Riemann sums” and showed a 
picture from one of the tasks they had been working with where the point was to 
estimate the area under a curve by drawing suitable bars and add the areas. 

Interviewer: What do you do when you divide into different bars? 

Eric: You estimate. 

Interviewer: What happens to the bars when you calculate the integral? 

Eric: One takes the area of the bars. 

By using the word “estimate” and by mentioning that “one takes the area of the bars”, 
Eric to some extent demonstrates that he manages to estimate the total area by adding 
the areas of the bars. Still, he is not explicit on limits and hence, the connection to 
integration. For potential follow-up comments from Eric, I continued by offering an 
explanation, to hear his reaction. 

Interviewer: If we let the width approach zero, then it would be more exact. 

Eric: Yes […] this is something that always have stressed me. Ok, here we have 
an estimate, but if we say that it approaches zero it suddenly becomes 
accurate. 

From Eric’s reflection it seems like he at some point have heard about limits, but when 
it was brought up, he expresses confusion towards the idea that limits lead to accurate 
answers. Since at no point in the interview, from Eric’s side, any explicit connections 
between Riemann sums and integration are made, one can assume that he treats these 
as rather separate mathematical ideas. For Eric, the mediated meaning of integrals only 
seems to involve mathematical operations in terms of the anti-derivative and the 
calculation of areas. Riemann sums act more like a stand-alone activity, involving 
estimation of areas, almost like an alternative to integrals, for example when the 
formula is unknown.  
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The case of Matt 
Matt was a talkative student, and through his interpretations of symbols he 
demonstrated some important connections, but he still struggled with some underlying 
conceptual issues. With the FTC presented, Matt quickly takes the word before any 
specific questions have been posed: 

Matt: Before I watch this too much, and without cheating, I can say that to integrate 
something is the opposite of finding the derivatives of something, and this is 
what this whole theorem is about. 

From Matt’s statement it is apparent that integration is associated with anti-derivatives, 
and that this view seems to constitute the main part of the mathematical meaning he 
associates to the concept. Next, an attempt of approaching Riemann sums and the 
definition of an integral was made, based on some discussions concerning the integral 
being an area under a curve. 

Interviewer: Why does the antiderivative result in an area under a curve? 

Matt: […] Like I want to think about this is that you have these heights and bars, 
and then you just multiply the areas of these bars […] And one thing that I 
have a problem with is when you have this [points at the upper right corner 
of a bar under a curve on a drawing] and this suddenly becomes a point. How 
did we get there? 

From the context, I interpret Matt to mean “add” instead of “multiply”, and that he 
connects the sum of these areas of bars to the concept of integration. Without explicitly 
mentioning limits, or that the width of the bars approaches zero, I still interpret Matt’s 
statement, combined with his gestures, to point to the same dilemma as Eric. As for 
Eric, Matt describes a seemingly paradox that arises from approaching integrals 
through sums of areas of bars with a certain width. By the statement “I have a problem 
when […] this suddenly becomes a point” Matt expresses the difficulty of adding up 
the areas of these bars when the width becomes zero, and one are left with an infinite 
number of vertical “lines”. Going back to the symbols in the presented expressions, 
Matt elaborates on the symbol 𝑑𝑑𝑑𝑑. 

Matt: One thing I find problematic is this d. It happens something special each time 
you put this d in front of [from the context, Matt probably means “after” or 
“next to”] a variable. I like to think about this as an infinite small number, 
like a constant, and this is multiplied with for example x, if we want the width 
of our bar. But I am not allowed to do calculation with it, like I could if it 
was a constant.  

Interviewer: What makes you say that you are not allowed to do calculations? 

Matt: Well, for example if it says dy dx [means 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑] then it looks like a fraction, 
and sometimes I can do calculations on this like with fractions, but not 
always. That is the impression that I have got. Sometimes I can regard this as 
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a fraction, but it is not really a fraction, it is something else which share the 
same symbol. 

In his first statement, Matt conceptualizes 𝑑𝑑 as an “infinite small number”, which is in 
line with how one could define this in classical infinitesimal calculus, historically 
rooted in Newton and Leibniz. Further, the difficulties arise when Matt equates this 
“infinite small number” with “a constant”. In turn, this causes the essence of Matt’s 
confusion as small constants, no matter how small, could be treated exactly like 
“normal” fractions. In Matt’s second statement it seems like his confusion is enforced 
by experiences he had involving such differentials, as they in some case can be 
regarded and treated like fractions (for example in linear differential equations or in 
integration tasks involving substitution). On the other hand, he is aware that this is not 
“really a fraction”.     

DISCUSSIONS AND CONCLUSIONS 
Although 15 students were interviewed in total, the examples illustrated through the 
cases of Eric and Matt exemplify the main issues that several of the students struggled 
with. The connection between integrals and Riemann sums were vague, and among 
those students who made such connections, the limit of these sums was hard to 
conceptualize. These difficulties were expressed in terms like “how can one take the 
sum of bars with no width” or, as in Eric’s case, who are “stressed” by the view that 
“we have an estimate, but if we say that it approaches zero it suddenly becomes 
accurate”. The mathematical meaning in this sense strongly relates to an underlying 
idea of limits which, historically speaking, is a newer idea than the original ideas of 
infinitesimals. Ely (2017) points out that in most textbooks, 𝑑𝑑𝑑𝑑 and ∫ are still used, but 
without the meanings Leibniz assigned to these. Instead, modern calculus textbooks 
often reformulate integrals in terms of limits. The notations in some sense then become 
vestiges and no longer directly represent quantities that students can manipulate. In 
both Eric’s and Matt’s case a challenge seemingly appeared in the reference contexts 
from first interpreting an estimated area as the sums of bars with a certain width, 
followed by the reference context of accurate area as the “sum of bars with no width”. 
According to Ely (2017), this ambiguity is not easy to solve, unless one introduces 
hyperreal numbers to substantiate the algebraic sense-making of infinitesimals. 
Semiotically, and phrased in the language of Steinbring’s (2005) epistemological 
triangle, one can model the mediated meaning as the idea that bars estimate the area, 
and that the area becomes more accurate when the width of these bars becomes smaller. 
The confusing next step for the students was to make sense of this sum when the width 
becomes zero, which to some implied a sum consisting of an infinite number of vertical 
lines with no width.  
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Figure 3: Semiotic chain of epistemological triangles to illustrate students’ 
mediated meaning of Riemann sums and integrals 

From a semiotic perspective, figure 3 illustrates students’ mediated meaning related to 
Riemann sums and integrals. Their concepts arose from verbally interpreting the 
symbols and what the symbols represent. In the first part of the chain, most students, 
like Eric and Matt, somehow associated the Riemann sums with estimation of the area 
under a curve through a sum of area of bars with width ∆𝑑𝑑. For many students, the 
confusion arose when they should evaluate the exact area in this manner, which 
eventually led to the interpretation of the curve area as the sum of area of bars having 
width equal to zero. This observation could find its explanations in earlier studies, like 
Oehrtman (2009), where students turned out to have inappropriate metaphors for limits 
in terms of focusing on points in sequences rather than for example a continuous 
motion approaching something. In Eric and Matt’s cases, this way of reasoning was 
evident as they quantified ∆𝑑𝑑 as a constant, instead of for example regarding this as 
something that varies. This also involved treating the limit itself (zero) as if it was one 
of many possible values of ∆𝑑𝑑. According to Thompson (2018), key elements in 
understanding differentials is the ability to regard these as variables, and through the 
emphasis on differentials as something that vary, such confusions might be avoided.  
Another aspect that appeared throughout the interviews was the tendency that students 
viewed integrals and limits of Riemann sums as rather separate phenomena. Students’ 
reference context for the symbols 𝑑𝑑𝑑𝑑 and ∫ was mainly interpreted to be mathematical 
conventions and operations in terms of “with respect to 𝑑𝑑” and “finding the anti-
derivative”. Only when directly asked, some students offered attempts of expressing 
more conceptual aspects. One can hypothesize that this phenomenon is influenced by 
how Riemann sums are presented in teaching and in student activities.  In this sense, 
findings support Wagner’s (2018) claim that “too many students dismiss Riemann 
sums as an unpleasant stepping-stone to be endured in a curriculum whose goal was 
really to get to the FTC” (p. 354). As pointed out by Thompson and Silverman (2008), 
Riemann sums bear the potential of playing a major role for the students’ perception 
of integrals as accumulation functions, which in turn could contribute to students’ 
understanding of the FTC. For the 15 students in this study, the neglection of integrals 
as an “accumulation function”, enforces the suspicion that the potential of Riemann 
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sums is not sufficiently utilized in teaching. In this respect, Bressoud (2011) suggests 
that if we want students to see the need for evaluating limits of Riemann sums, we 
ought to provide students with good unfamiliar problems involving accumulation. 
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The present study explores engineering students’ mathematical problem posing 

competencies in relation to integral calculus, and their attitudes towards mathematical 

problem posing. The sample comprised of 135 undergraduate engineering students 

from a public university in Iran. Students’ problem posing competencies were explored 

using a test including eight problem posing tasks related to the fundamental theorem 

of calculus and integral-area relationships. Furthermore, students completed a 

questionnaire that explored their attitudes towards mathematical problem posing. Nine 

students also participated in a semi-structured interview. The findings show that many 

students could improve their problem posing abilities further, and around 60 percent 

of students had positive attitudes towards mathematical problem posing activities.  

Keywords: calculus, mathematics for engineers, mathematical problem posing, 

attitudes towards problem posing, integral calculus. 

INTRODUCTION 

Engineering relies heavily on using mathematics for building and designing projects 

for the use of society, however, attracting and retaining students in engineering degrees 

are sometimes problematic because of the role of mathematics in engineering (Flegg, 

Mallet, & Lupton, 2012). Mathematical problem posing can be considered as one of 

the central activities in mathematics and is a useful tool in mathematical teaching and 

learning (NCTM, 2000). Problem posing referred to “the process by which, on the basis 

of mathematical experience, students construct personal interpretations of concrete 

situations and formulate them as meaningful mathematical problems” (Stoyanova & 

Ellerton, 1996, p. 1). To pose mathematical problems, several skills are required such 

as the abilities to formulate mathematical situations, recognizing relationships between 

different mathematics concepts, and choosing an appropriate approach for each 

situation (Abu-Elwan, 1999). Problem posing has potential benefits for improving the 

quality of teaching and learning of mathematics. For instance, it could help students to 

develop their mathematical understanding (e.g., Cai & Hwang, 2002) and problem-

solving skills (Cai & Hwang, 2002). Also, it can help teachers to identify students’ 

mathematical misconceptions and difficulties (Chen, Van Dooren, & Verschaffel, 

2015).  

Calculus is an important topic in advanced mathematics, and has various applications 

in other disciplines such as physics and engineering (Jones, 2015). It is essential for 

students to fully understand calculus concepts and be able to apply them in different 

situations (Mahir, 2009). Integral calculus is a valuable topic in calculus, and is a 

prerequisite for further coursework (Sealey & Oehrtman, 2005; Thompson & 
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Silverman, 2008). It consists of important concepts such as the fundamental theorem 

of calculus and integral-area relationships.  

Many studies have explored students’ attitudes towards mathematics and mathematical 

problem solving (e.g., Lim & Chapman, 2013; OECD, 2013). Most of these studies 

have shown a close relationship between various domains of attitudes towards 

mathematics and mathematics achievement (Lavy & Bershadsky, 2003; OECD, 2013; 

Samuelsson & Granstrom, 2007). However, a few studies have explored students’ 

attitudes towards mathematical problem posing (e.g., Chen et al., 2015). Considering 

the potential value of problem posing activities in the teaching and learning of 

mathematics, this study explores undergraduate engineering students’ problem posing 

competencies in relation to integral calculus, and their attitudes towards mathematical 

problem posing. Therefore, the research questions of this study are: What are 

undergraduate engineering students’ competencies in posing problems related to 

integral? And what are their attitudes towards mathematical problem posing activities? 

LITERATURE REVIEW 

The literature review section reviews the previous studies related to problem posing, 

integral calculus, and attitudes towards mathematics.  

Problem posing 

Problem posing activities offer potential benefits to develop students’ mathematical 

understanding. Problem posing activities could have a positive influence on students’ 

creativity (e.g., Bonotto & Dal Santo, 2015), attitudes toward mathematics (e.g., Chen 

et al., 2015), and critical thinking skills (Nixon-Ponder, 1995). Furthermore, several 

studies have reported that there is a close relationship between students’ problem 

posing and problem-solving competencies (Cai & Hwang, 2002; Silver & Cai, 1996; 

Xie & Masingila, 2017). For instance, Silver and Cai (1998) analysed middle school 

students’ responses to problem posing and problem solving tasks. They found that 

problem solving and problem posing performance are closely related, and successful 

problem solvers can pose more complex mathematical problems compared to 

unsuccessful problem solvers. Several frameworks have been proposed to design 

problem posing tasks (e.g., Christou, Mousoulides, Pittalis, Pitta-Pantazi and Sriraman, 

2005; Stoyanova & Ellerton, 1996). For instance, Christou et al. (2005) have designed 

a taxonomy for designing problem posing tasks that has four categories: Editing 

quantitative information- posing problems without restriction, selecting quantitative 

information- posing problems based on a given answer, comprehending quantitative 

information-posing problems based on a given calculation/equation, and translating 

quantitative information- posing problems based on a given graph, diagram or table 

(Christou et al. 2005). In relation to analysing students’ posed problem, different 

frameworks have been proposed (e.g., Leung, 2013). Recently, Cankoy and Özder 

(2017) have proposed a framework that can be used to analyse students’ posed 

problems across five dimensions: solvability; reasonability; mathematical structure; 

context; and language. 
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Integral calculus 

Many studies have reported that students have various misconceptions in learning 

integral calculus (Jones, 2013; Kouropatov & Dreyfus, 2013; Radmehr & Drake, 2017, 

2019; Sealey, 2014). Integral calculus includes important topics such as the 

Fundamental Theorem of Calculus (FTC) and integral-area relationship. FTC links 

definite and indefinite integrals and is often used to solve definite integral problems 

(Radmehr & Drake, 2017). Several studies have highlighted that many students rely on 

learning routine procedures and integral techniques, and do not develop a conceptual 

understanding of integral calculus (e.g., Radmehr & Drake, 2019). Sealey (2014) 

explored students’ understanding of the definite integral, and suggested a framework 

to characterize students’ understanding of Riemann sums and the definite integral. The 

results indicated that “conceptualizing the product of 𝑓(𝑥) and 𝛥𝑥 proves to be the 

most complex part” (p. 230) for students. Radmehr and Drake (2017) have explored 

university students’ mathematical performance, and metacognitive experiences and 

skills in relation to FTC. The results showed that several students had difficulties in 

solving problems related to the FTC. For example, in relation to 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥, 

many students did not understand that 𝑓(𝑥) is the rate of change of the accumulated 

area function 𝐹(𝑥). 

Attitude 

Attitude could be defined as “a predisposition to respond to a certain object either in a 

positive or in a negative way” (Zan & DiMartino, 2007, p. 28), consequently, students’ 

attitudes towards mathematics underlie their tendency to engage in mathematical 

activities. Students’ attitudes towards mathematics can impact directly on students’ 

mathematical learning, problem solving, and achievement (Ngurah & Lynch, 2013; 

Sarouphim & Chartouny, 2017). Positive attitudes towards mathematics can encourage 

students to engage more in mathematical learning activities (Singh Granville, & Dika, 

2002) while negative attitudes towards mathematics can increase students’ 

mathematics anxiety (Trujillo & Hadfield, 1999). Several studies have reported that 

there is a strong relationship between different attitude domains (e.g., enjoyment of 

mathematics; motivation to do mathematics) and mathematics achievement (e.g., 

Ngurah & Lynch, 2013; OECD, 2013; Sarouphim & Chartouny, 2017). Though, a 

literature search exposed only one study which explores students’ attitudes toward 

problem posing (Chen et al., 2015). Chen et al. (2015) investigated students’ problem 

posing and problem solving competencies, as well as their attitudes towards 

mathematical problem posing and problem solving. Their findings showed that 

problem posing activities had a positive impact on students’ problem-solving abilities, 

and attitudes towards problem posing and problem solving also improved. 

RESEARCH METHODS 

The present study takes a sequential explanatory mixed method approach. To form a 

comprehensive understanding of students’ problem posing abilities and their attitudes 

towards problem posing in mathematics, first, students participated in a problem posing 
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test, and completed a questionnaire about their attitudes towards problem posing. Then, 

nine students were invited to participate in semi-structured interviews. The sample 

comprised of 135 undergraduate students from different engineering majors of a public 

university in Iran. For the problem posing test, eight problem posing tasks were 

designed based on Christou’s problem posing taxonomy (2005) related to two topics 

in integral calculus: the FTC and integral-area relationships. The attitude questionnaire 

consisted of twelve items on a five-point Likert-style scale and two open-ended 

questions. To illustrate, two items of the questionnaire were “I get a great deal of 

satisfaction from posing a mathematical problem” and “By practicing mathematical 

problem posing, I become a better mathematical problem solver”. The problem posing 

test and the attitude questionnaire were piloted with nine students from an engineering 

calculus 1 course. After piloting and refining, 135 students participated in the problem 

posing test and completed the attitude questionnaire. Students’ problem posing abilities 

were analysed using an adapted version of Cankoy and Özder's (2017) rubric. Using 

purposeful sampling, nine students with different levels of performance on the problem 

posing test were selected to participate in a semi-structured interview. To explore the 

validity of the attitude questionnaire, two senior lecturers in mathematics education 

examined the readability of the questionnaire items, and factor analysis was also 

conducted to examine the relationships among the questionnaire items. To explore the 

reliability of the questionnaire, Cronbach’s alpha was calculated, the value 0.89, 

indicates that the questionnaire items had good internal consistency. To explore the 

validity of the problem posing test, two senior lecturers in mathematics examined the 

problem posing tasks and then it was piloted with nine students.  

RESULTS 

This section comprises the results of analysing responses to the problem posing tasks, 

the attitude questionnaire, and students’ responses to the interview questions. The 

results of two tasks are described in this paper because of the page limits, one related 

to the integral-area relationship (Figure 1) and one related to the FTC (Figure 3).  

Students’ responses to the problem posing tasks  

Task 1 is classified as translating quantitative information based on Christou’s (2005) 

problem posing taxonomy because students are asked to pose a problem based on the 

given graph. Ninety-eight out of 135 (72.6%) students posed a problem for this task, 

however, the remaining 37 (27.4%) did not pose any problem. Students’ posed 

problems were classified into three categories (Table 1). 

 Figure 1. Task 1 

Task 1. Please write a problem based on the given graph 

 which its solution would require using area under curves 

 (The red graph is 𝑦 = (𝑥 − 1)3 + 1 and the green is 𝑦 = 𝑥). 
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Table 1. Posed problems for the integral area-relationship task (N=98) 

Furthermore, the results showed that 90 out of 98 (92%) problems were solvable and 

only 8 (8 %) problems were unsolvable. Ten (10%) problems were based on real-world 

context while 88 (90%) problems were ‘bare tasks without contexts’ (Vos, 2020). 

Ninety out of 98 (92%) posed problems had clear language and only 8 (8%) problems 

were not clear. Furthermore, analysing students’ posed problems showed that many 

students had several difficulties when posing problems. The interviewed students were 

asked to pose a new problem for each task during the interviews, and also solved their 

posed problems. During this process, also some difficulties were identified. Students’ 

difficulties in relation to posing a problem for Task 1 are summarized in Table 2. For 

example, 30 students in the problem posing test and three interviewed students did not 

understand that the enclosed area between curves should be always positive as some of 

them calculated the enclosed area between the two curves zero or negative (Figure 2). 

∫ ((𝑥 − 1)3 + 1 − 𝑥) 𝑑𝑥
2

0

= ∫ (𝑥 − 1)3 𝑑𝑥 + ∫ 𝑑𝑥
2

0

− ∫ 𝑥 𝑑𝑥 = [
(𝑥 − 1)4

4
+ 𝑥 −

𝑥2

2
]

0

22

0

2

0

 

=
1

4
+ 2 → −

1

4
= 0 

Figure 2. A sample response to Task 1 

Types of difficulty Test Interview 

Difficulties with the concept of signed areas  30 (22.2%) 3 (33%)  

Not checking whether the upper and lower functions 

change within the enclosed area 

15 (11.1%) 7 (78%) 

Difficulty with identifying applications of enclosed area 

between curves in the real world 

- 6 (67%) 

Table 2. Students’ difficulties in Task1 

N A sample response Categories 

77 

(79%)  

Find the area between 𝑓(𝑥) = (𝑥 − 1)3 + 1 and 

𝑔(𝑥) = 𝑥 in [0,2]. 
Finding the enclosed 

area between two curves 

11  

(11%) 

Calculate the following integral: 

 ∫ ((𝑥 − 1)3 + 1 − 𝑥)𝑑𝑥   
2

0

 

Calculating integral 

10  

(10%) 

Two runners are in a running competition. The 

first runner runs with the speed of                 

 𝑣(𝑡) = (𝑡 − 1)3 + 1  . The speed equation of the 

second runner is 𝑣(𝑡) = 𝑡.  Calculate the 

displacements of these two runners after one 

minute ? 

Real-world context 
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Figure 3. Task 2 

Task 2 is also classified as translating quantitative information based on Christou’s 

(2005) problem posing taxonomy as students are required to pose a problem based on 

the given graph. Forty-two (31.1%) students posed a problem for this task, however, 

the remaining 93 (68.8%) did not. The posed problems were classified into two 

categories (Table 3). Forty out of 42 (95.2%) problems were solvable and two (4.8%) 

were unsolvable. Twenty (47.6%) problems were based on a real-world context while 

22 (52.3%) problems were bare tasks without contexts. Forty-one (97.6%) posed 

problems had clear language, and only one problem was not clear. 

N A sample response Categories 

22  

(52%) 

Find the enclosed area between 𝑥-axis and the given graph 

in [0,7]. 

Find the area 

under curves 

20  

(48%) 

The given graph shows the speed of a car between t=0 and 

t=7 minutes. Calculate the distance travelled by the car. 

Real-world 

context 

Table 3. Posed problems for to the FTC task (N=42) 

Students also had several difficulties when posing problems for Task 2 in the test and 

during the interviews (Table 4). The results showed that ten students in the problem 

posing test and six out of nine interviewed students had difficulties in identifying how 

FTC could be used in the real-world. For instance, a posed problem was “the given 

graph shows the distance a man ran in a running competition. Calculate the acceleration 

of the man between t=0 and t=5”. In this problem, it seems the student incorrectly 

thought integrating the displacement equation, that could be obtained from the graph, 

results acceleration function. However, integrating an acceleration equation results the 

velocity function, and integrating the velocity equation results the displacement 

function. 

Types of difficulty Test Interview 

Difficulties in understanding the role of 𝐹(𝑥) in the FTC 13 (30%) 7 (78%) 

Difficulties in understanding the applications of the FTC 

in the real-world 

10 (23.8) 6 (67%) 

Difficulties in calculating antiderivatives    5 (11.9%) 4 (44%) 

Table 4. students’ difficulties in Task 2 

Task 2. “Please can you write a problem based on the 

 following graph whose solution would require using  

the FTC?” (Radmehr & Drake, 2017, p. 1052). 
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Students’ attitudes towards mathematical problem posing 

Students’ responses to the attitude questionnaire showed that over 50 percent of 

students enjoyed the problem posing activities, and more than 60% of students believed 

that problem posing and problem solving are closely related. Students’ responses to 

open-ended questions showed that they believed engaging in problem posing activities 

help them to develop their mathematical understanding. For instance, one student said 

“practicing problem posing activities might increase our creativity in mathematics and 

also helps us to solve more complicated problems which need more creativity”. The 

results of the interviews showed that eight out of nine students believed problem posing 

tasks are enjoyable activities and could be included in the teaching of mathematics. An 

examples was: “After I posed problems, I finally understood the applications of the 

mathematics we learned in the school and university. In fact, problem posing activities 

make mathematics more practical and bring it to our real life”. These eight students 

also expressed that problem posing tasks could be used in the mathematical exams. 

DISCUSSION 

The present study explored undergraduate engineering students’ competencies and 

attitudes towards mathematical problem posing in integral calculus. The findings 

showed that many engineering students could develop their problem posing skills. Of 

the 1080 problems that potentially could have been posed for the eight tasks, only 501 

(46%) problems were posed. Of these 501 problems, 411 (81%) were solvable which 

was consistent with previous studies which have reported most of the students’ posed 

problems are solvable (Bonotto & Dal Santo, 2015). One possible reason for the high 

percentage of solvability in the present study is that many of the posed problems were 

bare tasks without contexts. Moreover, only 157 problems (31.3 %) were based on the 

applications of integrals in the real world and 344 problems (68.6 %) were bare tasks 

without contexts which could be an indication of students’ lack of knowledge about 

the applications of integrals in the real world. The language used in the 440 of the posed 

problems (88%) was clear and understandable which might indicate that students at 

university level could pose clear and understandable problems. Furthermore, the study 

findings suggest that problem posing tasks could be used by teachers and lecturers to 

explore students’ mathematical understanding. In this study, using problem posing 

tasks, several students’ difficulties in relation to integral calculus were identified. The 

difficulties that have been identified are in line with previous studies that have explored 

students’ understanding of integral calculus (e.g., Mahir, 2009; Radmehr & Drake, 

2017, 2019). In relation to students’ attitudes towards mathematical problem posing, 

the findings showed that more than 50% of the engineering students believed problem 

posing is an enjoyable activity. This is consistent with previous studies (Arikan & Ünal, 

2015) which have reported that students enjoyed practicing problem posing tasks. 

Students also expressed that problem posing tasks could improve their mathematical 

learning, and they brought several reasons for their responses. For examples, they 

mentioned problem posing activities help them to foster their creativity, and identify 

their mathematical misunderstandings. To conclude, this study suggests that problem 
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posing activities could be used to improve the teaching and learning of integral calculus 

in engineering mathematical courses as the problem posing tasks could identify 

students’ difficulties in integral calculus and motivate them to improve their 

understanding of applications of integral calculus in real life. Moreover, since many 

students believed problem posing activities are enjoyable and help them to improve 

their mathematical learning, using such tasks could encourage students to be more 

active in mathematical classrooms, and might motivate them to learn mathematical 

concepts meaningfully. 
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This study aims at validating an attitude subscale of a national mathematics test that 

has been repeatedly used for over two decades and to expose the relations between 

students’ attitude towards mathematics and their approaches to learning mathematics. 

A sample of 196 year-one engineering students completed two survey instruments used 

for the study. Using a structural equation modelling approach, empirical evidence of 

construct validity, discriminant validity and reliability were found for the attitude 

subscale. Further, it was also found that students’ attitude towards mathematics had a 

substantial positive impact on deep approaches to learning and a substantial negative 

impact on surface approaches to learning. These findings could be of help to university 

teachers and other stakeholders in designing appropriate interventions to support the 

students. 

Keywords: students’ practices, deep approach, surface approach, attitude, structural 

equation modelling. 

INTRODUCTION 

Approaches to learning in higher education are part of students’ practices that have a 

considerable effect on learning outcomes. Students who care for every detail in their 

course content with the intent to achieve conceptual understanding (deep approach) are 

more likely to perform better than others who only rely on memorization of key points 

(surface approach). Approaches to learning have been conceptualized to include 

“predispositions adopted by an individual when presented with learning materials and 

strategies used to process the learning contents” (Zakariya, Bjørkestøl, Nilsen, 

Goodchild, & Lorås, 2020). It is an essential factor in students’ practices that has 

received increased attention in recent times. Perhaps, as a result of international 

campaigns on aligning university education towards developing learners’ deep 

approaches that will enable them to navigate easily through an increasingly changing 

society.  

Several empirical studies have been reported on the factors that encourage or 

discourage the adoption of either deep or surface approaches to learning. One of these 

studies is a critical review by Baeten, Kyndt, Struyven, and Dochy (2010). Therein, a 

total of 118 empirical studies were reviewed, and the results can be summarized as 

follows: satisfaction with course quality, big five personality traits except for 

neuroticism, and emotional stability are some of the factors that stimulate adoption of 

the deep approaches to learning. It was also found that students that experience intrinsic 

motivation, and who are self-efficacious and self-confident are most likely to adopt 

deep approaches to learning. In a follow-up quasi-experimental study Baeten, 
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Struyven, and Dochy (2013) investigated the contribution of some teaching methods 

on students’ approaches to learning. They found that adoption of deep approaches to 

learning decreases among the participants in a lecture-based group while they remain 

stable in a student-centred learning environment over a period. 

More so, Von Stumm and Furnham (2012) conducted an empirical study involving 579 

psychology and computer science undergraduate students on relations between 

approaches to learning, personality, intelligence and intellectual engagement. It was 

found that deep approaches to learning strongly related to intellectual engagement 

while personality and intelligence explained 25% variability in surface approaches to 

learning among the subjects of their study. In an attempt to unravel the interwoven 

bond between critical thinking, self-efficacy and learning approaches, Hyytinen, 

Toom, and Postareff (2018) conducted an empirical study involving 92 science 

education undergraduate students in Finland.  Their results showed that students with 

high self-efficacy also adopt deep approaches to learning. Some researchers have 

studied relations between approaches to learning and other factors in domain-specific 

contexts. For instance, Mji (2000) found that there was a strong relationship between 

students’ different conceptions of mathematics and their approaches to learning the 

subject.  

Despite the importance of approaches to learning and its relations with some affective 

constructs, e.g. self-efficacy there are few studies on its relations with attitudes of 

students. One of the relatively recent studies on this topic is the report by Alkhateeb 

and Hammoudi (2006) on the relations between attitude towards mathematics and 

students’ approaches to learning. In their study, students with a positive attitude 

towards mathematics were identified with deep approaches to learning while those with 

a negative attitude towards mathematics were identified with surface approaches to 

learning approaches. However, their study had some methodological issues such as the 

use of regression analysis to examine the relations between these constructs, given that 

the regression analysis does not account for measurement errors in the predictor 

variable(s). Another methodological issue in their study involved the use of mean 

scores derived from item parcelling of ordinal variables which could lead to biased 

results because of violation of multiple assumptions, e.g. tau-equivalent, and normal 

distribution (Zakariya, 2020). 

Thus, the present study was motivated by the sparsity of studies on the relationship 

between attitude towards mathematics and approaches to learning coupled with some 

methodological issues observed in available studies (e.g., Alkhateeb & Hammoudi, 

2006). Further, to the best of our knowledge, there was no validation study on the 

attitude subscale of the Norwegian national mathematics test for the past fifteen years. 

The national mathematics test is a test that is conducted every two years and designed 

to assess pre-university knowledge of mathematics of year-one undergraduate students 

across universities in Norway. The validity of this test is essential to ensure the test 

measures what is purported to measure, which will facilitate more accurate 

interpretations of its ensuing results. Therefore, the primary purposes of the present 
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study are to use a structural equation modelling approach to (a) validate the attitude 

subscale of the Norwegian national mathematics test; (b) expose the impact of attitude 

towards mathematics on students’ learning approaches. The use of the structural 

equation modelling approach will avail us an opportunity of taking of care of the two 

methodological issues involved in the use regression analysis that is typically used in 

the literature (e.g., Alkhateeb & Hammoudi, 2006). In the next section, a conceptual 

framework coupled with a theoretical perspective that justifies the rationale for finding 

the relations between these constructs is discussed. 

CONCEPTUAL FRAMEWORK 

A theoretical structure that could be used to justify the relations between attitude 

towards mathematics and approaches to learning is social cognitive theory. This theory 

sees an individual’s behavioural changes as consistently being regulated and modified 

by interacting with social factors in the environment whose feedback influences the 

next actions and outcomes (Bandura, 2001). Central to this theory is the concept of 

reciprocal determinism that postulates a dynamic relationship between personal, 

behavioural, and environmental determinants (Bandura, 2012). Even though both the 

attitude towards mathematics and approaches to learning are personal factors, it is 

presumed that the dynamic relationship between the determinants (personal, 

behavioural, and environmental) can be extrapolated to within the personal 

determinants (cognitive, affective and biological factors). As such, a causal 

relationship between attitude towards mathematics and approaches to learning can be 

theoretically postulated. Empirical evidence has shown that students’ attitude towards 

learning mathematics is greatly influenced by consistent interactions with teachers, 

peer groups and parents (e.g., Davadas & Lay, 2017). In other words, students whose 

teachers are efficacious, motivate them to learn, give positive feedback, maintain good 

teacher-student relations are more likely to develop a positive attitude towards 

mathematics. This, in turn, influences their approaches to learning the subject.     

Several attempts have been made to conceptualize and operationalize both attitude 

towards mathematics and approaches to learning. Attitude towards mathematics has 

been conceptualized to include appraisal, valuation and enjoyment of mathematics 

(Zakariya, 2017). It is a construct whose multifaceted nature has influenced, to a great 

extent, the development of its measuring instruments (e.g., Palacios, Arias, & Arias, 

2013; Zakariya, 2017).  Some of these instruments have contributed significantly to the 

measurement of this construct as well as in relating it to other constructs from 

quantitative research perspectives. However, for the purpose of this study, a 5-item 

unidimensional attitude scale which is part of the national mathematics test in Norway, 

was selected. Our choice of this scale was prompted by two factors: (a) availability in 

the Norwegian language; (b) our quest to provide construct and discriminant validity 

which is lacking in the literature. 

In addition, the “revised two-factor study process questionnaire” (R-SPQ-2F) has been 

identified as one of the best instruments for measuring students’ approaches to learning  
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(López-Aguado & Gutiérrez-Provecho, 2018). R-SPQ-2F was chosen for the present 

study because of its high psychometric properties, a small number of items and ease of 

score interpretations. Further, Norwegian validations of this instrument have been 

undertaken (e.g., Zakariya, 2019; Zakariya et al., 2020). The Norwegian version has 

ten items on deep subscale and nine items on surface subscale with evidence of 

construct validity, discriminant validity, and internal consistency of its items. 

Based on the postulates of the social cognitive theory coupled with previous literature, 

the two hypotheses of the present study are stated as follows, while Figure 1 depicts 

these hypothesized relations: 

(H01) There are substantial positive impacts of attitude towards mathematics on 

deep approaches to learning. 

(H02) There are substantial negative impacts of attitude towards mathematics on 

surface approaches to learning. 

Figure 1 shows hypothesized impact of attitude measured by five items (att01 – att05) 

on both deep and surface approaches each measured by ten items and nine items 

respectively with an error correlation (indicated by the double-headed arrow) between 

deep and surface approaches. The plus (+) and minus (-) signs indicate the 

hypothesized positive and negative impacts of attitude on deep and surface approaches, 

respectively.   

 

Figure 1: A hypothesized model of the relations between attitude towards mathematics 

and approaches to learning mathematics 

METHOD 

SAMPLE AND MEASURES 

The sample for this study was made up of 196 year-one engineering students, including 

34 females and 162 males with an average age of 24.64 years. Two online survey 
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instruments were completed by the students, including R-SPQ-2F (Norwegian version) 

and attitude towards mathematics scale (AtMS). R-SPQ-2F is a 19-item questionnaire 

in which respondents rated their level of agreement from (1) ‘never or only rarely true 

of me’ to (5) ‘always or almost always true of me’ to statements like “I test myself on 

important topics until I understand them completely” (deep approach), “I see no point 

in learning material which is not likely to be in the examination” (surface approach), 

etc. On the other hand, AtMS is a 5-item scale in which respondents rated their level 

of agreements from (1) ‘strongly disagree’ to (4) ‘strongly agree’ to statements like “I 

work with mathematics because I like it”, and “I'm interested in what I learn in math”. 

DATA ANALYSIS 

The analyses proceeded in two stages. Stage one involved fitting a measurement model 

to examine the construct validity and unidimensionality of the AtMS. In this stage, 

AtMS data were screened for outliers, normality assumption, skewness, and kurtosis. 

It was found that AtMS contained excess kurtosis (absolute value > 2) and both 

Kolmogorov-Smirnov’s and Shapiro-Wilk’s tests were significant for each item which 

showed that the data were not normally distributed. Thus, weighted least square mean 

and variance adjusted (WLSMV) estimator was used for the confirmatory factor 

analysis as it is robust enough to perform well under violation of multiple assumptions 

(Suh, 2015; Zakariya, Goodchild, Bjørkestøl, & Nilsen, 2019). Further, both the item 

and scale reliability indices of AtMS were investigated using latent factor approach as 

opposed to the Cronbach alpha coefficient. 

Analyses in stage two involved validating a structural model that explains the relations 

between attitude towards mathematics and approaches to learning. It consisted of 

evaluating the model and conducting exploratory post hoc analysis for its 

improvement. The structural equation modelling approach was used to either confirm 

or falsify the causal hypothesized relations between attitude towards mathematics and 

approaches to learning without claiming outright causation between the constructs.  

Model fits were assessed based on a combination of criteria as proposed in literature 

which includes: 𝜒2 ratio to the degree of freedom (df) less than 3, significant estimated 

parameters, comparative fit index (CFI), Tucker-Lewis index (TLI) close to or ≥ .95, 

root mean square error of approximation (RMSEA) ≤ .06, and standardized root mean 

square residual (SRMR) ≤ .08 (Chen, 2007; Hu & Bentler, 1999). All the analyses were 

performed using Mplus 8.3 software, and the results are presented in the next section.  

RESULTS 

STAGE ONE: MEASUREMENT MODEL AND RELIABILITY 

A one-factor model was evaluated for the measure of attitude towards mathematics, 

and the results are presented in Table 1. 

GOF indices Model 1 Model 2 

𝜒2-value 84.078 3.562 
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df 5 3 

p-value < .001 .313 

𝜒2/𝑑𝑓 16.816 1.187 

CFI .927 .999 

TLI .854 .998 

RMSEA (90% CI) .284 (.233 - .339) .031 (< .001 - .128)  

CFit < .001 .510 

SRMR value .076 .038 

Table 1: Selected goodness of fit indices (GOF) for measurement 1-factor model of AtMS 

Note. CFit: close fit (i.e. probability of RMSEA <= .05) 

The results of the selected goodness of fit (GOF) indices, presented in Table 1 (Model 

1) showed an appropriate fit of the one-factor model AtMS. However, the significant 

chi-square value, its ratio to df > 3, and the low value of TLI, suggest that the model 

can be improved. Thus, a post hoc analysis was conducted using suggestions from 

modification indices. On this basis, two error covariances were included in the model 

between item 02 and item 04 as well as between item 01 and item 05. These resulted 

in a significant improvement in the model (Model 2) as indicated by the significant chi-

square difference test statistics with Satorra-Bentler correction Δ𝜒[2]
2 = 80.516,𝑝 <

.001. The model chi-square value is no longer significant, which is expected and its 

ratio to df < 3, CFI, TLI, RMSEA and SRMR, all now within the recommended ranges. 

These suggest an excellent fit of Model 2. All the factor loadings are found to be 

significant, and all the items are reliable with an ordinal coefficient alpha of .78 on the 

whole measuring instrument. 

STAGE TWO: STRUCTURAL MODEL 

In an attempt to test hypotheses one and two, we evaluated two structural models. The 

first model (Model 3) concerns the impact of attitude towards mathematics on the two 

dimensions of approaches to learning the subject. The second model (Model 4) 

concerns the final improvement of Model 3 through post hoc analyses. Selected GOF 

indices of these models are presented in Table 2, while Figure 2 displays standardized 

estimates of factor loadings, regression weights, variance explained, etc. 

GOF indices Model 3 Model 4 

𝜒2-value 425.784 301.876 

df 247 204 

p-value < .001 < .001 

𝜒2/𝑑𝑓 1.724 1.480 
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CFI .913 .953 

TLI .902 .947 

RMSEA (90% CI) .061 (.051 - .070) .049 (.037 - .061)  

CFit .037 .518 

SRMR value .070 .059 

Table 2: Selected goodness of fit indices for measurement 1-factor model of AtMS  

The results in Table 2 (Model 3) showed an appropriate fit of the model except that 

both CFI and TLI are relatively low and close fit probability assessment of RMSEA 

was significant which implies the model is not close enough to the data. As the first 

step in post hoc analysis of the structural equation modelling approach, we scanned 

through the estimates and discovered that item 4 and item 10 of the surface approach 

subscale of R-SPQ-2F had non-significant factor loadings. These items were deleted 

from the model, and the resulting model improved significantly as indicated by the 

significant chi-square difference test statistics with Satorra-Bentler correction Δ𝜒[43]
2 =

123.908,𝑝 < .001. The results, as presented in Table 2 (Model 4) suggest an excellent 

fit of the model. Figure 2 gives more detail on the parameter estimates of Model 4.  

 

Figure 2: Validated structural model of the relations between attitude towards 

mathematics and approaches to learning mathematics 

The illustrated results by Figure 2 show that there is a significant positive impact of 

attitude towards mathematics on deep approaches to learning (β= .377, p < .05) and a 

significant negative impact on the surface approaches to learning (β= -.371, p < .05) 

which confirm hypothesis one (H01) and hypothesis two (H02) respectively. These 

findings could be interpreted to mean that students who have a high (positive) attitude 

towards learning mathematics are more likely to adopt deep approaches to learning the 

subject. On the other hand, students who have a low (negative) attitude towards 

mathematics are more likely to adopt surface approaches to learning the subject. It is 
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also revealed in Figure 2 that attitude towards mathematics explained 14.2% and 13.8% 

variances in predicting deep and surface approaches, respectively. These percentages 

of explained variances appear low. However, they are statistically significant. The low 

percentages of explained variances in deep and surface approaches are suggestive of 

the presence of other factors that are not captured in the present study and yet influence 

the adoption of students’ learning approaches. In the next section, we present a brief 

discussion of the significant findings. 

DISCUSSION 

Attempts are made in the present study to provide empirical evidence for construct and 

discriminant validity of a 5-item attitude subscale of the Norwegian national 

mathematics test and to expose the impact of attitude towards mathematics on students’ 

learning approaches. The attitude subscale was found to be unidimensional, and 

possesses construct validity, it discriminates cleanly between two approaches to 

learning and it has high internal item consistency with an ordinal coefficient of .78. 

However, this validity evidence was achieved after accounting for two error 

covariances between item 02: “I work with math because I like it” and item 04: “I’m 

interested in what I learn in math” as well as between item 01: “making an effort in 

math is important because it will help me in work I will be doing later” and item 05: 

“mathematics is an important subject for me because I need it when I want to study 

further”.  

It is important to remark that the error covariances appear to make sense conceptually 

since both item 02 and item 04 seem to capture intrinsic motivation part of attitude and 

item 01 and item 05 seem to capture usefulness of mathematics part of attitude. This 

finding corroborates other studies that have reported multidimensional attitude scales 

(Palacios et al., 2013). Further, the reliability coefficient of the AtMS (α = .78) is higher 

than that of the perception of utility subscale (α = .679) reported in (Palacios et al., 

2013) and that of the usefulness of mathematics subscale (α = .75) reported in 

(Zakariya, 2017) even though the final reliability coefficients of the whole scales 

reported in the two previous studies are higher than α = .78 that was found for the 

AtMS. 

Another important finding of the present study is the substantial positive impact of 

attitude towards mathematics on the deep approaches to learning as well as the 

substantial negative impact on the surface approaches to learning.  These findings, on 

the one hand, suggest that year-one engineering students who enjoy mathematics, who 

are interested in the subject and recognize the utility of mathematics to their future 

studies are more likely to adopt deep approaches to learning the subject. On the other 

hand, the findings suggest that year-one engineering students who find mathematics 

less enjoyable and struggle to discover its relevance to their future studies may tend to 

adopt surface approaches to learning the subject. These findings agree with the report 

by Alkhateeb and Hammoudi (2006) and partly support some reported results by 

García, Rodríguez, Betts, Areces, and González-Castro (2016). More importantly, we 
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do not claim outright causal relations between these constructs. However, our results 

have only provided tentative empirical evidence that confirms our hypothesized causal 

relations between engineering students’ attitude towards mathematics and approaches 

to learning. Future replication studies are recommended to confirm these findings in 

independent samples. Finally, it is hoped that the findings of this study have shed some 

light on a general understanding of the causal relations between the attitude of students 

towards mathematics and their approaches to learning the subject. This could be of help 

to university teachers and other stakeholders in designing appropriate interventions to 

support the students.   
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Students performed a CarRace in Python programming language 

using Calculus’ parametrizations.  Students get a sample Python 

program where a car performs a race in a speedway and adapt that 

program to a speedway chosen by them. Every student chooses a 

speedway, so every student has a different problem and must adjust 

his parametrizations (and some more details) to his speedway.  

 

Figure 1: Screenshot of a car performing a trajectory on a speedway. 

And the parametrizations to run the spreedway. The example given 

to students. 

Research question: the CarRace project is a positive project to 

propose to computing engineering students? The course had 113 and 

114 students respectively, in 2017 and 2018. Respectively, 95 and 

86 accomplished the project. The respondents to a survey were 26 

and 51, respectively. 
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Graphic 7: Answers to the question: “Globally I classify the existence 

of CarRace project as:” in 2017 and 2018. 

As shown in Graphic 7, nearly 80% of respondents globally classify 

the existence of CarRace as positive. 

 

In the answers to the survey around 75% of students state that were 

pleased or highly pleased making the project. And 80% were also 

pleased or highly pleased when concluded it.  

 

To about 50% of respondents, the project made them to better 

understand the subject. And only 15% says that using Python 

increased difficulty to the project. Nearly all students agree that is 

important to use Python transversally in graduation. CarRace also 

shows an immediate application of Mathematics and around 80% 

agreed that it is interesting.   

 

Globally students classified CarRace project as positive, 80% of 

respondents. Teachers refer that students show excitement about the 

project, were attentive, and posed many questions. The teachers and 

the graduation commission consider important that students work 

with Python transversally in graduation, connecting Python with 

others subjects and also to work with an immediate application of 

mathematics.  

The global assessment of this project is positive thus we will keep 

this project in the following years and recommend its use by other 

teachers.  
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INTRODUCTION 
The work presented here refers to the Anthropological Theory of the Didactic (ATD). 
I consider engineering schools and the workplace for engineers as two different 
institutions, where mathematics is present in different components of the 
praxeologies (Chevallard, 2017).  
In a recent research (Quéré, 2017) I have evidenced that French engineers encounter 
different types of mathematical praxeologies in the workplace. I have classified them 
in two main categories: “proper” praxeologies (Basic, Statistic and Specific) or 
“transversal” praxeologies (Modelling, Reasoning, and Communication and 
Documentation). Whereas some of them seem to be taught in the engineering studies, 
the Modelling and the Communication and Documentation praxeologies are declared 
as lacking by the engineers I’ve met through the research. This suggests the need for 
specific innovations in the preparation of future engineers.  
In this poster I describe and analyse the design and implementation of a Study and 
Research Path (SRP, Barquero, Bosch, & Gascón, 2008) in Chemistry and Statistics, 
in an engineer school in France. I try to show how this kind of innovative teaching 
can be a way to bridge the gap between mathematics courses for future engineers and 
mathematics in the workplace. 

THEORETICAL FRAMEWORK AND RESEARCH QUESTION 
An SRP can play several roles. Here I focus on its role as a teaching model for an 
inquiry-centred education based on a generating question Q0.  It is aimed to make the 
teaching getting out from the usual monumentalism of the mathematical teaching 
(Barquero et al., 2008). The ATD framework provides efficient tools to analyse the 
global and mathematical praxeologies of the students during the progress of a SRP, 
with in particular 9 dialectics (for example, between questions and answers, Parra & 
Otero, 2018). The main research question I shall try to answer here is “Can a SRP be 
an answer to the concerns of motivation, mobilisation of mathematical knowledge, 
lack of connection between diverse disciplines, satisfaction of both teachers and 
engineering students?” 
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METHODOLOGY 
The SRP described in this poster starts with the following generating question Q0 
written by the chemistry teacher supervising the SRP with me: "In the 
pharmaceutical industry, how do you make sure that the product (medicine) meets the 
dosage on the package?” 
To answer this question the aim for the 14 participating students is to provide a 
website that will be accessible for the future students of the next year. At the 
beginning of the experiment, we have all together planned a number of 6 working 
sessions for the two coming months before the students have to present their work to 
the other students of the class. 
To monitor the global and mathematical activity of the students, I’ve firstly filled a 
personal diary with my observation notes during the working sessions. After each of 
these sessions, designated students leaders had to fill an online diary detailing their 
actions (meetings, research, topics, resources, etc.). At the end, each student had to 
fill a personal questionnaire about her or his own experience. Moreover, I have 
recorded and transcribed a final interview with the chemistry colleague. 

RESULTS 
An important result is that this SRP has allowed students to develop some 
praxeologies usually lacking in the training of engineers and useful in the 
professional context (for example, documentation and communication). Moreover, 
the students and the teachers have emphasized codisciplinarity as a real asset. 
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INTRODUCTION 

Ten oral communications were presented, reflecting the variety of the themes of the 

group: Number Theory, Algebra, Discrete Mathematics, Logic. In detail, two papers 

on Linear Algebra (Span, Linear transformation) were presented; 2 papers on 

Abstract Algebra (Group theory, the concept of ideal); 4 papers on Logic, Reasoning 

and Proof (syntax and semantic, Mathematical induction and recursion, Backward 

reasoning, personal meaning of proof); 2 papers on innovative teaching (first-year 

university students, Geometry capstone course). They were presented during sessions 

1 and 3, being followed in each case by a discussion session nourished by the issues 

raised in the communications. Thirty-eight participants were registered for the 

sessions in this thematic working group. The number of attendees varied between 29 

and 19, from Tunisia, Europe, North and South America and Japan; this was a 

challenge, due to the differences in local time zones. 

SYNTHESIS OF THE COMMUNICATIONS  

The two papers on Linear Algebra were presented respectively by Mitsuru Kawazoe 

(Japan) and Asuman Oktaç (Mexico). Mitsuri Kawazoe’s paper is entitled Relation 

between understandings of linear algebra concepts in the embodied world and in the 

symbolic world. In this study, linear (in)dependence and basis were focused on, and 

the relation between understandings of them in the embodied world and the symbolic 

world. I includes a study of the effectiveness of an instruction emphasizing geometric 

images of them. The main results of the study were the following: 1/ conceptual 

understanding of linear dependence of four spatial vectors such that any three of them 

do not lie on the same plane was positively associated with the understanding of the 

basis in the symbolic world. 2/ A geometrical instruction had not improved 

understanding of linear dependence of such vectors; indeed, in both pre-test and post-

test, this task showed to be problematic for nearly half of the students.  

Asuman Oktaç presented a paper written with by Diana Villabona, Gisela Camacho, 

Rita Vasquez and Osiel Ramirez on Process conception of linear transformation from 

a functional perspective. The paper discusses student conceptions involved in the 

construction of conceptions about a domain, image and inverse image of a linear 

transformation from IR
2
 to IR

2
 as well as the relations between these notions. The 

authors present the design of a set of tasks that allow exploring different facets of the 
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above concepts, evidenced by the analysis of the production of a student. Thanks to 

the design of the instrument, it was possible to highlight some conceptions that may 

not be evident in typical teaching situations. 

The two papers on Abstract Algebra were presented respectively by Koji Otaki 

(Japan) and Julie Candy (Switzerland and France). Koji Otaki presented a paper 

written with Hiroaki Hamanaka and Ryoto Hakamata entitled Introducing group 

theory with its raison d'être for students. This paper reports results of a sequence of 

didactic situations for teaching fundamental concepts in group theory, e.g., symmetric 

group, generator, subgroup, and co-set decomposition. Students in a pre-service 

teacher-training course dealt with such concepts, together with card-puzzle problems 

the analysis of which provide students with the raisons d'être of these concepts.  

 Julie Candy presented a paper entitled Etude de l'enseignement du concept d'idéal 

dans les premières années postsecondaires: élaboration de modèles praxéologiques de 

référence. The paper presents the construction and interpretation of a praxeological 

reference model for teaching the concept of ideal in the first two post-secondary years 

in France, in two different institutions, before this concept is taught systematically in 

Ring Theory. The model allows a comparison of the choices made by the two 

institutions and a first discussion of the implementation of structuralist thinking, in 

the perspective of the teaching of abstract algebra in the third year of university. 

The four papers on Logic, Reasoning and Proof were presented respectively by Zoé 

Mesnil (France), Nicolas Leon (France), Ines Gómez-Chacón (Spain) and Sandra 

Krämer (Germany). Zoé Mesnil presented a paper written with Virginie Deloustal-

Jorrand, Michèle Gandit, and Mickael Da Ronch, entitled Utilisation de l'articulation 

entre les points de vue syntaxique et sémantique dans l'analyse d'un cours sur le 

raisonnement.The authors highlight the relevance of the articulation between syntax 

and semantics in proof and proving activities. With this lens, they present a logical 

and didactical analysis of a university course entitled "Mathematical Reasoning", 

relying on interviews with teachers, worksheets and an assessment test. The case 

study presented here is the first step for a comparative study aiming at characterizing 

the teachers' views on proof and proving, as a preliminary before studying students' 

appropriation of the various aspects of proof and proving.  

Nicolas Leon presented a paper, written with Simon Modeste and Viviane Durand-

Guerrier, entitled Récurrence et récursivité: analyses de preuves de chercheurs dans 

une perspective didactique à l'interface mathématiques. The authors present the 

analysis of researchers' proofs of the equivalence of two definitions of the concept of 

tree in graph theory, one of the two definitions being recursive and the other not. The 

analysis aims to shed light on the relationship between the notions of recurrence and 

recursion, as perceived by experts. The authors will rely on the results of this study 

when designing didactic sequences aiming to work with students on recurrence and 

recursion and their interactions. 
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Ines Gómez-Chacón presented a paper written with Marta Barbero and Ferdinando 

Arzarello entitled Backward reasoning and epistemic actions in discovery processes 

of strategic games problems. The authors focus on the epistemic and cognitive 

characterization of backward reasoning in strategy games problems with PhD 

students in a Spanish and an Italian university. They report a case study showing the 

process of discovery that a PhD student carries out to formulate a general recursive 

formula. They propose a unified framework that allows focusing on both short-term 

and long-term processes in students' activities. Sandra Krämer presented a paper 

written with Leander Kempen and Rolf Biehler entitled Investigating high school 

graduates' personal meaning of the notion of "mathematical proof". In this paper, the 

authors report on the results of a pilot study to investigate high-school graduates' 

personal meaning of mathematical proof. By using proof tasks and a following 

interview phase with meta-cognitive questions, they describe students' personal 

meaning of the notion of mathematical proof and show, among others, that some 

students hold different meanings of the word "proof" simultaneously. 

Each of the last two papers presents innovative courses in teaching mathematics. 

They were presented respectively by Patrick Gibel (France) and Max Hoffmann 

(Germany). Patrick Gibel presented a paper written with Isabelle Bloch entitled 

Analyse des effets d'un dispositif innovant sur l'évolution des représentations des 

étudiants en première année de licence de mathématiques. The authors present an 

innovative course set up at the University of Pau in order to help undergraduate 

students to overcome difficulties in the secondary-tertiary transition. A main mean is 

to involve students in research into mathematical problems. An example situation is 

described and analysed.  

Max Hoffmann presented a paper written with Rolf Biehler entitled Designing a 

Geometry Capstone Course for Student Teachers: Bridging the gap between 

academic mathematics and school mathematics in the case of congruence.  The 

authors present a geometry course for upper secondary student teachers aiming to 

show links between academic mathematics and school mathematics. In the paper, 

they focus on the concept of congruence, illustrating how specific aspects of the 

course are used to systematize the mathematical background of the topic, thus 

enabling future mathematics teachers to diagnose and react in fictitious teaching 

situations professionally based on subject matter knowledge in mathematics. Finally, 

they provide examples of learning activities in the course and first results of 

analysing students' work.  

The paper by Khalid Bouhjar, Christine Andrews-Larson, and Muhammed Haider, 

On students' reasoning about span in the context of Inquiry-Oriented Instruction, has 

not been presented, but is available in the proceedings. The authors analyse 

differences in reasoning about span by comparing the written work of 126 linear 

algebra students who learned through a particular inquiry-oriented (IO) instructional 

approach compared to 129 students whose instructors used other instructional 

approaches. Their analysis of students' responses to open-ended questions indicated 
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that IO students' concept images of the span were more aligned with the 

corresponding concept definition than the concept images of non-IO students. 

Additionally, IO students exhibited richer conceptual understanding and greater use 

of deductive reasoning than Non-IO students. 

MAIN ISSUES DISCUSSED DURING THE SESSIONS 

The main theoretical and methodological issues discussed were 1/ the role of ATD 

(Anthropological Theory of the Didactic) for analysing, designing, giving access to 

the raisons d'être of a mathematical topic; 2/ the means to address the complexity of 

mathematical notions with students (e.g. Cayley diagram in group theory, recursion, 

strategic games in 3D); 3/ the relevance of analysing data through the lens of concept 

images versus concept definition, and of considering the impact of the choice of 

definition in students' activities (e.g. definition of the image starting from the domain 

or codomain; 4/ what can we infer from case studies depending on the two following 

cases: 4.1: a significant amount of data have been analysed – a representative case; 

4.2 a small number of interviewees, but a diversity of profile providing a great 

richness in the data. In both cases, it is not possible to generalize, but such a case 

study might contribute to enrich a priori analysis and identify candidates for 

operational invariants. Issues on proof and reasoning prevailed in the four papers 

focusing on this topic, but also in other papers, and were widely discussed. Several 

questions on proof classification were raised: what counts as an empirical argument? 

What is the difference between generic proof, narrative proof, symbolic proof? What 

links exist with the classification of the type of proofs by Balacheff? How to 

distinguish between correct and incorrect proof, considering the audience of a proof? 

Some participants wonder if there is a consensus among university teachers on what 

is a mathematical proof; more precisely, in a didactical transposition perspective, is 

there a common reference on proof that would make easier its teaching and learning. 

The answer is that this is not obvious because there might be dependence on the 

educational context or personal views of teachers. In some cases, a local consensus 

may exist among a pedagogical team.  

Different and related (necessary) aspects of teaching proof have been considered in 

the discussions: 1/ showing proofs to students seems necessary but is clearly not 

sufficient; 2/ solving problems with not too obvious solution to motivate the need for 

proof; 3/ teaching what is a proof and its role in mathematics to provide students with 

meta-knowledge on proof in mathematics. 4/ having students experience how to 

construct and analyse proofs, in their mathematical and logical dimensions; 5/ 

considering not only proof but also proving as a practice; 5/ teaching proof as a 

separate topic or integrated into teaching mathematical topics (with reflections on 

proof)? 6/ considering the role of proof on conceptualization and the reverse. 
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FURTHER RESEARCH AVENUES 

Finally, we have identified main open questions and research areas deserving more 

attention for the years to come. A promising avenue of research is addressing the 

second transition of Klein (in programs for mathematics teacher education), by 

developing innovative teaching modules to allow students in a teacher training 

program to deeply understand the relationships between university mathematics and 

school mathematics in a professional perspective. There are convincing examples but 

also several challenges: 1/ finding relevant topics with strong epistemological 

foundation (e.g. congruence, symmetry, integration, proof); 2/ developing 

collaborations between university teachers and researchers in didactics of 

mathematics (some might be both) for implementation and analysis; 3/ managing to 

implement it, depending on the context: department of mathematics versus faculty of 

education; 4/ finding a way of dissemination of research results toward mathematics 

university teachers. Exploration of paths of collaboration between mathematicians 

and researchers in mathematics education, considering various institutional contexts: 

1/ having researchers in didactics of mathematics in a department of mathematics; 2/ 

having professional mathematicians in a faculty of education; 3/ developing 

collaboration in a doctoral programme - co-supervision of PhD students; 4/ designing 

training modules for mathematics university teachers (mandatory in many countries – 

should also be specific to the domain of mathematics, not just general pedagogy); 5/ 

organizing workshops aiming at participants to get acquainted with didactic aspects 

of the teaching and learning of university mathematics. 

Address proof and proving issues at all level of university mathematics. 1/  going on 

investigating the possibility of a common background (versus specificity) on proof 

and proving for developing university mathematics (both undergraduate and 

graduate) studies; 2/ deepening studies on the role of proof and proving in 

conceptualization on advanced topics (e.g. number theory, linear and abstract algebra, 

algebraic topology, algorithms, discrete mathematics, recursion); 3/ developing 

research on proving as a practice linked to solving problem: epistemological and 

didactical issues; 4/ developing students' meta-knowledge on proof as a topic of its 

own on top of students' experiences of proof and proving as part of problem-solving 

processes; 5/ working in a given axiomatic versus exemplary participation in an 

axiomatization of a domain; going on addressing logical issues in mathematics and 

establishing links with mathematics and computer science. These issues are in line 

with than some of those identified and discussed in Chellougui et al. (2021). 
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Résumé : Cet article présente un dispositif mis en place à l'université de Pau afin 

d'aider les étudiants de Licence 1 à surmonter les difficultés d'adaptation aux 

mathématiques du niveau supérieur, et à s'impliquer dans la recherche de problèmes 

mathématiques. Une situation est précisée et les productions des étudiants analysées.  

Mots-clés : situations de recherche à l'Université, concepts mathématiques, outils 

sémiotiques, disponibilité des savoirs et des signes. 

INTRODUCTION  

La volonté politique de l’UPPA1 d’expérimenter des dispositifs innovants pour lutter 

contre l’échec en première année de Licence (L1) de mathématiques et de licence 

MIASHS2 a conduit des enseignants intervenant en L1 et les didacticiens de l’ESPE3 à 

se réunir pour envisager la mise en œuvre d’un projet pédagogique innovant. Ceci a été 

rendu possible grâce aux interactions engagées, depuis plusieurs années, entre l’ESPE 

d’Aquitaine (site de Pau) et le département mathématique de l'université dans le cadre 

des mémoires liés à l’enseignement des mathématiques (Master MEEF) et au co-

encadrement de thèses en didactique des mathématiques. Ces échanges ont contribué à 

expliciter les principaux enjeux du champ de la didactique des mathématiques et à 

montrer l’efficacité des concepts de didactique pour questionner et étudier les 

problématiques liées à l’enseignement des mathématiques dans le secondaire et le 

supérieur. Ces interactions ont conduit certains collègues de mathématiques de l’UPPA 

à vouloir diversifier leurs méthodes d’enseignement, suite au constat du manque 

manifeste d’investissement des étudiants de L1 dans l’étude des cours dispensés en 

CM4 et dans la recherche des activités proposées en TD5, et donc de leur échec – 

potentiel ou avéré.  

CARACTERISATION DU DISPOSITIF PEDAGOGIQUE  

L'élaboration du projet  

Le souhait des enseignants de l’UPPA était donc de mettre en place un dispositif 

pédagogique spécifique ciblant les difficultés des étudiants et visant à augmenter leur 

                                         
1 Université de Pau et des Pays de l'Adour 
2 MIASHS : Mathématiques et Informatique appliquées aux Sciences Humaines et Sociales 
3 Ecole Supérieure du Professorat et de l'Education, devenue en 2019 INSPE : Institut National Supérieur du Professorat 

et de l'Education 
4 CM : cours magistraux 
5 TD : séances de travaux dirigés 
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compréhension des savoirs mathématiques en jeu, en vue de permettre une plus grande 

responsabilisation de ces étudiants de L1 et de favoriser leur implication dans les 

activités de résolution de problèmes, notamment en les faisant travailler en groupes. La 

volonté de privilégier les échanges au sein de groupes d’étudiants et de permettre des 

travaux en trinômes a reposé sur une méthode : il a été décidé d'aménager un effectif 

réduit pour chacun des groupes, soit 24 étudiants. Puis ont été constitués huit trinômes 

d’étudiants par groupe afin que les enseignants présents puissent suivre et encadrer les 

travaux engagés par chacun des trinômes, et étudier les principales difficultés 

rencontrées. Les étudiants ont été laissés libres de constituer un trinôme, notamment 

par affinité. Le but du projet est donc de motiver et responsabiliser chaque trinôme 

d’étudiants, en leur dévoluant une situation mathématique proche d'une situation 

adidactique ou à dimension adidactique, c’est-à-dire une situation comportant une 

dimension de recherche. Les situations présentées ont pour but de faire approfondir les 

connaissances présentées notamment durant les CM et les TD classiques.  

Nature des difficultés des étudiants constatées en L1  

Le décalage de connaissances et de pratiques mathématiques observé lors de la 

transition secondaire/supérieur s’avère particulièrement difficile à gérer pour les 

étudiants ; en effet le contrat didactique évolue, conduisant les étudiants à une plus 

grande responsabilisation liée aux choix : 

- des connaissances et des savoirs qu’il convient de mobiliser pour répondre à la 

situation de recherche dévolue par l’enseignant ; 

- du cadre (numérique, géométrique, algébrique, graphique…) qui apparait le plus 

adéquat pour répondre à la question posée ; 

- du mode de raisonnement qu’il faut mobiliser (inductif, déductif, abductif) et la 

forme de raisonnement associée (raisonnement par l’absurde, raisonnement par 

récurrence, raisonnement 'direct' ou par contraposée) pour élaborer la solution ; 

- de l’interprétation et de l’usage des signes mathématiques, signes dont le niveau 

de complexité est élevé, par exemple les quantificateurs.   

Les nombreuses études menées en didactique sur la transition secondaire-supérieur 

mettent en évidence un attendu spécifique en L1, à savoir une pratique maîtrisée du 

raisonnement au travers de ses différentes fonctions (Bloch et Gibel, 2016), (Gibel, 

2018). Parmi les attendus du raisonnement on peut citer : organiser sa recherche, 

chercher, conjecturer, expliquer, justifier, prouver, démontrer, valider, invalider, 

réfuter.  

Les précédentes recherches en DDM montrent des déficiences importantes des 

étudiants dans la prise d’initiative quant aux connaissances et savoirs à mobiliser pour 

résoudre un problème et élaborer une procédure de résolution. Au lycée les 

connaissances mobilisées dans le cadre des activités de résolution de problèmes sont 

le plus souvent en lien direct avec la notion mathématique étudiée précédemment, et 

ne nécessitent que la mise en œuvre de procédures répertoriées directement (et 

enseignées dans le cours) en lien direct avec la notion étudiée, voire explicitement 
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indiquées dans l’énoncé du problème. Il en est de même dans l'épreuve du baccalauréat. 

De plus les signes utilisés relèvent peu du formalisme mathématique.  

A l’université, les étudiants doivent être capables d’élaborer, puis de rédiger et 

communiquer une preuve mathématique de façon autonome, mais également de 

débattre de la validité et de la pertinence d’une preuve complète, ceci en intégrant un 

niveau de justification adéquat, et des outils nouveaux, comme les quantificateurs : il 

y a donc un basculement du contrat didactique. Le décalage entre les deux niveaux a 

été largement illustré dans la recherche, par exemple dans Bloch (2016) : 

(…) ce décalage fait que les étudiants ne savent manipuler que des fonctions définies par 

une formule algébrique, et … ne prennent que peu en compte le fait que l’étude des 

fonctions implique des calculs et raisonnements à différents niveaux, soit ponctuel, global, 

local, ce dernier point de vue étant celui qui se trouve le moins investi. Le global n’est pas 

non plus bien maîtrisé, les graphiques, par exemple, n’étant parfois vus que comme des 

icônes de fonctions, et non comme des outils de travail sur ces fonctions. Benitez & 

Drouhard (2015) mettent aussi en évidence que les étudiants testés dans leur étude … ont 

d’abord à surmonter des difficultés de calcul algébrique et de raisonnement, et que les 

étudiants qui ne manifestent plus ces difficultés algébriques sont confrontés à des obstacles 

venant de leur conception inachevée des objets mathématiques, et des liens entre les 

différents objets. 

Rogalski (2008) pointe également la difficulté qu'ont les étudiants à passer du niveau 

global au local, ou réciproquement, notamment dans l'étude des fonctions. C. Winslow 

signale aussi que :  

Parmi les enseignants universitaires, il y a un sentiment répandu que l’étudiant doit, 

effectivement, accomplir des « sauts cognitifs » dans le parcours … vers l’analyse 

abstraite enseignée à l’université. (Winslow, 2007, p.189) 

Les grandes lignes du dispositif et le contrat didactique 

La mise en œuvre du dispositif décrit précédemment repose donc sur un contrat 

didactique universitaire et spécifique qu’il nous semble important de définir. Ainsi les 

principales responsabilités dévolues aux étudiants sont : 

- L’implication dans la recherche, l’élaboration de raisonnements en réponses aux 

questions de l’énoncé, la formulation de questions en vue de surmonter certains 

obstacles ainsi que la rédaction d’une solution intégrant un niveau de 

justification adéquat et l'usage conforme des signes mathématiques.   

- La présentation par le trinôme, tiré au sort, du raisonnement mathématique 

produit en réponse à chacune des questions de la situation de recherche. 

- Le questionnement, par les trois étudiants constituant le jury, des raisonnements 

et des réponses produites par le binôme exposant son travail. 

- L’analyse critique du raisonnement produit par des étudiants ayant ou non 

travaillé cette situation 
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- La rédaction6 d’une solution intégrant les commentaires et les remarques 

effectués par les étudiants et l’enseignant suite à la présentation. 

Les principales responsabilités de l’enseignant lors de la mise en œuvre de la séance et 

à l’issue de celle-ci sont : 

- Observer les interactions au sein de chaque trinôme pour identifier leurs 

difficultés, les accompagner dans la résolution en apportant des réponses au 

questionnement des étudiants en vue de favoriser l’appropriation de la 

situation de recherche et d’éventuels changements de cadres ou de registres. 

Il s'agit de conserver la composante recherche de la situation, en s'inscrivant 

dans l'optique d'une 'guidance faible' (Bartolini-Bussi, 2009) ne dénaturant pas 

la dimension heuristique.  

- Identifier précisément la nature et l’origine des difficultés des étudiants en 

analysant les différents types d’erreurs produites lors de l’exposé de leurs 

travaux.  

- En fin de questionnement par le jury, choisir de revenir sur certains éléments 

de la solution en vue de lever le doute sur certaines interrogations quant aux 

savoirs en jeu, à l’adéquation des signes mobilisés et à la pertinence des 

réponses proposées. 

- A l’issue des questions, décider des connaissances et des savoirs qu’il 

convient d’institutionnaliser : identification des objets mathématiques qui 

définissent la situation objective, nature et forme des signes et des 

raisonnements mobilisés lors de l’étude, liens entre les procédures distinctes 

mises en œuvre par différents groupes ; principaux enjeux didactiques et 

mathématiques de la situation, retour sur les registres sémiotiques mobilisés. 

- Commenter et questionner l’écrit de synthèse produit par le trinôme – en 

charge de produire la mémoire de la situation de recherche – en vue d’une 

réécriture valide sur le plan sémantique et syntaxique.  

Ce contrat spécifique est exposé en début d'année aux étudiants inscrits dans cette unité 

d'enseignement, et une première situation de recherche leur est proposée, situation qui 

est ensuite présentée et corrigée par l'enseignant afin de mettre en évidence les attendus 

de la restitution des situations.  

METHODOLOGIE UTILISEE POUR ANALYSER L’EVOLUTION DES 

REPRESENTATIONS ET DES CONCEPTIONS DES ETUDIANTS 

Contexte du dispositif et de la recherche  

L’expérimentation a été menée dans cinq groupes de travaux dirigés au premier 

semestre de la première année de Licence de Mathématiques et de licence MIASHS7. 

Les étudiants ont choisi de suivre cette Unité d’Enseignement intitulée « Outils de 

méthodologie pour comprendre les mathématiques ». Les cinq enseignants qui ont 

                                         
6 Par un trinôme n’ayant pas présenté son travail.  
7 Mathématiques et Informatique appliquées aux Sciences Humaines et Sociales 
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mené ces expérimentations sont ceux à l’origine du projet pédagogique innovant. Ils 

ont interagi avec les chercheurs en didactique, en vue de définir précisément le 

déroulement de chaque séance, de rédiger les énoncés des situations de recherche et de 

déterminer pour chacune des situations le contrat didactique correspondant. 

Mise en œuvre  

Afin de déterminer en quoi la confrontation des élèves à des situations de recherche 

favorise non seulement l’identification des objets mathématiques et l’appropriation des 

concepts mathématiques, mais aussi la pratique du raisonnement, nous avons procédé 

à l’analyse des différentes versions produites successivement par un trinôme en charge 

de la restitution de la solution construite à partir de la situation 1. 

La situation 1 objet d’étude : Suite de carrés8 

On construit une « suite » de carrés juxtaposés de la manière suivante : le côté du 

premier carré est de longueur 1 (en référence à une unité donnée), puis chaque carré a 

pour mesure de côté 
3

4
 de la mesure du côté du carré précédent. 

 

Figure 1 Les sept premiers carrés obtenus par le procédé de construction 

Dans cette situation, les élèves doivent déterminer s’il est ou non possible de construire 

un « énième » carré, dont an, l’abscisse du point An – correspondant à la mesure OAn, 

où O désigne l’origine du repère – est strictement supérieure à 4. Puis ils doivent 

montrer que les points Bi sont alignés, et calculer l'aire totale de la figure. Il s'agit d'une 

situation à dimension adidactique, visant à confronter les étudiants à la notion de limite. 

Cette dernière est obtenue ici comme le résultat du processus de construction des 

carrés, itéré à l’infini. Cette situation offre la possibilité d’étudier la notion de limite 

finie d’une suite ; son intérêt principal est qu'elle est issue de connaissances du 

secondaire, et qu'elle offre la possibilité d'articuler différents cadres (algébrique, 

graphique et géométrique) pour une meilleure appréhension du concept.  

Déroulement de la séance et analyse a priori de la situation « Suite de carrés » 

Place de la situation dans le dispositif  

La situation « Suite de carrés » est la première situation de recherche dévolue aux 

étudiants et dont la résolution leur incombe pleinement. Auparavant l’enseignant a 

proposé une situation sur les fonctions (variation d'une aire de triangle dont un sommet 

                                         
8 La situation complète est en annexe.   
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varie selon deux variables possibles : l'abscisse x du point variable ou la mesure α de 

l'angle opposé du triangle) à l’ensemble des trinômes de son groupe ; après la phase de 

recherche, c’est l'enseignant qui a effectué la présentation au tableau de la solution 

attendue. Puis il a répondu aux questions posées par un trinôme d’étudiants tiré au sort, 

constituant le jury. Il a enfin institutionnalisé les connaissances et les savoirs en jeu 

dans la situation étudiée : distinction entre fonction de x ou α et variation d'aire étudiée, 

étude des fonctions et représentation graphique, etc.  

Analyse a priori de la situation suite de carrés 

Cette situation est fondée sur la notion de limite ; il s'agit de différencier la limite d'une 

suite de carrés, d'une suite de points, d'une aire… et de calculer l’aire totale d'une figure 

constituée d'une infinité de carrés dont l'aire tend vers zéro. La situation permet de 

s'appuyer sur le registre graphique ; la raison de la suite des aires de carrés est un 

rationnel ; les abscisses des points (Bi)i1 sont à identifier, et à distinguer des points 

mêmes, et il faut montrer l'alignement des (Bi). Ensuite un calcul de somme de série 

géométrique est à effectuer pour calculer l'aire.  

Les étudiants peuvent confondre les points, et leurs coordonnées ; ils peuvent avoir des 

difficultés à montrer l'alignement demandé, et à calculer aisément la somme de la série. 

Les savoirs relèvent a priori tous du secondaire, mais l'usage des signes peut être 

problématique. De même, le choix des raisonnements peut poser problème : les élèves 

du secondaire ne sont pas habitués à choisir un raisonnement par l'absurde, par 

récurrence, par contraposée… de leur propre chef.  

Questions sur les restitutions et rédactions des étudiants 

On focalisera donc l'analyse sur les points suivants : 

- L'identification correcte du problème par les étudiants ;  

- Leur capacité à poser des conjectures ; 

- La capacité à distinguer les termes d’une suite et la limite, une fonction et un 

ensemble de fonctions ; 

- La capacité à mener des calculs puis à en tirer des conclusions ; 

- La réponse donnée, ou non, au problème ; 

- Comment utilisent-ils des savoirs : lesquels, de façon adéquate, ou non, avec les 

signes et notations ;  

- Réussissent-ils à généraliser un calcul, puis à identifier et utiliser un mode 

adéquat de validation ? Ceci concerne le niveau d’utilisation des signes atteint 

par les étudiants, notamment du point de vue de leur capacité à généraliser les 

calculs et donc à atteindre le niveau des arguments génériques (cf. tableau signes 

et milieux, Bloch & Gibel 2011). 

Du point de vue de l'enseignant, quelle institutionnalisation est pertinente, ainsi :  

- Quel problème a-t-on résolu, et quels étaient les objets mathématiques en jeu ? 

- Comment fonctionnent les signes utilisés, quelles sont les règles d’écriture ? 
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PREMIERS RESULTATS EXPERIMENTAUX : EFFETS DU DISPOSITIF 

SUR LES REPRESENTATIONS ET LES CONCEPTIONS DES ETUDIANTS  

Dans ce paragraphe nous rendons compte de l’évolution de la rédaction de la solution 

produite par un trinôme d’étudiants issus de section scientifique ; nous examinons la 

première version rédigée par le trinôme, puis les suivantes, ainsi que les commentaires 

rédigés par l’enseignant (en police Calibri gras) et, dans la colonne de droite, nos 

analyses de ces productions.  

La suite de carrés représente la suite Cn 

Puisque C1=1=(
3

4
)

0

 ; C2=(
3

4
)

1

 ; C3=(
3

4
)

2

 ; C4=(
3

4
)

3

 et C5=(
3

4
)

4

   

On a donc Cn+1=(
3

4
)

𝑛

 "Pb C1 est un carré et (3/4) est un nombre ! Ceci n’a 

pas de sens !" 
1) On conjecture que les points (Bn)nϵN sont alignés 

Pour démontrer cette conjecture nous utiliserons la fonction affine tq 

f(x)=ax+b dont la droite passe par les points Bn. 

On calcule le coefficient directeur 

f(1)=1  f(1,75)=0,75 

𝑎 =
𝑦𝐵 − 𝑦𝐴

𝑥𝐵 − 𝑥𝐴
=

0,75 − 1

1,75 − 1
=  

−0,25

0,75
= −

1

3
 

On résout l’équation    f(1)=1 ⇔  
1

3
. 1 + 𝑏 = 1 

                                                     ⇔ 𝑏 = 1 +
1

3
=

4

3
 

Donc ∀𝑥 ∈ 𝑅 , 𝑓(𝑥) = −
1

3
𝑥 +

4

3
   

"Ceci est la droite (B1B2) Pourquoi Bnϵ(B1B2) si n>2 ? Expliquer !" 

2) 𝐴𝑛 > 4 ⇔ 𝑥 > 4 

             ⇔−
1

3
 𝑥 < −

4

3
 

              ⇔−
1

3
𝑥 +

4

3
< −

4

3
+

4

3
 

              ⇔𝑓(𝑥) < 0 

A partir de x=4, la fonction f est négative. Donc il ne peut pas exister 

de carré Cn tel que l’abscisse du sommet An>4  

Analyses 

 

Le professeur 

relève la 

confusion entre 

les points et les 

abscisses, et la 

non conclusion 

pour Bn 

 

 

Les étudiants 

tentent de 

trouver un 

critère pour 

affirmer que An 

a une ordonnée 

positive 

Dans cet épisode, les étudiants montrent leur difficulté à identifier et transcrire en 

signes mathématiques le caractère générique de l'alignement, qui doit être valable pour 

tout n. Dans la dernière ligne de conclusion, ils semblent se baser sur le registre 

graphique sans parvenir à traduire dans le registre algébrique afin de produire une 

preuve recevable. Selon le tableau des signes (Bloch & Gibel 2011), ils restent au 

niveau des calculs et conjectures ponctuelles, et non au niveau des calculs génériques.   

Voici à présent la version 2, rédigée par le trinôme d’étudiants après retour du jury :  

1) On conjecture que les points (Bn)nϵN sont alignés Version 2 
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Pour démontrer cette conjecture nous utiliserons la fonction affine tq f(x)=ax+b 

dont la droite passe par les points Bn. 

On calcule d’abord le coefficient directeur de (B1B2) : B1(1 ;1),  

B2(1,75 ;0,75) 

D’où  f(1)=1  f(1,75)=0,75 

𝑎 =
𝑦𝐵2 − 𝑦𝐵1

𝑥𝐵2 − 𝑥𝐵1
=

0,75 − 1

1,75 − 1
=  

−0,25

0,75
= −

1

3
 

Puis celui de (B1B3) : B1(1 ;1) et 𝐵3 (
37

16
 ;

9

16
) 

D’où f(1)=1       f(
37

16
) =

9

16
 

𝑎 =
𝑦𝐵3 − 𝑦𝐵1

𝑥𝐵3 − 𝑥𝐵1
=

9
16

− 1

37
16

− 1
=  

−
7

16
21
16

= −
7

21
−

1

3
 

(B1B2) et (B1B3) ont le même coefficient directeur, donc les points sont alignés. 

On résout l’équation      "Pourquoi ??? Expliquer !" 

f(1)=1⇔
1

3
. 1 + 𝑏 = 1 ⇔ 𝑏 = 1 +

1

3
=

4

3
 

Donc ∀𝑥 ∈ 𝑅 , 𝑓(𝑥) = −
1

3
𝑥 +

4

3
 

 

 

 

 

 

Les étudiants 

rencontrent la 

même 

difficulté de 

généralisation 

à (B)n, n 

Découvrons à présent la troisième et dernière version rédigée par les étudiants en 

intégrant les remarques faites par l’enseignant :  

1) On conjecture que les points (Bn)nϵN sont alignés 

Pour démontrer cette conjecture nous utiliserons la fonction affine tq 

f(x)=ax+b dont la droite passe par les points Bn. 

On calcule d’abord le coefficient directeur de (B1B2) : B1(1 ;1),  

B2(1,75 ;0,75) 

D’où  f(1)=1  f(1,75)=0,75 

𝑎 =
𝑦𝐵2 − 𝑦𝐵1

𝑥𝐵2 − 𝑥𝐵1
=

0,75 − 1

1,75 − 1
=  

−0,25

0,75
= −

1

3
 

On effectue maintenant une récurrence pour montrer que peu importe (Bn)  

𝑎 = −
1

3
 , donc ils appartiennent tous à la droite. 

Initialisation : On calcule le coefficient directeur de (B1B3) :On a  B1(1 ;1) et 

𝐵3 (
37

16
 ;

9

16
) 

𝑎 =
𝑦𝐵3 − 𝑦𝐵1

𝑥𝐵3 − 𝑥𝐵1
=

9
16 − 1

37
16

− 1
=  

−
7

16
21
16

= −
7

21
= −

1

3
 

Hérédité : On suppose que (Bn) appartient à la droite. On souhaite démontrer 

que Bn+1 aussi. Pour cela on souhaite démontrer que 𝑎𝐵𝑛𝐵1 = −
1

3
  

Et  Bn+1(xn+1 ;yn+1) avec xn+1= 1 +
3

4
+ (

3

4
)

2

+ ⋯ + (
3

4
)

2

+ (
3

4
)

𝑛

+ (
3

4
)

𝑛+1

  et 

yn= (
3

4
)

𝑛+1

 

ABnBn+1=
𝑦𝑛+1−𝑦𝑛

𝑥𝑛+1−𝑥𝑛
=

(
3

4
)𝑛+1− (

3

4
)𝑛  

3

4
)𝑛+1

= ⋯ =
−

1

4
3

4

= −
1

3
  

Version 3 

Dans cette 

version, les 

étudiants mettent 

en forme une 

récurrence claire 

avec ses trois 

étapes 
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Conclusion ∀𝑛 ∈ 𝑁∗, 𝑜𝑛 𝑎 𝑎 = −
1

3
, donc la droite passe par tous les points 

(Bn) donc ils sont alignés. 

2) On cherche si un carré Cn existe pour An>4, on a A(xn ;0). Si An(4 ;0), 

Bn(4 ;yn). Pour savoir si un carré Cn existe, nous devons trouver si yn 

existe pour xn>4. 

xn correspond à x dans la fonction affine, on a alors f(4)= −
1

3
× 4 +

4

3
= 0  

Donc pour An(4 ;0) on a Bn(4 ;0) soit An=Bn. 

Donc pour An>4, soit an>4, il n’existe pas de carré Cn.  
"Car alors yn<0 d’après l’équation de droite." 

Il manquait 

l'argument 

principal : yn doit 

être strictement 

positif car 

l'ordonnée de Bn 

est une 

puissance de 3/4 

CONCLUSION  

Le dispositif expérimenté a confirmé que les étudiants ne sont pas habitués à vérifier 

si un calcul conduit à un argument recevable puis à une preuve : pour eux, le but serait 

juste de "faire un calcul". Il a permis une véritable implication des étudiants dans la 

recherche et la formulation des situations proposées. La problématique a mis en 

lumière la nature des obstacles des étudiants concernant l'identification des objets 

mathématiques, et leur formulation par des signes adaptés. On a aussi constaté leur 

difficulté quant au choix raisonné des procédures de preuve, et leur manque de 

discernement quant à la forme adéquate du raisonnement adapté au problème posé. Les 

étapes rédactionnelles prévues dans le dispositif les aident à surmonter ces obstacles et 

à adopter une posture réflexive quant aux exigences d'une preuve argumentée. L'étude 

didactique menée montre donc que ce dispositif s'avère complémentaire par rapport au 

cursus classique de licence, et peut aider les étudiants à comprendre et à réussir ce 

cursus.  

RÉFÉRENCES  

Bartolini-Bussi, M. (2009). Proof and proving in Primary school: An experimental 

approach. In Lin F.-L., Hsieh F.-J., Hanna G., de Villiers M. (Eds.) Proceedings of 

the ICMI Study 19 conference: Proof and Proving in Mathematics Education Vol.1, 

pp.53–58.  

Benitez, N.S., Drouhard, J.P. (2015). Una mirada epistemografica sobre el rol de las 

dificultades algebraicas ligadas al estudio de funciones en el ingreso a la universidad. 

Actas IV Jornadas de Ensenanza e Investigacion Educativa, Universidad Nacional 

de La Plata, Buenos Aires. Consulté le 20/11/2015 

Bloch, I. (2016). L'enseignement de l'analyse, de la limite à la dérivée et aux 

équations différentielles : questions épistémologiques et didactiques. In G. Gueudet, 

Y. Matheron et al., Enjeux et débats en didactique des mathématiques, pp. 67-92., 

La Pensée Sauvage. 

Bloch, I., Gibel, P. (2011). Un modèle d'analyse des raisonnements dans les 

situations didactiques : étude des niveaux de preuves dans une situation 

d’enseignement de la notion de limite, Recherches en Didactique des 

Mathématiques, 31(1), 191-227.  

296 sciencesconf.org:indrum2020:295622



  

Bloch, I., Gibel, P. (2016). A model to analyse the complexity of calculus knowledge 

at the beginning of University course. Communication to INDRUM, 43-52 

Université de Montpellier, ISSN: 2496-1027. 

Gibel, P. (2018). Elaboration et usages d’un modèle multidimensionnel d’analyse 

des raisonnements en classe de mathématiques. HDR, Université de Pau et des Pays 

de l'Adour.  

Rogalski, M. (2008). Les rapports entre local et global : mathématiques, rôle dans la 

physique élémentaire, questions didactiques. In IREM de Paris Editeur, Didactique, 

épistémologie et histoire des sciences, pp. 61-87. 

Winslow, C. (2007). Les problèmes de transition dans l’enseignement de l’analyse 

et la complémentarité des approches diverses de la didactique. Annales de didactique 

et de sciences cognitives, 12, 189-204.  

Annexe : La situation Suite de carrés 

Le côté du premier carré a pour mesure 1. Le côté du deuxième carré mesure 
3

4
 du premier, le côté du 

carré suivant mesure 
3

4
 du précédent et ainsi de suite (on itère ce procédé de construction). 

 

 

 

 

 

 

1. Construire les cinq premiers carrés dans le repère ci-dessous.  

2. On note B1, B2, B3, … les sommets « en haut à droite » de chaque carré (la suite (Bn)n≥1 est une 

suite de points). Quelle conjecture peut-on émettre quel que soit n sur les points B1, B2, B3, …, Bn ? 

Justifier ou invalider la conjecture. 

3. On note A1, A2, A3, … les sommets « en bas à droite » de chaque carré (la suite (An)n≥1 est une 

suite de points).  

Question : on se demande si, en itérant le processus de construction un nombre n de fois suffisant, 

on peut obtenir un n-ième carré dont l’abscisse du sommet An est strictement supérieure à 4.  

4. Déduire de la propriété des sommets B1, B2…,,Bn, la réponse à la question ci-dessus.   

5. On note an l’abscisse du point An  ; la suite (an)n≥1 est une suite numérique. 

a1 = 1, a2 = 1,75, etc. 1n , exprimer an+2 en fonction de an+1 et an. 

6. En mettant en œuvre un outil numérique, faites une conjecture sur la limite de la suite (an) 

Soit un nombre  4;1s . Peut-on déterminer le rang n0 à partir duquel on ait an ≥ s ?  

On pose s=4-ε, avec ε=10-6. Par la mise en œuvre d’un outil numérique, effectuez une approximation 

de la valeur du rang n0 correspondant.  

7. Déterminer l’expression algébrique de an en fonction de n. Démontrer la convergence de la suite 

(an).  
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On students’ reasoning about span in the context of Inquiry-Oriented 
Instruction 
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In this report we analyze differences in reasoning about span by comparing written 
work of 126 linear algebra students who learned through a particular inquiry-oriented 
(IO) instructional approach compared to 129 students whose instructors used other 
instructional approaches. Our coding of students’ responses to open-ended questions 
indicated that IO students’ concept images of span were more aligned with the 
corresponding concept definition than the concept images of Non-IO students. 
Additionally, IO students exhibited richer conceptual understanding and greater use 
of deductive reasoning than Non-IO students. Importantly, we argue that in order to 
reason about span in conceptually rich ways, students had to make use of ideas about 
linear independence and dimension. 

Keywords: teaching and learning of linear and abstract algebra, Teaching and 
learning of specific topics in university mathematics, inquiry-oriented instruction, 
student reasoning, span. 

INTRODUCTION 

Active approaches to learning have been linked to improved student learning in 
undergraduate science, technology, engineering and mathematics courses (Freeman et 
al., 2014). Though, there is limited research that documented the differences in students 
reasoning about particular disciplinary ideas under particular instructional approaches. 
The purpose of this paper is to reveal these differences in reasoning about span of 
students whose instructors received instructional supports to teach linear algebra in an 
inquiry-oriented way (IO students) from those who did not (Non-IO students). Inquiry-
oriented (IO) instructional approaches feature student inquiry into mathematics 
through problem-solving and instructor inquiry into student reasoning, and foreground 
the importance of leveraging student ideas to move forward the mathematical agenda 
of the class (Rasmussen & Kwon, 2007).  
In this analysis we draw on a data from an assessment developed to assess student 
performance and reasoning around core concepts in linear algebra (Haider et al., 2016; 
Haider, 2109). This report will focus on students’ responses to two multi-part questions 
that offer insights into students’ understanding of span. The central research question 
for this study is: How did IO and Non-IO students, reason differently about span?  

LITERATURE & THEORETICAL FRAMING 

Algebraic and geometric interpretations were salient in research on students reasoning 
about span. Several studies found that students were more likely to approach problems 
about span algebraically rather than using the geometric intuition (Bogomolny, 2007; 
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Aydin, 2014; Ertekin, Erhan, Solak, & Yazici, 2010; Stewart & Thomas 2010). 
Bogomolny (2007) found that for some students, geometric and algebraic 
representations were not well-coordinated; students gave a geometric representation of 
the solution set of the homogeneous system 𝐴𝑥 = 0 instead of providing a geometric 
representation of the span of the columns of the matrix 𝐴. By definition, span does not 
require linear independence, but by involving this concept students successfully 
interpreted span as a subspace of certain dimension (Wawro, Sweeney, & Rabin, 2011).  

In this paper we coordinate three theoretical constructs to gain insight into systematic 
differences in student reasoning under different instructional approaches. The first 
construct we leverage is Tall and Vinner’s (1981) notion of concept image which refers 
to the ways in which particular mathematical ideas are engaged by individuals, and 
concept definition which refers to formal definitions generally accepted by the broader 
community of mathematicians. The second construct we leverage is Hiebert and 
Lefevre’s (1986) definition of conceptual knowledge as “knowledge that is rich in 
relationships. It can be thought of as a connected web of knowledge, a network in which 
the linking relatonships are as prominent as the discrete pieces of information” (pp. 3-
4). We methodoligically operationalize conceptual understanding by examining 
connections between particular ideas related to span in the context of our assessment 
items. The third construct we use considers the use of deductive reasoning. In this work 
we also paid attention to proof-like arguments in which deductive reasoning, 
leveraging appropriate concepts and linking them with appropriate logical connections 
take place. Ayalon and Even (2008) described deductive reasoning as: “…unique in 
that it is the process of inferring conclusions from known information (called premises) 
based on formal logic rules, where conclusions are necessarily derived from the given 
information and there is no need to validate them by experiments” (pp. 235). Johnson 
Laird (1999) argued that “deduction yields valid conclusions, which must be true given 
that their premises are true (pp. 110).” Jean Dieudonne (1969) considered logical 
deduction as the one and only true powerhouse of mathematical thinking. 

DATA SOURCES AND STUDY CONTEXT 

Our data comes from a study in which instructors received three instructional supports 
for inquiry-oriented mathematics instruction: instructional materials, a summer 
workshop focused on the intended implementation of the instructional materials, and 
weekly online meetings with other instructors during the term when materials were 
implemented. IO instructors received these instructional supports. For this analysis, we 
have analysed the work of a total of 255 students where 126 IO and 129 Non-IO 
students; to collect assessment data for comparison between performance and 
reasoning of IO and Non-IO students, six IO instructors were involved in these 
instructional supports and three Non-IO instructors from different institutions in the 
US. Non-IO linear algebra instructors were recruited either at the same institutions as 
IO instructors or at other similar institutions (e.g. similar size of student population, 
similar acceptance rate at institution, similar geographic area). The linear algebra 
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assessment was administered in IO and Non-IO classes as a paper-pencil based test at 
the end of the semester. There were 9 assessment questions that include combinations 
of multiple-choice and open-ended items. Students were given one hour to complete 
the test. All questions were designed such that a calculator was not required. In this 
analysis, our focus will be on an in-depth analysis of students’ reasoning on the 
assessment questions related to span.  

Assessment items analyzed 

The assessment questions analyzed for this analysis are shown below in Figure 1. 
Questions Q1a and Q1b offer insights into how students conceive span geometrically 
and Q1c and Q1d offer insights into how students interpret the elements of span. The 
choices in Q1a and Q1c will provide systematic insights on these students’ concept 
images of span, whereas their open-ended responses Q1b and Q1d will provide 
information about nuances of students’ reasoning and justification.  

Figure 1: Assessment items related to span 

IO instructional approach 

Since the focus of this analysis is on items relating to span, we characterize the 
instructional sequence implemented in the IO approach aimed at supporting students 
understanding of these ideas. The approach draws on the instructional design heuristics 
of Realistic Mathematics Education (RME) that task sequences begin by engaging 
students in problem solving in an experientially real setting, that the sequence of tasks 
follow a trajectory that anticipates students’ construction of understanding of important 
mathematical ideas, and that the sequence supports a shift in which models-of students’ 
mathematical activity in one phase serve as models-for students’ subsequent 
mathematical activity (Wawro, Rasmussen, Zandieh, Sweeney & Larson, 2012).  

In the context of span, students begin with an experientially real setting in which they 
have two modes of transportation: a hover board and a magic carpet. Each can move 
only in a certain direction, with movement that is symbolized by a vector so that 
journeys can be described using linear combinations of vectors. The task sequence has 
4 core tasks. In task 1, students work to determine if it is possible to use the two modes 
of transportation to take a journey that starts at home (the origin) and ends at a 
particular location. In the second task, students work to determine if there is any 
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location they cannot reach with the two modes of transportation. This provides students 
with an intuitive way of exploring the set of all possible linear combinations of two 
vectors – or the span of two vectors in 𝑅 ; the instructor formalizes this definition after 
students have worked on task 2 and provides typical examples for them to practice 
applying the definition in 𝑅  and 𝑅 . Tasks 3 and 4 were designed to approach the 
linear dependence and independence concepts (see Wawro et al., 2012).  

METHODS OF ANALYSIS  

To answer our broad research question about students’ reasoning about span, we will 
deal with three sub-questions. (1) How did IO students’ reasoning compare to that of 
Non-IO students? (2) How did IO- students compare to Non-IO students connect 
between ideas as evidence of conceptual understanding? (3) How did IO- students 
compared to Non-IO students with regard to deductive reasoning? 

To identify differences between IO and Non-IO students’ reasoning about span, we 
first look quantitatively at response patterns to multiple choice questions to Q1a and 
Q1c, and then look qualitatively at open ended responses to Q1b and Q1d to better 
understand the nature of student reasoning and differences between IO and Non-IO 
students. To qualitatively see how IO and Non-IO students reasoned, we engaged in 
open coding by first examining a subset of student responses to identify the variety of 
mathematically distinct ways students reasoned about each open-ended response 
question; we continued analyzing additional responses, refining categories as we did 
so, until our categories were saturated. This process led to 6 categories of students’ 
reasoning about Q1b, and 2 categories about Q1d (see Table 1 & 2). Items that did not 
fall into the categories described in the tables were labelled as “other” or marked if 
they were left blank. Student responses could be coded in multiple categories.  

To gain insights into differences in students’ conceptual understanding of span, 
particularly with regard to how they related span to other ideas, we examined students’ 
responses to Q1b where they justify their choice on Q1a. As introduced above, 
conceptual knowledge is characterized in terms of relationships between ideas (Hiebert 
and Lefevre, 1986). The definition of span1, in isolation, does not provide students with 
sufficient information to answer Q1a. To answer Q1a and provide a complete 
justification on Q1b, one must first have a way to reason about why the set of all linear 
combinations of the given pair of vectors would trace out at least a plane in three-space 
(e.g. linear independence of the two given vectors guarantees that nothing less than a 
plane is traced out). Then one must also have a way to think about why the set of all 
linear combinations of the given pair of vectors would trace out not more than a plane 
in three-space (e.g. you would need a third vector that didn’t lie in the plane spanned 
by the first two vectors in order to span the entire three-dimensional space).     

 
1 Suppose 𝑣 , … , 𝑣  are in ℝ . We define Span 𝑣 , … , 𝑣   to be the set of all linear combinations of 𝑣 , … , 𝑣 . In other 
words, Span 𝑣 , … , 𝑣   is the collection of all vectors that can be written in the form 𝑐 𝑣 + ⋯ + 𝑐 𝑣  with 𝑐 , … , 𝑐  
scalars. 
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Table 1: Codes for Q1b and their descriptions 

Table 2: Codes for Q1d and their descriptions 

We developed a code that captured responses to Q1b that were “complete” in that they 
justified both why the span had to be at least and at most a plane. This was typically 
achieved by relating subsets of the following ideas to one another: linear independence, 
linear combinations, dimension, row reduction, or by coordinating with an appropriate 
geometric interpretation. For example, in Figure 2, Justification A is considered 
complete because it combined linear independence with dimension to conclude the 
span is a plane; Justification B used only linear independence (“not linear combinations 
of each other”) to justify that the span of the two vectors is a plane. 

Code Name assigned when… 
Linear Independence Student’s response refers to whether or not the two given 

vectors are linearly independent. This includes responses 
that note things like: the vectors are not (scalar) multiples of 
each other, or something that gives that meaning (e.g. 
observation that the two vectors point in different 
directions).  

Linear Combination Student’s response refers to a linear combination of the two 
vectors (in words, or by giving the formula  𝑥𝑣 + 𝑦𝑣 = 𝑤, 
or stating something like ‘getting anywhere’ – such as in a 
plane or 3-space)  

Row Reduction Student row reduces a matrix comprised of the given 
vectors (possibly augmented with a column of zeros).  

Dimensionality Student’s response makes explicit reference to the number 
of vectors (2), entries (3), pivots (2), that the vectors are 
linear independent and exist/are/create a plane in ℝ ; or 
claims that the two vectors are a basis AND uses these to 
form conclusion.  

Vector as e.g. 
Point/Line/Plane 

Student identifies each vector individually as corresponding 
to either a point, line, plane or 3-dimensional space. 

Geometric or 
Graphical 
Representation 

Response includes a drawing showing a geometric 
representation as a response or part of it.  

Q1d 

(Span) 

Augmented Matrix/Row 
Reduction 

Student row reduces the matrix comprised of the 
given vectors and concludes the vector is/is not 
in the span if the result is consistent/inconsistent 
or there is / is not a solution. 

Linear Combination   Same description as in Q1b.  
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Justification A (Complete):  Justification B (Not Complete):  

Figure 2: Assessment items related to span 

Following our first round of coding, we also noticed that some responses were proof-
like in nature in that they included deductive reasoning with logical connections 
between ideas. In order to capture this subtlety in relation to our codes, we conducted 
a second round of coding in which we identified when the mathematical idea 
corresponding to a particular code was employed in a mathematically deductive way. 
As we analyzed student responses, we noticed that some explanations were better 
structured than others as evidenced by both the leveraging of appropriate combinations 
of ideas, and by the presence of logical connections linking those ideas. We see these 
as important features of arguments that are logical and deductive in nature (e.g. similar 
to the way mathematical proofs are structured, (Rota, 1997; Johnson-Laird 1999; 
Ayalon and Even, 2007). To capture if students’ reasoning is deductive in a systematic 
way, we looked at students’ responses to identify if made use of logical deduction in 
their response. Responses that included terms like since, because, therefore, this 
implies, or this leads to, did receive the deductive reasoning code. For example, the 
response “since the two vectors are linear independent and they form a basis of 
dimension 2, they should be a plane,’ was assigned a deductive reasoning code because 
this student used the term since, followed by two premises “linear independent and 
dimension,” and then concluded deductively that the span of the set 𝑉 is a plane.  

FINDINGS  

We first look at student reasoning about span based on response patterns on multiple-
choice questions and our coding of their open-ended responses and interpret this 
through the lens of concept image and concept definition. We then examine students’ 
open-ended responses in greater detail to consider their conceptual understanding and 
use of deductive reasoning. 

To gain insight into differences in students’ interpretations of the span of a given set of 
two linearly independent vectors in ℝ , we examine the choices selected by students 
from the two groups. Almost twice as many as IO students correctly picked a “Plane.” 
Non-IO students picked other incorrect choices at a higher rate; in the case of choices 
“Two points”, “A line”, and “Two Planes” the differences were statistically significant 
at 𝑝 < 0.05. 
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Table 3: Popularity of choices of Q1a Picked by IO and Non-IO Students 

When we qualitatively compared the reasoning of IO and Non-IO students, we noticed 
two main trends. First, IO students reasoned about span in terms of linear 
independence, dimensionality, or row reduction at significantly higher rates than Non-
IO students. Second, significantly more Non-IO students, consistently with their 
selections in Q1a (Two Points and Two Planes), reasoned about the span of the set of 
two vectors by interpreting each vector individually as a geometric object as evidenced 
by more Non-IO student responses being assigned the Vector as Point/Line/Plane code. 

Codes 
IO 

students  
% (IO) 

Non-IO 
students 

% (Non-
IO) 

Significance  
(z-test) 

Linear independence 64 50.79% 30 23.26% p<0.00001 
Linear Combination 25 19.84% 22 17.05% p=0.56868 
Dimensionality 73 57.94% 44 34.11% p=0.00014 
Row Reduction 15 11.90% 0 0% p<0.00001 
Vector as 
Point/Line/Plane 

18 14.29% 39 30.23% p=0.00222 

Geometric/Graphical 22 17.46% 20 15.50% p=0.67448 

Table 4: Codes for IO and Non-IO Students’ Approaches to Q1b 

When students were asked to identify whether or not given vectors lie in the span of a 
set of two vectors (Q1c), we noticed 2 trends. First, IO students correctly chose 
Q1c(iii); a scalar multiple of one of the vectors in the set, or Q1c(v); a linear 
combination of vectors in the set, at significantly higher rates than Non-IO students 
(see Table 6.) Second, Non-IO students incorrectly selected Q1c(iv); the vector [1,0,0], 
and Q1c(vi); any vector in 𝑅 , as being in the span of the given set of two vectors at 
significantly higher rates than IO students. Because the answer choices in this question 
offer insight into the ways in which a vector can be in the span of a given set of vectors, 
we interpret this to mean that IO students’ concept image is better aligned with the 
concept definition of span (as compared with Non-IO students). By this we mean, IO 
students’ concept image aligns better than Non-IO students with the concept definition. 
Note that the choice Q1c(iii) is similar to Q1c(v) in the sense that there should be a 
good understanding of the formal definition of span to see that the second scalar of the 
linear combination of the two vectors of 𝑉, should be 0 to get the choice 
Q1c(iii). Q1c(iii) and Q1c(v) represent two examples of vectors that belong to the span 

Choices IO % (IO) Non-IO % (Non-IO) Significance (z-test) 

i. A point 1 0.79 1 0.77 p=0.984 
ii. Two points 0 00 5 3.9 p=0.026 

iii. A line 4 3.2 12 9.3 p=0.043 
iv. Two lines 6 4.8 8 6.2 p=0.617 
v. A plane  94 74.6 53 41.1 p<0.001 

vi. Two planes 5 4 17 13.2 p=0.009 
vii. A 3-D space 12 9.5 14 10.9 p=0.726 
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of the set of vectors 𝑉 and they also relate to the formal definition of span by being 
written explicitly as linear combinations of vectors in the set. The selection of the 
vectors given in Q1c(iii) and Q1c(v) suggests that the students have an understanding 
of the formal definition of span and that made them recognize the elements that belong 
to span, which also suggest an alignment between the concept image and the concept 
definition. In other words, IO students showed a better sense of how to identify vectors 
in the span than Non-IO students. 

Choices IO 
% 

(IO) 
Non-IO % (Non-IO) 

Significance 
(z-test) 

i. [1,2,0] 107 85% 110 85% p=0.936 
ii. [1,2] 19 15% 24 19% p=0.453 

iii. [0, −2, −4] 101 80% 78 60% p<0.001 
iv. [1,0,0] 13 10% 22 17% p=0.119 

v. 3.1[1,2,0] − [0,1,2] 90 71% 77 60% p=0.049 

vi. Any Vector in R3 10 8% 23 18% p=0.019 

Table 5: Popularity of Choices of Q1c Picked by IO and Non-IO Students 

Table 6: Codes for IO and Non-IO Students’ Approaches to Q1d 

We coded students’ explanations of how they would check, in general, if some vector 
is in the span of a set of vectors (Q1d; see Table 6). Our findings suggest that IO and 
Non-IO students reasoned in terms of linear combinations at similar rates. However, 
the differences observed in Q1c provide evidence that students in the two groups have 
different interpretations of what is meant by linear combinations. IO students’ 
selections suggest that their concept images of linear combinations tend to be more 
inclusive of scalar multiples and their sums and differences. 

Complete justifications and use of logical reasoning 

In addition to what we just presented about the reasoning of IO and Non IO students, 
we noted other differences between the two groups. We highlight two additional key 
distinctions when comparing the open-ended responses of IO students with those of 
Non-IO students. First, IO students exhibited more richly connected conceptual 
understandings of span. Second, we observed deductive reasoning at higher rates 
among responses of IO students.  

Codes IO  % (IO) Non-IO  % (Non-IO) 
Significance  

(z-test) 
Linear Combination 99  79% 97  75% p=0.522 
Augmented Matrix 
(RR) 

27  21% 10  8% p=0.002 

Other 5  4% 18  14% p=0.005 
Blank 5 4% 6 5% p=0.787 
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Recall that we examined how students’ ideas about span related to other ideas by 
examining the justifications (Q1b) for their choices on Q1a. According to our coding 
scheme, IO students provided “complete” justifications at significantly higher rates 
than Non-IO students (49.20% versus 18.60%, respectively). We interpret this to mean 
that IO students had more richly connected conceptual understandings of span as 
compared to Non-IO students.  

As noticed above, when coding the data, we also noticed that IO students’ responses 
seemed more proof-like when compared with the responses of Non-IO students; we 
used the deductive reasoning code to quantify this difference. Again, we noticed that 
53.17% of IO students used deductive reasoning as compared to only 25.58% of Non-
IO students in justifying their response to Q1a. 

DISCUSSION 

These results suggest that IO instructional approach and engagement in mathematical 
argumentation (in small group work and whole class discussion) could help explain 
why IO students gave better arguments. This is one possible explanation – basically 
that the IO learning environment is designed to give students more practice making 
mathematical arguments verbally in their problem-solving work and discussions and 
explanations during class time – so this could then be seen in improved written 
mathematical arguments on their assessment responses (Reinholz, 2015).  Another 
possible explanation is that if they understood the ideas better, they would be better 
able to make arguments about them. A third possible explanation is the nature of this 
particular idea (span) is such that it cannot be understood in isolation but rather has to 
be coordinated with other understandings (especially linear independence and 
dimensionality). We suggest that a student who has these connections should have a 
good understanding of the formal definition of span, otherwise he/she would not have 
that rich connection as a result of a good conceptual understanding. This also is valid 
for students who used deductive reasoning in their response to the question about span. 
For more details on how the instructional design helps improve the relations between 
the concept image and concept definition, a better conceptual understanding and 
promotes better deduction reasoning of span see (Bouhjar et. all, 2020). 
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Etude de l’enseignement du concept d’idéal dans les premières années post-
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Cet article présente la construction et l’interprétation de modèles praxéologiques de 

référence pour l’enseignement du concept d’idéal dans les premières années post-

secondaires (deuxième année de licence et classes préparatoires aux grandes écoles) 

en France, avant que ce concept ne soit enseigné de façon systématique en théorie des 

anneaux. La méthodologie est détaillée. Les modèles obtenus permettent une 

comparaison des choix opérés par les deux institutions et une première discussion de 

la mise en place d’une pensée structuraliste, dans l’optique de l’enseignement de 

l’algèbre abstraite en troisième année d’université. 

Keywords: Teaching and learning of linear and abstract algebra, Teaching and 

learning of specific topics in university mathematics, Transition to and across 

university mathematics, Reference praxeological model, Structuralist praxeologies. 

INTRODUCTION 

Le concept d’idéal1 est un concept d’algèbre abstraite enseigné à l’université. 

Généralement, il est introduit en France en deuxième année de Licence comme outil 

(Douady, 1992) dans le contexte de l’algèbre linéaire ou de l’arithmétique, puis étudié 

comme objet lors de la troisième année dans les cours d’algèbre abstraite. Les 

difficultés rencontrées par les étudiant-es lors de l’apprentissage de l’algèbre abstraite 

sont bien documentées dans la littérature (notamment Leron & Dubinsky, 1995). Ainsi, 

le concept d’idéal prend sa place à la transition de l’algèbre vers l’algèbre structuraliste 

(Hausberger, 2018, p. 82) dans laquelle le travail se fait au niveau des structures et non 

plus des éléments constituant ces structures. C’est donc une transition interne due à la 

nature épistémologique du savoir (Hausberger, 2018, p. 77). Étudier l’enseignement 

d’un tel concept permettra de documenter cette transition, mais aussi de mettre en 

lumière des éléments qui peuvent faciliter ou faire obstacle à la transition, pour 

l’étudiant-e, de l’algèbre vers l’algèbre structuraliste. Pour pouvoir faire une telle 

analyse, il convient déjà d’étudier quel est le rôle de ce concept au sein des différentes 

institutions que rencontrent les étudiant-es lors de leur cursus de Bachelor : comment 

vit le concept d’idéal ? Quelles sont ses fonctions ? Quels sont les liens entre ses 

différentes fonctions ? Quels éléments unificateurs sont mis en place par ces 

institutions pour préparer l’entrée dans la pensée structuraliste ?  

Dans cet article, nous répondrons à ces questions dans le cas de la deuxième année des 

cursus post-secondaire en France. Il s’agit d’une première étude, la transition entre la 

                                           

1   Un ensemble I d’un anneau commutatif (A,+,⋅) est un idéal si et seulement si (I,+) est un sous-groupe de 

(A,+)  et a⋅x∈A pour tout  x∈I et a∈A. . 
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deuxième et la troisième année fera l’objet d’une communication ultérieure. Dans la 

première partie, nous décrirons le cadre théorique utilisé pour cette étude, ce qui 

permettra de raffiner nos questions de recherches. Puis, dans la deuxième partie, nous 

présenterons et discuterons la méthodologie de construction des modèles du savoir 

enseigné. Enfin, nous conclurons par l’analyse des modèles et les réponses apportées à 

nos questions de recherche. 

CADRES THÉORIQUES, REVUE DE LITTÉRATURE ET QUESTIONS DE 

RECHERCHE 

Comme nous l’avons mentionné, le concept d’idéal est un concept de l’algèbre 

abstraite enseigné dans plusieurs institutions différentes et à différents niveaux. Ainsi, 

l’étude de l’enseignement de ce concept nécessite de se placer dans un cadre théorique 

qui permette d’analyser la manière dont le concept est enseigné tout en tenant compte 

des caractéristiques institutionnelles. Ainsi notre choix s’est porté sur la théorie 

anthropologique du didactique (Chevallard, 1998). Nous compléterons notre étude 

grâce à des notions d’écologie des savoirs (Artaud, 1997) et la notion de praxéologie 

structuraliste (Hausberger, 2018).  

Transposition didactique et praxéologies 

Les savoirs tels qu’ils sont enseignés, même dans l’enseignement supérieur, ne sont 

pas exactement les savoirs savants tels qu’ils se développent dans la communauté 

scientifique. Ainsi Chevallard (1991) explique que le savoir savant est transformé en 

savoir à enseigner dans un processus appelé transposition didactique externe. Puis le 

savoir à enseigner subit lui-même un processus de transposition interne par lequel il 

est transformé en savoir enseigné. Dans cet article, nous présenterons l’analyse du 

produit de la transposition interne du concept d’idéal. 

Le concept de praxéologie (ou d’organisation mathématique), qui est un concept 

central de notre étude, peut être défini comme suit (Chevallard, 1998) : l’activité 

mathématique peut se décrire en termes de quadruplets (𝑇, 𝜏, 𝜃, 𝛩) où 𝑇 est le type de 

tâches,  𝜏 est la technique qui permet de réaliser 𝑇 , 𝜃 est la technologie, c’est-à-dire le 

discours qui décrit et justifie la technique, et enfin 𝛩 désigne la théorie. Par exemple, 

un type de tâches 𝑇  : « Montrer qu’un sous-ensemble d’un anneau est un idéal » peut 

être réalisé via la technique 𝜏 : « Montrer que cet ensemble vérifie les propriétés de la 

définition formelle » dont la technologie est 𝜃 : « Définition d’un idéal » et la théorie 

𝛩 sera résumée dans cet article par  “théorie des anneaux”. 

Modèle praxéologique de référence 

Afin de pouvoir analyser la place de ce concept dans les institutions en jeu, nous avons 

choisi de construire un modèle praxéologique de référence. Comme l’expliquent 

Chaachoua, Ferraton et Desmoulins (2017, p. 302) : 
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L’identification de ces [organisations mathématiques] passe donc par la caractérisation des 

types de tâches institutionnels et peut être vue comme une « reconstruction » du chercheur. 

Notons que ce dernier, pour des raisons liées à sa problématique, peut bien entendu 

procéder à un autre découpage que celui de l’institution voire le compléter ; il construit 

alors un modèle praxéologique de référence (MPR) regroupant les praxéologies à 

enseigner, enseignées mais également enseignables. Le modèle rend ainsi possible 

l’analyse de ce qui a cours dans différentes instances d’un système d’enseignement.  

Pour organiser ce découpage nous utiliserons le regroupement en organisations 

mathématiques proposé par Chevallard (1998) : les organisations mathématiques 

ponctuelles sont générées au sein de l’institution par un unique type de tâches T. Ces 

organisations mathématiques ponctuelles prennent place dans des organisations 

mathématiques locales résultant de l’intégration de diverses organisations 

mathématiques ponctuelles sous un discours technologique commun. Enfin, de 

manière analogue, les organisations mathématiques régionales résultent de 

l’intégration de diverses organisations mathématiques locales sous un discours 

théorique commun. 

Ecologie des savoirs 

L’écologie des savoirs rend le chercheur attentif aux dépendances des objets qu’il 

étudie (Artaud, 1997, p. 101) : elle amène à considérer les concepts mathématiques 

comme n’étant pas détachés de leur environnement mais bien faisant partie d’un 

écosystème sur lequel ils agissent et qui agit sur eux. Dans cet article nous étudions le 

concept d’idéal dans l’écosystème didactique scolaire, lieu d’enseignement du concept. 

Suivant Artaud (1997, p. 113), nous appellerons habitats les différents lieux de vie du 

concept et niches la fonction que le concept occupe au sein de chacun de ces habitats. 

Enfin, nous reprenons également le concept de besoins trophiques que nous utiliserons 

dans la suite de l’étude : en ce qui concerne les objets mathématiques, il s’agit des 

objets dont un objet mathématique donné a besoin pour vivre dans l’écosystème 

considéré. 

Les praxeologies en algèbre abstraite 

Pour modéliser l’entrée dans la pensée structuraliste, Hausberger (2018) introduit la 

notion de praxéologie structuraliste et de niveau structuraliste d’une praxéologie. Le 

point de départ est la reconnaissance du rôle fondamental joué par la dialectique entre 

le particulier et le général, que Hausberger appelle également dialectique entre objets 

et structures. Par exemple, plutôt que de démontrer que l’anneau des décimaux est 

principal, des apprenant-es de niveau avancé s’attacheront à démontrer le résultat plus 

général suivant : tout sous-anneau de Q est principal (Hausberger, 2018, p. 84). En 

d’autres termes, la méthode structuraliste vise à raisonner en termes de classes d’objets 

(les sous-anneaux), de propriété (la principalité) conservée ou non par des opérations 

sur les structures (ici, le passage à un sous-anneau), de façon à mettre en évidence les 

« ressorts » des preuves.  
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De plus, différentes généralisations d’un résultat sont possibles, avec différents niveaux 

de généralité. Lorsque le résultat engage des objets (i.e. il ne s’agit pas d’un résultat 

purement théorique), des preuves élémentaires sont souvent possibles, où les structures 

jouent essentiellement le rôle de vocabulaire. La praxéologie qui en résulte est dite de 

niveau structuraliste 1. Le niveau 2 est atteint lorsque sont utilisés des résultats 

généraux sur les structures, qui conduisent à des praxéologies dites structuralistes de 

niveau 2. Hausberger définit également un niveau 3, qui intervient rarement dans les 

premières années d’apprentissage, de sorte que nous ne le détaillerons pas ici. Donnons 

un exemple : le type de tâche “Montrer qu’un anneau donné est principal” peut être 

résolu “à la main” pour Z ou K[X] (niveau 1). Lorsque l’on utilise le théorème “Tout 

anneau euclidien est principal”, il s’agit du niveau 2. La technologie de la praxéologie 

de niveau 1 peut également contenir des éléments du type “On procède comme pour 

Z, la clef est l’existence d’une division euclidienne”, en général apportés par 

l’enseignant. Ceci suggère une théorie implicite, celle des anneaux euclidiens, et 

constitue, en quelque sorte, un niveau intermédiaire dans l’entrée dans la pensée 

structuraliste. 

Formulation des questions de recherche 

Ce cadre théorique nous permet donc de formuler les questions de recherche 

suivantes relativement aux deux institutions à l’étude : quelles sont les organisations 

mathématiques dans lesquelles prend place le concept d’idéal ? Comment sont-elles 

structurées en organisations locales et régionales ? Quels liens met en évidence le point 

de vue de l’écologie des savoirs ? Que dire des niveaux structuralistes de ces 

praxéologies ? Les réponses apportées dans l’article à ces questions nous permettrons 

de conclure avec une analyse comparative des institutions intervenant dans l’étude. 

MÉTHODOLOGIE 

Description des institutions 

Notre étude requiert l’identification des institutions en jeu. Les CPGE revêtent les 

caractéristiques d’une institution scolaire « classique » : il y a un programme officiel2 

et à la fin des deux ans de classe préparatoire, les étudiant-es passent, pour la majeure 

partie d’entre eux, des concours d’entrée aux écoles d’ingénieurs. Enfin, les étudiant-

es de CPGE ont été admis-es à l’entrée sur dossier en fonction de leurs résultats 

scolaires et les plus faibles d’entre eux et elles ne sont pas autorisé-es à suivre la 

deuxième année « Mathématique-Physique ». Une dernière particularité est à prendre 

en compte dans cette institution : elle est séparée en deux classes, MP et MP*. Les 

étudiant-es qui ont obtenu les meilleurs résultats en première année intègrent la MP* 

qui a donc pour vocation de préparer aux concours des écoles d’excellence, comme par 

                                           

2  https://prepas.org/index.php?module=Site&voir=document&id_document=397 
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exemple l’Ecole Normale Supérieure (ENS). Les programmes officiels étant les 

mêmes, nous avons choisi de ne pas séparer MP et MP* en deux institutions distinctes. 

Parallèlement aux CPGE, se pose la question de l’Université. L’absence de programme 

officiel national, la rédaction des syllabus dans des commissions internes aux 

départements de mathématiques et la grande liberté laissée à l’enseignant nous amène 

à nous questionner sur la possibilité de considérer l’Université comme une institution 

générique. L’examen du syllabus de plusieurs universités françaises nous a permis de 

mettre en évidence une homogénéité et stabilité des programmes également relevée 

dans la littérature (Bosch, Hausberger, Hochmuth & Winsløw, 2019). Nous avons fait 

le choix de considérer la deuxième année de Licence (L2) comme une institution et, 

dans la poursuite de nos travaux, la troisième année (L3) comme une seconde 

institution car c’est en L3 que les étudiant-es se spécialisent en mathématiques. De 

plus, c’est également en L3 que des étudiant-es venant des CPGE intègrent 

l’Université. Ainsi, le choix d’étudier en parallèle le modèle praxéologique 

institutionnel de L2 et de CPGE et de les comparer prend sens puisque cette analyse 

permettra d’obtenir des résultats sur les transitions L2-CPGE/L3 et donc en particulier 

sur l’entrée dans la pensée structuraliste. Dans cet article, nous nous centrerons sur les 

résultats des analyses de CPGE et de L2. 

Choix et constitution du corpus 

L’étude de la transposition didactique du concept d’idéal en Licence implique de 

récolter des données sur la manière dont le concept est enseigné. Plutôt que d’aller 

récolter des données en classe, nous avons choisi une étude de corpus formé de 

polycopiés de cours et de feuilles de travaux dirigés (avec leurs corrigés) d’enseignants 

en algèbre. Ce choix est essentiellement un choix pragmatique permettant un recueil à 

plus grande échelle. De plus, la transmission du corpus peut sembler moins invasive 

qu’une présence dans la classe. Pour compléter ce corpus écrit, nous avons choisi de 

mener des interviews de ces enseignants dont les résultats ne seront pas utilisés dans 

cet article. 

Pour l’étude en deuxième année du post-secondaire en France, notre corpus est 

constitué des documents de cours et interviews de deux professeurs de CPGE, l’un 

professeur de MP et l’autre professeur de MP*, et de deux professeurs de L2.  

Les analyses praxéologiques et les modèles praxéologiques de référence 

L’analyse praxéologique d’un savoir universitaire complexe comme celui d’idéal 

soulève plusieurs questions méthodologiques. 

La première question concerne la méthodologie pour discriminer ce qui est une tâche 

de ce qui est un type de tâches au sein de l’institution. Pour ce faire, si le nombre 

d’occurrences des tâches analogues est supérieur à deux, nous avons considéré que l’on 
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peut rattacher ces tâches à un type de tâche. Pour les tâches isolées dans les analyses 

praxéologiques, notre analyse épistémologique ainsi que la culture du sujet que nous 

avons développé à travers l’analyse de manuels classiques comme celui d’Escofier 

(Escofier, 2016 analysé dans Candy, 2020) nous permettent d’identifier la présence ou 

non d’un type de tâches sous-jacent au sein de l’institution. La présence de ces cas 

limites est à relier au statut du concept d’idéal en deuxième année du post-bac : le 

concept est un concept outil dont la dimension objet est peu travaillée, le nombre de 

tâches dans chaque corpus qui le mobilise est inférieur à 15. 

Une fois que les types de tâches sont identifiés comme tels se pose une seconde 

question méthodologique qui concerne le degré de généralité ou la forme de la 

généralisation à adopter dans la formulation du type de tâches. Par exemple, l’on 

rencontre lors de l’analyse du corpus des tâches où l’on doit montrer que K[X] ou Z 

sont principaux. La question se pose alors de l’appartenance de ces tâches à un type de 

tâche T1 « montrer qu’un anneau est principal » ou T2 « montrer qu’un anneau 

euclidien donné est principal ». Si la technologie contient toujours (à chaque 

instanciation de la tâche) la division euclidienne (dont on n’attend pas, à ce niveau, de 

définition formelle unificatrice) alors on va opter pour T2. Ceci est lié également au 

niveau structuraliste de la praxéologie, que la description soignée des techniques, 

technologies et théories, en cohérence avec l’intitulé du type de tâche, va permettre 

d’identifier, voire de clarifier lorsqu’il s’agit d’un niveau intermédiaire (entre le niveau 

1 et 2). Cette identification peut donc être discutée mais appartient à la construction 

d’un modèle praxéologique de référence du chercheur et donc doit aider à amener des 

réponses aux questions de recherche. 

RÉSULTATS 

Dans le cadre de cet article nous ne détaillerons pas, par manque de place, toutes les 

praxéologies du modèle praxéologique de référence.  

Les modèles suivants présentent deux types d’organisations mathématiques 

régionales : des organisations mathématiques régionales structuralistes (représentées 

en vert sur les modèles) dans lesquelles sont développées les propriétés concernant les 

structures et des organisations mathématiques régionales mixtes (représentées en 

orange sur les modèles) dans lesquelles les propriétés des structures sont 

contextualisées à un domaine d’objet afin de produire de nouveaux résultats sur ce 

domaine. Par exemple, le concept d’idéal principal, vivant au sein de l’organisation 

mathématique régionale structuraliste structures algébriques usuelles (anneaux) est 

ensuite contextualisé dans le domaine d’objets K[X] pour nourrir les besoins trophiques 

de l’organisation mathématique locale PGCD ou PPCM dans K[X] en permettant la 

définition du concept de PGCD ou de PPCM de polynômes. La superposition d’une 

organisation mathématique mixte à une organisation mathématique structuraliste 

signifie que les propriétés du domaine d’objets sont déduites à partir des propriétés 
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générales sur les structures. La circonscription de la notion de théorie dans le cadre de 

l’algèbre structuraliste est décrite plus en détail dans Candy (2020). 

Les modèles praxéologiques de CPGE et de L2 

Tout d’abord, nous pouvons commenter la structure globale des modèles ci-dessous. 

En L2, il vite une seule organisation mathématique ponctuelle appartenance d’un 

ensemble à la classe d’objet idéal (via la définition). En dehors de cette organisation 

mathématique, le concept prend place au niveau de la théorie de deux organisations 

mathématiques locales distinctes : polynôme minimal d’un endomorphisme, qui 

s’inscrit dans la théorie mixte de réduction des endomorphismes et PGCD et PPCM 

dans K[X], qui s’inscrit dans la théorie mixte anneau de polynôme sur un corps. En 

CPGE vit en plus l’organisation mathématique locale PGCD et PPCM dans Z. 

L’organisation mathématique locale polynôme minimal d’un élément algébrique ne vit 

qu’en MP* au sein de l’organisation mathématique régionale A-algèbre. On ne trouve 

pas mention des nombres algébriques dans le programme officiel de CPGE. Le fait que 

cette organisation mathématique locale y vive s’explique par la finalité de la 

formation : les étudiant-es doivent être préparé-es aux concours d’entrée aux grandes 

écoles. Or dans ces concours on trouve des sujets sur les nombres algébriques. Cette 

organisation mathématique locale est donc particulière car elle n’est pas une contrainte 

de l’institution CPGE elle-même ; elle existe sous l’influence d’autres institutions, en 

l’occurrence les grandes écoles, qui motivent ces concours. 

Notons, dans le modèle de CPGE, la présence de l’organisation mathématique 

ponctuelle Propriétés formelles des opérations sur les idéaux. On y trouve des tâches 

comme « Montrer que √𝐼 ⋅ 𝐽 = √𝐼 ∩ 𝐽 » ou «Montrer que 𝐼 ⋅ 𝐽 ⊂ 𝐼 ∩ 𝐽». Cette organisation 

mathématique consiste en un travail sur des idéaux généraux. Elle se distingue car c’est 

une organisation mathématique ponctuelle qui n’appartient à aucune chaîne trophique 

dans l’institution en jeu, et vit donc détachée des autres. On peut expliquer cela par le 

fait que les raisons d’être de cette organisation mathématique prennent place, par 

exemple, en géométrie algébrique. Par contre, nous faisons l’hypothèse que sa présence 

est révélatrice d’un phénomène didactique : cette organisation mathématique est 

détachée de ses raisons d’être par l’institution pour entraîner les étudiant-es, sur des 

exemples classiques, à utiliser des définitions formelles, à mobiliser des techniques 

algébriques, logiques et ensemblistes.   

En CPGE, on note la présence d’une organisation mathématique intitulée principalité 

dans les anneaux euclidiens qui n’existe pas en L2. En effet, on trouve dans les analyses 

praxéologiques des types de tâches dont la technologie repose sur des propriétés de 

principalité d’anneaux euclidiens tels que Z[i]. Les éléments technologiques mobilisés 

en CPGE reposent sur la construction d’une division euclidienne dans ces anneaux (ce 

qui nécessite de raisonner par analogie avec le cas de Z pour envisager une extension 

dans un cas plus général). L’organisation mathématique régionale anneaux euclidiens 
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est représentée en pointillés pour signifier que le professeur de MP* ne va pas jusqu’à 

l’introduction formelle de la théorie des anneaux euclidiens mais unifie les 

praxéologies développées dans principalité des anneaux euclidiens à l’aide d’un 

discours méta portant sur le rôle de la division euclidienne dans ces praxéologies. 

 

Figure 3 : modèle praxéologique de référence de l’institution L2 

 

Figure 4 : modèle praxéologique de référence de l’institution CPGE. 

On remarque enfin qu’en L2, le concept d’idéal est engagé majoritairement dans des 

organisations mathématiques très ciblées et réduites ; il existe un unique type de tâches 

qui fait vivre la définition du concept d’idéal : « montrer qu’un ensemble I d’un anneau 

A est un idéal ». On peut faire l’hypothèse (à confirmer lors des entretiens) que les 

enseignants-chercheurs de L2 ont considéré que la notion d’idéal vit, dans le cadre du 

programme de L2, en dehors de son écosystème naturel (la théorie abstraite des 

anneaux, dans laquelle la notion d’idéal est la “bonne” notion pour fabriquer des 

anneaux quotients). En d’autres termes, un parti-pris épistémologique et écologique les 

conduirait à limiter le travail possible autour de cette formalisation, notamment lorsque 

l’objectif final du module est centré sur la réduction des endomorphismes. In fine, ces 

choix différents de transposition didactique seraient également à relier à des contraintes 

315 sciencesconf.org:indrum2020:295368



  

institutionnelles différentes : la division du curriculum en CPGE est moins 

contraignante que celle en modules à l’Université. De plus, il faudrait comparer les 

temps d’enseignement alloués à ces concepts. Enfin, dans l’institution CPGE, un même 

enseignant prend en charge la totalité du programme de l’année (cours et travaux 

dirigés) ce qui permet un point de vue plus holistique et pourrait favoriser le 

développement d’organisations mathématiques plus étendues. 

CONCLUSION 

Malgré un nombre peu élevé de tâches qui concernent le concept d’idéal dans le corpus, 

nous constatons que le concept d’idéal est un outil d’introduction de nouvel objet au 

sein des habitats réduction des endomorphismes, nombres algébrique, arithmétique de 

Z et arithmétique de K[X] et c’est la raison d’être principale de sa présence au sein de 

ces institutions. 

La présence de l’organisation mathématique ponctuelle isolée propriétés formelles des 

opérations sur les idéaux va pousser à introduire des objets (comme le radical par 

exemple), probablement pour des raisons d’entraînement de techniques algébriques, 

ensemblistes ou formelles, et qui ne pourront prendre du sens pour l’étudiant-e que 

bien plus tard dans sa formation (à la différence de l’enseignant-e qui a probablement 

choisi ces exemples pour leur portée mathématique, donc en un certain sens des raisons 

“esthétiques”).  

Si l’on compare la L2 et la CPGE, on s’aperçoit qu’en L2 il n’y a qu’une organisation 

mathématique ponctuelle où le concept d’idéal est mobilisé dans le bloc de la praxis. 

De plus, le niveau structuraliste des types de tâches est différent entre les deux 

institutions. Par exemple, dans l’organisation mathématique locale principalité dans 

les anneaux euclidiens la description des techniques associées aux praxéologies de 

cette organisation mathématique permet de montrer que le travail se fait au niveau des 

objets sans utilisation de théorème plus généraux (par exemple la principalité des 

anneaux euclidiens). De ce fait, les praxéologies travaillées dans les deux institutions 

sont structuralistes de niveau 1. Cependant, en CPGE nous avons noté un travail sur 

différents anneaux euclidiens qui repose sur la technologie structuraliste implicite 

(souvent relevée dans les notes des professeurs) de principalité des anneaux euclidiens. 

Ainsi, en CPGE nous nous situons à un niveau intermédiaire entre le niveau 1 et le 

niveau 2 dans lequel le théorème structuraliste apparaît sous-jacent dans les remarques 

du professeur. 

La comparaison du modèle praxéologique de référence de L3 aux MER de L2/CPGE 

nous permettra de documenter le phénomène de transition auxquels les étudiant-es sont 

soumis-es au passage à l’algèbre structuraliste : les organisations mathématiques 

locales présentes dans les modèles praxéologiques de L2 et de CPGE sont-elles encore 

présentes ? Y a-t-il une évolution de ces organisations mathématiques locales vers des 

organisations mathématiques locales structuralistes de niveau 2, c’est-à-dire que les 
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technologies contiendront des théorèmes qui portent sur la structure ? Ou au contraire 

aura-t-on une construction de nouvelles organisations mathématiques locales 

structuralistes sans qu’elles soient reliées à celles construites dans les institutions L2 et 

CPGE ? 
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This paper focuses on the epistemic and cognitive characterization of backward 

reasoning in strategy games resolution. It explores the use of AiC (Abstraction in 

Context) as a tool for the analysis of the epistemic actions involved in these processes. 

It is reported a first analysis developed by the research team in order to be used as 

protocol-guide in the analysis of a study carried out with PhD students in Mathematics 

Degree in a Spanish and an Italian University, who face problem solving games. The 

case study shows the process of discovery that a PhD student makes to formulate a 

general recursive formula. It is a key for understanding the interaction between the 

AiC model and the characteristics of backward reasoning. The analysis allows to 

combine the two models - backward reasoning and AiC - in a unified framework that 

allows to focus both short-term and long-term processes in students’ activities. 

Keywords: Teaching and learning of specific topics in university mathematics, 

Teaching and learning of logic, reasoning and proof, backward reasoning, epistemic 

actions, strategy games 

INTRODUCTION 

Backward reasoning has great potential in the study of mathematics since it can support 

students when engaged in tasks, where they are asked to pass from argumentations and 

inquiry to mathematical proofs. For deepening this issue we specifically developed 

some studies at the university level focussed on mathematical thinking, where learning 

the method of analysis is a critical issue (Antonini, 2011, Peckhaus, 2000).  

In such studies, which analysed mathematics and engineering students involved in 

problem solving activities (Gómez-Chacón & Barbero, 2018 & 2019), it was noted that 

so-called regressive reasoning — as an emerging key process in the dialectics between 

inference processes — develops mainly in interrogative movements and is responsible 

for the generation of new ideas and elements in the solution process. This reasoning is 

used in its character of "ordering device": through it, the students manage to find 

elements necessary for the construction/definition of the objective. The backward 

reasoning, which is based on the return of reasoning to an informal context, helps to 

connect more intuitive aspects with the mathematical and computational context. 

In standard mathematical problems, it is more difficult working backwards than 

forwards. So it is necessary to offer students a large class of problems to which the 

method of working backwards is appropriate, such as strategy games presented here. 

We also identified some factors in the cognitive and affect interplay, which would 

inevitably cause difficulties for students to construct and work backwards. These 
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studies (Gómez-Chacón, 2017) showed how the epistemic emotions continually exert 

numerous so-called operator effects, both linear and nonlinear, on attentional activity 

and on the ability to perceive goal-path obstacles and to overcome them. Understanding 

is linked with the appraisal of their ability to influence (control dimension), with their 

ability to predict, and with mental flexibility (Gómez-Chacón, 2017; Gómez-Chacón 

& Barbero, 2019). The dectected taxonomy of obstacles suggests that the lecturer, as a 

mediator of knowledge, explicitly takes into account the nature of backward reasoning 

underlying the interplay between epistemological and cognitive models.  

This paper focuses on the epistemic and cognitive characterization of backward 

reasoning in strategy games resolution. Strategy games allow for the natural 

development of backward reasoning. Players must make strategic choices to make their 

moves. These choices are triggered by typical implicit questions that players ask before 

making a new move: “What can I do in this situation? What is better to do?” To answer 

these typically strategic questions, they reflect both on the moves already made and on 

the possible moves to do and they activate the backward reasoning (Wickelgren, 1974). 

We explore the use of AiC (Abstraction in Context) as a tool for the analysis of the 

epistemic actions involved in these processes of resolution. We try to understand how 

the process of abstraction evolves, analyzing the relationship established between the 

epistemic actions (categories) of the RBC model of  Dreyfus and Kidron (2014), and it 

is based on the perspective of abstraction in AiC context (Dreyfus et al., 2001), as well 

as by the subcategories of analysis introduced in this investigation based on the specific 

characteristics of the regressive reasoning. Epistemic actions are understood as mental 

actions that develop during the abstraction process and explain the emergence of a new, 

more elaborate and complex construction. We report a first analysis developed by the 

research team in order to be used as protocol-guide in the analysis of a study carried 

out with 185 undergraduate students in Mathematics Degree. Further analysis can be 

found in Barbero, Gómez-Chacón & Arzarello (2020). 

The structured as follows: first the theoretical frame underlying the analytical 

methodology of the study; second, the context of the study description and its particular 

goals; third, first results presentation, drawn from a case study micro-analysis, where 

the theoretical background is applied; finally, a discussion and some conclusions. 

BACKWARD REASONING 

In mathematics, progressive reasoning alone is not exhaustive to fulfil the tasks of 

solving problems. Great mathematicians like Pappus, Descartes, Leibniz, in their 

discussions about analysis and synthesis, emphasize this fact (Peckhaus, 2000). 

Backward reasoning is known by different denominations, each underlying some of its 

main features: regressive analysis, backward solution, method of analysis, etc. It is the 

practice that involves the making of a number of arguments from the bottom of the 

problem and proceeds through logical correspondences which allow to obtain 

something known or to be reached through other paths. This process includes different 
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ways of proceeding in problem solving: Backward heuristics, Reductio ad Absurdum, 

Starting with the end of the problem, Assuming the problem solved (Beaney, 2018). 

Pappus was the mathematician who has contributed substantially to the clarification 

and exemplification of the method. In the seventh book of his Collection he deals with 

the topic of Heuristics (methods to solve the problems). There he exemplifies the 

method of analysis as the method of synthesis, therefore making the development of 

this reasoning clearer. Pappus defines the method of analysis as follows: “In analysis, 

we start from what is required, we take it for granted; and we draw correspondence 

(ακολουθον) from it and correspondence from the correspondence, till we reach a point 

that we can use as a starting point in synthesis. That is to say, in analysis we assume 

what is sought as already found (what we have to prove as true).” (elaboration by Polya, 

1965 and by Hintikka and Remes, 1974). Subsequently he points out: “This procedure 

we call analysis, or solution backward, or regressive reasoning.” (Hintikka and Remes, 

1974). And on the Method of Synthesis: “In synthesis, on the other hand, we suppose 

that which was reached last in analysis to be already done, and arranging in their natural 

order as consequents the former antecedents and linking them one with another, we in 

the end arrive at the construction of the thing sought. This procedure we call synthesis, 

or constructive solution, or progressive reasoning.” (Hintikka and Remes, 1974) 

The two processes are closely related and there is no analysis method without the 

synthesis one. Solving a problem is therefore a combination of the two procedures. 

Peckhaus (2000) studies this analysis-synthesis scheme and affirms that “The 

analytical [is] […] the procedure which starts with the formulation of the problem and 

ends with the determination of the conditions for its solution. The synthetical represents 

the way from the conditions to the actual solution of the problem. […] This branch of 

the scheme is deeply connected with the complementary [one].” Not only analysis can’t 

exist without synthesis but also “synthesis can’t be isolated and presupposes analysis.” 

The concept of Backward Reasoning involves characteristics that allow us to identify 

its development throughout the resolution of a task. Philosophers and mathematicians 

from the ancient Greeks, through the authors from the 17th and 18th centuries to the 

20th one have studied its characteristics. The main features are the following:  

- Direction vs cause-effect. In Pappus’ definition, the backward direction of reasoning 

is highlighted. This entails going from the end of the problem to its beginning. By 

applying the method, the premises of a certain idea are sought. In the 17th and 18th 

centuries, authors such as Arnauld and Nicole interpreted the method as a search for 

cause-effect relationships between ideas. By these, the connection between the notions 

in background and the problem are identified. The knowledge of the development of 

the resolution of the task and the effects and causes of each notion involved in the 

process arise (Beaney, 2018; Peckhaus, 2002).  

- Decomposition. According to Plato and Pappus, this kind of reasoning allows for the 

reduction of the problem to its simplest components. The properties that define the 

assignment and the relationships between the most complex and the simplest objects 
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involved in it are identified by extracting and investigating the principles that are at the 

base of the task. Aristotles, for example, underlines the fact that "sometimes, to solve 

a geometrical problem, you can only analyse a figure", breaking it down into its basic 

components and understanding the different parts of it (Beaney, 2018).  

- Introduction of auxiliary elements. Kant, Polya and Hintikka, focus their attention on 

a fundamental process part: the introduction of new elements (a known Geometry 

practice: the auxiliary constructions). In the progressive and deductive processes all the 

bases are given and from these, consequences are elaborated. Unlike the backward 

reasoning, new notions appear and develop throughout the resolution at specific 

moments, according to the solver needs (Beaney, 2018; Hintikka & Remes, 1974). 

EPISTEMIC ACTIONS  

The concept of epistemic action was introduced into cognitive sciences by Kirsh and 

Maglio (1994) to indicate those physical actions that facilitate cognition and allow 

problems to be solved more quickly. These actions help to acquire useful information 

for the resolution that are hidden or difficult to compute mentally, have the purpose to 

simplify the mental processes. In mathematics education the term was first used by 

Hershkowitz, Schwarz y Dreyfus, (2001), who derived it from Pontecorvo and Girardet 

(1993) in their research on abstraction. The mental processes that occur in the student 

when solving a problem are not directly observable but can be identified through the 

analysis of the students' verbalisation or their physical actions. Epistemic actions are 

those actions that allow to identify the mental progresses in which knowledge is used 

or built and to operationally describe the procedures. They develop within the 

argumentative processes and are the basis of the interpretative activities. The actions 

involve procedures of a high methodological and metacognitive level and include the 

explanation of those procedures used for the interpretation of particular events.  

The research of the last twenty years has resulted in the development of the theory of 

Abstraction in Context (AiC) (Dreyfus and Kidron, 2014) which aims to provide a 

theoretical and methodological approach, at the micro level, on the processes of 

learning mathematical knowledge. From a theoretical point of view, AiC attempts to 

create a bridge between cognitive knowledge and theories of abstraction, constructivist 

theory and the theory of activity. From a methodological point of view, AiC is a tool 

that allows the analysis of thought processes. The central theoretical construct of AiC 

is a theoretical-methodological model, according to which the emergence of a new 

construct is described and analyzed by means of three observable epistemic actions: 

recognizing (R), building-with (B), and constructing (C). 

- Recognizing. It consists in recognizing some previously learned knowledge as 

relevant for the resolution of the problem.  

- Building-with. It consists of combining a set of knowledge with the aim of 

achieving a specific objective. Objectives can be: to implement a strategy, to meet a 

justification to a conjecture, to find the solution to the problem.  
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- Constructing. It consists in assembling and integrating the previous knowledge 

with the aim of producing a new construct. 

RESEARCH AIM AND METHODOLOGY 

Aim 

The aim of this paper is to show the use of AiC combined with the characterization of 

backward reasoning as a tool for the analysis of the epistemic actions involved in 

discovery processes. Both epistemic and cognitive elements are highlighted to examine 

how university students develop backward reasoning. 

Participants and instrument 

Data were collected in 2018 from 185 Spanish and Italian mathematics students, aged 

between 19 and 30. The participants students are spread all over all the years of 

academic studies from the first year of Bachelor to the last year of PhD (Table 1). They 

have different mathematical notions with regard to solving problems, but they had not 

received any special training about backtracking heuristics. These data are summarised 

in Table 1. 

Mathematics 

Bachelor Italy  

Mathematics 

Bachelor Spain 

Future High School 

teachers (Master-

students) 

Mathematics 

PhD 

Total 

99  50 28 8 185 

Table 1. Participants 

To study the epistemic and cognitive characterization of backward reasoning in 

strategy games resolution we choose the 3D Tic-Tac-Toe (Golomb and Hales, 2002). 

This is a finite 2 players game with perfect information. Generally, it is played with 

paper and pencil. The board of the k-dimensional Tic-Tac-Toe (k>1) is a k-dimensional 

cube of side n, i.e. a (n, k)-board. The two players choose to adopt "X" or "O" to 

indicate the position of their pawns on the board. The game version used for the this 

research project experiments consists of a (4,3)-board. The board was presented in its 

two-dimensional representation (Fig. 1). The objective is to place 4 marks in a row 

horizontally, diagonally or vertically while trying to block the opponent from doing so.  

The given task (Fig. 1) consists in solving the game and finding a relationship between 

the number of winning lines and the board dimensions. Some mathematical notions 

acquired in university degree are necessary to solve it.  

The methods for obtaining the data are direct observations during the working session, 

the recordings from the cameras, and the documents where students describe their 

approaches to the problem solution on protocols. The students worked in pairs or alone; 

we gave each pair of students paper and pencil and some “empty board”, using which 

they could elaborate a game strategy. Students were also asked to describe their 

approaches to solving the problem specifically describing: their thought processes in 
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the resolution, the difficulties they encountered, and the strategies they would use in 

order to solve with paper and pencil. Students had two hours to do that. 

3D Tic-Tac-Toe is the three dimensional version of the classic Three 

in a Skate game. The game board is a 4x4x4 cube. 

The game is for two players. One player uses "crosses" and the other 

uses "zeros". 

The objective is to place 4 marks in a row horizontally, diagonally 

or vertically while trying to block the opponent from doing so.  

 

1. By helping yourself with the two-dimensional version of the game 

board, solve the game by developing your thinking process with a 

detailed solution protocol.  

2. Mathematically express (formula, pattern, routine, ...) the 

relationships that can happen between the dimensions of the game 

board and the winning lines 

Figure 1: Strategy game statement 

A qualitative analysis was chosen to examine the resolution protocols of the students 

through the combination of the Backward Reasoning Epistemic Model and the AiC 

Model. We will illustrate it through a significant example in next section. 

RESULTS: CASE STUDY 

In this section we analyse a single student’s resolution protocol of the 3D Tic-Tac-Toe. 

This allows us to get a deep understanding of the tendencies of the behaviour related 

to the sequences of actions during the discovery phase of resolution. The chosen 

student, whom we name A, is key informant of the PhD students group. A is an expert 

student, who solved the problem by investigating the mathematical relationships that 

are at the basis of this game using backward reasoning.  

The student begins the game resolution by solving the 2D version of the game (3x3 

board). First, he plays trying to remember the winning strategy, then he starts 

calculating mathematically the number of winning lines. Then he moves on to the 3D 

version of the game where he continues to reason about the number of winning lines 

until he obtains a general formula. Then it shows that the formula that he has found is 

valid for any cube of dimension (n, d) and finally he reasons again about the winning 

strategy, this time for the 3D case. The extract refers to the discovery process that the 

student makes to formulate the general recursive formula that allows to identify the 

number of winning lines knowing the size of the game board. Backward reasoning is 

predominant in this excerpt (Fig. 2). 
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12. I decide to move on to the 3D case. The previous strategy suggests me to count lines. I make 

a few drawings to test. There are 10 lines in each plan parallel to the axes and there are 12 

planes parallel to the axes. I lack the “diagonal lines” as in the example. They seem more 

complicated. 

13. I'm starting to do numerology: 10 = 4 ∗ 2 + 2 which is broken down as the number of 

pawns per dimension of the plane plus two diagonals. Will it be general? 

14. I realize that 12 = 4 ∗ 3 that seems to follow the previous pattern. Hope. It looks like a nice 

combinatorial problem. 

15. It reminds me of geometry calculations on finite fields. I think about shooting over there, 

but I realize that there are cyclic lines that come out on one side and appear on the opposite 

side. These movements are not allowed. I could rule them out but it seems too complicated. 

I abandon this strategy. 

16. I think of a recursive pattern. I guess n pieces in d dimensions (the usual case is (𝑛, 𝑑) =

(3,2) and this is (𝑛, 𝑑) = (4,3)). Maybe the number of straight lines follows a pattern. 

𝐿(𝑛, 𝑑) = 𝑐𝑛𝑡(𝑛, 𝑑) ∗ 𝐿(𝑛, 𝑑 − 1) + 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑠 

17. The constant must be the number of planes parallel to the axes. As in the previous case, 

these have to be 𝑛𝑑, then I refine my formula to 

𝐿(𝑛, 𝑑) = 𝑛𝑑 ∗ 𝐿(𝑛, 𝑑 − 1) + 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑠 

18. Diagonals don't seem that simple. I start to play with the example of the cube and the plane. 

They seem to join opposite vertices of opposite faces. Will it be general? 

19. I calculate that a hypercube has 2𝑑 vertices, which gives me two faces with 2𝑑−1 vertices. 

Thus, if my previous observation is correct, the formula is 

𝐿(𝑛, 𝑑) = 𝑛𝑑 ∗ 𝐿(𝑛, 𝑑 − 1) + 2𝑑−1 

Fig. 2: Extract of student protocol 

The student begins the resolution of the case in 3 dimensions thinking in analogy with 

the resolution of the case in 2 dimensions that he has previously carried out. The first 

objective is to count the winning lines on the board. To do so, he divides the game 

board into planes and counts the winning lines present on each plan. He then begins to 

think about the number of lines in each floor and breaks it down trying to identify the 

parts of the number with elements of the game (number of checkers for each winning 

line, size, number of diagonals). He then analyse and decompose each floor in the same 

way. At this point he introduces a recursive "auxiliary pattern" and conjectures the 

existence of a general recursive formula that relates the number of winning lines with 

the size of the table. He then analyses the formula and looks for a mathematical 

expression for each part of it. He then obtains the general recursive formula. 

Analysing the extract, it is possible to identify different epistemic actions performed 

by the student. Using as definition of epistemic action: "that action in which knowledge 

is used or constructed". Each epistemic action can be characterized as an expression of 

the different characteristics of backward reasoning: in this extract we can see elements 

of decomposition (D) and insertion of auxiliary elements (E) and solution formulation 

(FS). In the same way, the same action can be classified according to the AiC model. 
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In the table below the second column identify the actions, the third identify the 

characteristics of backward reasoning and the last identify the AiC classification.  

Protocols Epistemic action BR AiC 

12 Splitting the game board into planes 

Counting the winning lines in each plan 

Grouping winning Lines into a Scheme 

D 

D 

E 

B 

B 

R 

13 Mathematically break down a number 

Identify each element of the decomposition 

D 

E 

C 

C 

14 Mathematically break down a number D B 

15 Analogy/ break motion   

16 Introduce a recursive pattern 

Conjecture: general recursive formula 

E 

FS 

R 

C 

17 Break down the formula into its elements 

Analyse the constant element 

D C 

18 Analyse the diagonal element D B 

19 Representation of the diagonal in relation to the vertices of the 

hypercube 

Formulation of the general formula 

D 

 

FS 

C 

 

B 

Table 2: Analysis of Epistemic action 

Analysing the epistemic actions from the point of view of backward reasoning, one can 

observe how the student breaks down the problem and inserts auxiliary elements in an 

alternating way in order: first to conjecture the existence of a general formula and then 

to represent it mathematically. From the point of view of the analysis with AiC-model 

one can notice a certain regularity in the alternation of the AE (Table 2): Two sequences 

B-R-C-B-R-C characterize the formulation of the conjecture, while two sequences C-

B-C-B characterize the formulation of the general formula. The actions that 

characterize the "decomposition" are actions that do not develop instantaneously in the 

resolution process but that suppose a longer time of realization. If you look at the 

introduction of auxiliary elements, these actions are instead instantaneous. Some 

actions, such as the introduction of a recursive pattern, can be a recognition of concepts 

belonging to the student's background, it happens after a structural analogy. During this 

analogy (line 15) the student remembers geometrical concepts that help him to identify 

patterns. In other actions, such as the identification of each element of the 

decomposition of the number 10 with an element of the game, the student creates a 

new construct from the processing of knowledge already encountered in the resolution. 

CONCLUSION  

In this investigation, we chose to use the AiC - model to understand how the process 

of abstraction develops in the construction of new mathematical knowledge using 

backward reasoning. The development of the different epistemic actions was analysed, 
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with the help of the subcategories built in this research and the relationships they 

established among themselves. If we look at the whole process of the protocol (Fig. 3), 

we can see how the student passes through different contexts in order to achieve the 

general mathematical formulation. He begins working within the game context, then 

he moves to a mathematical context to interpret the example through this new lens, 

then he goes forward and explains the game in a more general mathematical context.  

The transition between the three contexts happens with a complex back and forth 

process, where the different contexts are repeatedly activated, as illustrated in Fig. 3. 

 

Fig. 3 Pattern in epistemic actions and context 

Following the introduction of subcategories of analysis, built in a narrow link with the 

nature of backward reasoning it is possible to analyse, in detail, characteristics 

associated with the development of students’ thinking processes. This helps in better 

understanding the connections between the different epistemic actions that can 

influence Building with and Construction.  

We notice that the incorporation of Backward Reasoning-based categories allows to 

identify breaking elements and which they trigger the construction process of the 

formula. These actions occur and they cannot be determined only with specific actions 

defined according to the AiC-model. In this case it has been necessary to identify 

elements of the constructive epistemic action processes produced in the long term. The 

back and forth movement above is identified as a cognitive travel between the concrete 

and the abstract: in it the analogy processes — both contextual and structural analogy— 

have been crucial. In the process of conjecturing and justifying, complex chains of 

plausible reasoning are often elaborated, which may contain new nuances that enrich 

already known patterns. An exhaustive analysis of these processes requires an 

exploration not only of the punctual but in the long term. 
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This paper reports results of our sequence of didactic situations for teaching 
fundamental concepts in group theory—e.g., symmetric group, generator, subgroup, 
and coset decomposition. In the situations, students in a preservice teacher training 
course dealt with such concepts, together with card-puzzle problems of a type. And 
there, we aimed to accompany these concepts with their raisons d’être. Such raisons 
d’être are substantiated by the dialectic between tasks and techniques in the 
praxeological perspective of the anthropological theory of the didactic. 
Keywords: 2. Teaching and learning of specific topics in university mathematics, 9. 
Teaching and learning of linear and abstract algebra, Group theory, Raison d’être, 
Praxeology. 

INTRODUCTION AND MAIN THEORETICAL RESOURCES 
Abstract algebra is one of the major areas of undergraduate and graduate mathematics. 
And it has been pointed out by several authors that many students have difficulty in 
transiting from elementary algebra to abstract algebra (e.g., Dubinsky et al., 1994; 
Hausberger, 2017, 2018; Bosch et al., 2018). In abstract algebra, we consider the 
algebraic structures, group, ring, field, etc, which inherit the property of the familiar 
calculations among numbers or equations as objects of elementary algebra. Among 
such algebraic structures, group is the simplest but difficult topic. The reason is that a 
group has only one operation from the first, and non-commutativity is primary in group 
theory: these properties cannot be observed in standard number systems. Then, we 
problematize that, in the teaching of abstract algebra, students usually do not 
experience inquiry where the notion of group with one operation can grow. In fact, 
Bosch et al. (2018) points out that, regarding the learning of group theory, the raison 
d’être of group theory is seldomly questioned—roughly speaking, a raison d’être of 
knowledge means a problematic situation the study of which naturally produces the 
knowledge as a significant tool. According to this problematization of the teaching of 
group theory, let us pose our research question as the follows: what problems and 
situations could become raison d’être of group theory for students? Larsen (2009) 
seems to be a representative previous work which studies this question. Larsen’s 
approach aimed students’ reinvention of the concept of group and isomorphism in 
geometric context. In this paper, we would like to propose another possible approach 
with above features. As well as Larsen’s approach, we assume teacher’s guide, and we 
expect students to develop the notion of group, subgroup, generators of a group, coset 
decomposition on their interest and with proactive motivation through this approach. 
Let us highlight that our approach does not aim the complete abstraction process of the 
concept of group. Rather, this approach may be the introductory program of the 
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abstract group theory, which promotes students to notice the notion and to enhance the 
definition of group on their own consideration. 
In the presentation and the analysis of our program, we make use of the praxeology 
model within the framework of the ATD, i.e., the anthropological theory of the 
didactic (cf. Chevallard, 2019). The praxeology in the ATD is a model for describing 
any bodies of knowledge, e.g., different mathematical domains, i.e. algebra, geometry, 
and so on. Such domains are based on their own theoretical foundations consisting of 
axioms, fundamental theorems, problematic questions, basic objects of study, etc. Each 
theoretical foundation is simply called a theory denoted by Θ in the ATD. In turn, a 
theory Θ describes and justifies many specific statements, particular objects of study, 
local problems, and so on. The system of such second-level theoretical entities is called 
the technology θ in the ATD. A theory Θ and a technology θ constitute a logos part of 
a given praxeology, i.e. [θ / Θ]. Let us emphasize here that any logos part originally 
comes from more concrete, specific, even ad hoc human actions which are called 
praxis parts of the given praxeology. The praxis part is reduced to two subparts of the 
type of tasks T and the technique τ, that is, [T / τ]. A type of tasks T is any motivation of 
a given praxeology which is handled by some technique τ. The overall picture of a 
praxeology is denoted by [T / τ / θ / Θ]. The order of emergence of each part of a 
praxeology depends on the program: a traditional group theory course may start from 
technology or theory. In our program, we propose to start the program from the 
extra-mathematical task of card puzzles explained below. 
From perspective of the theory of praxeologies, we define the notion of raison d’être as 
any system of interrelated tasks (and each task of the system) satisfying the following 
two conditions: 1) it allows the inquirers to (re)produce a given whole praxeology (and 
praxeological elements); and 2) it is lively or familiar for the inquirers’ viewpoint. Let 
us emphasize here that raisons d’être of praxeologies are relative and changeable. It 
depends on performers of the praxeologies like mathematicians and students. 

THE CARD PUZZLE FOR TEACHING GROUP THEOTY 
Task design 
Let us recall the studying process of vector and vector space. Among the algebraic 
objects taught in secondary mathematics, vectors have exceptionally different 
algebraic structures from number systems. In secondary mathematics, vectors are 
introduced in a constructive way based on planer or spatial geometry, not in the 
axiomatic way, and the focus is on individual vectors and their calculations. It is on this 
basis that concepts of abstract vector spaces are studied later. Thus, the study on the 
vectors performs as the previous step towards abstract linear algebra. Likewise, we 
would like to propose giving opportunities first to experience constructive algebraic 
structures which have only one non-commutative operation. Studying planer vectors is 
a nice beginning towards linear algebra because the planer vector space is easy to grasp 
and possesses typical properties as a vector space. Then, what is the most typical 
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group? We propose that the symmetric group 𝑆𝑆𝑛𝑛 could be an appropriate candidate. In 
fact, it is well-known that any finite group is a subgroup of 𝑆𝑆𝑛𝑛  for some large 𝑛𝑛. 
Moreover, 𝑆𝑆𝑛𝑛  can be introduced in a constructive way, for example, 𝑆𝑆4  can be 
introduced as permutating operations of 4 numbered cards. 
The students in this experimentation belonged to a preservice teacher training course, 
therefore advanced group theory could not be included. We designed an introductory 
program dealing with symmetric groups, which would naturally introduce fundamental 
concepts in group theory without forcing their definitions from the first. This program 
was conducted in the first term in 2019 for three third-year undergraduate students as a 
seminar with the first author as a teacher. This seminar started in May and continues for 
two years; however, we focus on the first seven sessions. As the prerequisite 
knowledge, they had already studied fundamental set theory including concepts of map, 
injection, surjection, equivalence relation and quotient set in other courses. 
The initial and central type of tasks T designed for the seminar is the following:  

 We have 𝑛𝑛 cards arranged in a row and each number from 1 to 𝑛𝑛 is written on one of the 
cards. The objective is to rearrange them in the ascending order using particular available 
operations only. Less number of operations is preferred. 

We call each task t(i)
T of T, which consists of 

the number of cards and available operations, 
a puzzle. Based on T, several puzzles are 
proposed to students and regarding each 
puzzle t(i)

T, students struggled not only with 
analysing them, but also with related 
questions raised in the analysing processes. 
Such related tasks will form other derived 
task types *T and **T, which shall be 
explained in later sections. The first example 
is Puzzle 1 (t(1)

T) indicated in Fig 1. It deals 
with 3 cards and the available operations are 
A, switching first and second cards, and B, 
switching second and third cards. All puzzles 
proposed to students are indicated in Fig 2.  
First session: From puzzle to non-numerical equational representation 
 In the first session, T was explained, and Puzzle 1 (t(1)

T) was provided for students. 
Thus, this program started from an extra-mathematical context to analyse a puzzle, 
which was proposed without using any terms of group theory. As the solving method, it 
was supposed beforehand to draw the Cayley graph, which consists of vertices of all 
possible orders and edges each of which connects two orders possible to change one to 
the other by one available operation. Of course, students did not know Cayley graph, 
but we had expected them to spontaneously use such a graph representation. In fact, a 
student said: 

 
Fig 1: Puzzle 1 

 
Fig 2:  Puzzle 2, 3, 4, and 5 
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Student A: Just 6 orders only are possible. Let’s list them all. 

Then they started to construct Cayley graph 
without knowing that term (Fig 3).  Students 
produced successfully the method of drawing 
Cayley graph, which is a technical element 
τ(1)

T in their praxeology (in this paper, we use 
“τ” for not only the whole technique but also 
its elements). This technique enables them to 
focus on and grasp the whole set of operations or orders. To emphasize that each 
operation corresponds to an order, the teacher stressed that 123 is the initial order. 
The following are students’ remarks regarding this graph representation. 

Student A: Operation B once and A twice are needed (to change 321 into 123). 

Student B: Operations A and B should be done alternatively. Doing A twice is useless. 

At this moment, they did not realize the binary operation among puzzle operations and 
their representations were based on the natural language. However, being asked how to 
change 321 into 123, they answered “𝐵𝐵𝐵𝐵𝐵𝐵  or 𝐵𝐵𝐵𝐵𝐵𝐵”; they used the composition 
operation unconsciously. It was after that time that the definition and the notation of 
the composition operation was confirmed: for two operations 𝑋𝑋 and 𝑌𝑌, we denoted the 
composition of them, doing 𝑋𝑋 and then 𝑌𝑌, by 𝑋𝑋𝑌𝑌. One student said “it’s like the 
multiplication”, and we discussed that 𝐵𝐵𝐵𝐵 ≠ 𝐵𝐵𝐵𝐵. Here, it should be remarked that 
these discussions were not rigorous because it was not defined what these operations 
mean mathematically. Strictly speaking, operations should be formulated as maps from 
{1,2,3} into itself, however such theorisation was postponed until some later sessions, 
that is, the teacher did not intervene in the students’ spontaneous praxeology to avoid 
developing praxeologies without any raison d’être.  
Also, in this session, based on the above Student B’s remark, we tried to express his 
remark as equations. This is a new derived task t(1)

*T. Specifically, being asked what 
happens when the operation 𝐵𝐵 is repeated, they considered how to express 2𝑛𝑛 + 1 
times repetition of operation 𝐵𝐵: 

Student A: May be (2𝑛𝑛 + 1)𝐵𝐵 … oh, it’s no good. 

Asked by the teacher, they discussed that doing twice and thrice of 𝐵𝐵 are 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵𝐵𝐵 
respectively and it was pointed out by students that they look like powers of 𝐵𝐵. Thus, 
we negotiated that we note n times repetition of 𝐵𝐵 by 𝐵𝐵𝑛𝑛 and obtained the equation 
𝐵𝐵2𝑛𝑛+1 = 𝐵𝐵. Then we discussed how to proceed the task t(1)

*T, that is, representing their 
findings that 2𝑛𝑛 times repetition of 𝐵𝐵 is the same as doing nothing: 

Student B: Doing nothing is 0 times repetition and it may be written as 0? 

Teacher: If it’s written as 0, 𝐵𝐵 and doing nothing equals 𝐵𝐵, then 𝐵𝐵0 = 𝐵𝐵, right? 

Students: Oh, it’s 1. 1 is better! 

 
Fig 3: Cayley graph drawn by students 
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In this way, they faced the new type of tasks *T, to express relations between 
operations and to find new relations between them, and with need in coping with these 
tasks t(1)

*T, they developed a technical part τ(1)
*T of representing the relations between 

puzzle operations in algebraic way, even though they are not algebraic objects for them 
at this point. This enables them hereafter to use elementary algebraic representations 
and techniques to express and deal with properties among puzzle operations paying 
attention to the non-commutativity.  
Second and third session: inverse element and order of elements 
At the end of the first session, we agreed what puzzle to analyse next, i.e., Puzzle 2 
(t(2)

T). Thus, at the beginning of the second session, students presented their result (Fig 
4). Compared to puzzle 1, the structure of Puzzle 2 is rather complex, however, they 
engaged rather lively in elaborating the Cayley diagram, because it enables them to see 
the whole perspective of the permutations in t(2)

T: τ(1)
T functions as a tool to carry out 

t(2)
T. In the process, they naturally began to consider 1234 as the initial order to operate, 

and to regard operations as permutations as well as in the case of puzzle 1.  
After they elaborated this graph, they found 
many relations like (𝐵𝐵𝐴𝐴)2 = 1, (𝐵𝐵𝐵𝐵)3 = 1 and 
so on. Referring these equations, it was natural 
to ask the following question: for any operation 
𝑋𝑋 , does a natural number 𝑛𝑛  exist, such that 
𝑋𝑋𝑛𝑛 = 1? This is a new task t(2)

*T of *T. After 
some empirical attempts, they could understand 
that, if we assume that an operation 𝑋𝑋 had no 
natural number 𝑛𝑛  such that 𝑋𝑋𝑛𝑛 = 1 , there 
would be different natural numbers 𝑖𝑖 and 𝑗𝑗 such 
that 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗. Thus, we focused on the question 
whether the statement “𝑌𝑌𝑋𝑋 = 𝑍𝑍𝑋𝑋 implies 𝑌𝑌 =
𝑍𝑍 ” is true or not; if it is true, we can have 
𝑋𝑋𝑗𝑗−𝑖𝑖𝑜𝑜𝑜𝑜 𝑋𝑋𝑖𝑖−𝑗𝑗 = 1. In this context, we defined 
the inverse of an operation, and confirmed all operations have its inverse. Here, we can 
point out that the inverse element was introduced not for the axiom of group, but for the 
solution to the emerged question. 
In the third session, we dealt Puzzle 3 (t(3)

T), which includes operation R whose inverse 
𝑅𝑅−1 is different from the original. Thus, the notion of inverse became more clarified. 
Puzzle 3 was selected by the teacher for this purpose. 
Through carrying out t(2)

*T and t(3)
T in these sessions, the students elaborated the 

concept of inverse elements (τ(2)
*T). In more detail, the task t(2)

*T required the technique 
τ(2)

*T and this technique enabled them to carry out t(3)
T. Besides this, the students 

became to use algebraic expressions frequently and naturally in their discourse. It 
seemed that permutations had become algebraic elements, which can be dealt in 
algebraic ways through the composition operation.  

 
Fig 4: Cayley graph of puzzle 2 
drawn by students. 
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Fourth session: Symmetric group and its generators 
Until the third session, every analysed puzzle involved all permutations, however 
Puzzle 4 (t(4)

T) had been assigned at the end of the third session and they had found that 
is not always true. Puzzle 4 is also selected by the teacher to highlight this phenomenon. 
In the fourth session they drew the Cayley graph of Puzzle 4 from the initial order 1234 
as usual and found it involves only 12 permutations. Moreover, students, as it was 
expected, added an optional graph which involves permutations that do not appear in 
the original graph (Fig 5). 

Then, they faced the question: why this diagram split into two parts, what is the 
difference from the previous puzzles? This is a new task t(1)

**T  belongs to the new type 
of tasks **T involving the structure of the group. To discuss them, it was necessary to 
formulate what operations are mathematically and to make the discussion more 
rigorous. On this account, we negotiated the notation representing a bijection 𝑓𝑓 from 
{1,2,3,4} to itself: 𝑓𝑓  is indicated by the result (written in framed numbers) of the 
corresponding permutations of 1,2,3,4. (This is different from the standard notation of 
permutation, however, their recognition is based on the permutation of 4 cards, this 
notation was rather acceptable for them.) For example, 1234 means the identity 
permutation and 1243 means the transposition of 3 and 4. And here the term 
“symmetric group of degree n” and the notation Sn was introduced by the teacher. Also, 
it was confirmed that the vertices of the graphs we have elaborated correspond to the 
elements of S3 or S4. Thus these formulation technique τ(1)

**T was carried out for the 
need to proceed the consideration on t(1)

**T. 
Next, students were asked to explain the difference between the situation of Puzzle 4 
and those of previous ones, for example Puzzle 2. They tried to express it: 

Student B: In the case of puzzle 2, all elements of S4 can be made by 𝐵𝐵, 𝐵𝐵, 𝐴𝐴, however it 
isn’t in this case. 

Teacher: What do you mean by “can be made”? Please explain more precisely. 

Finally, they could not express it clearly, however, they entirely agreed on the 
description given by the teacher: “in the case of puzzle 2, all elements of S4 can be 
expressed as a finite composition of 𝐵𝐵, 𝐵𝐵, 𝐴𝐴, and their inverses in some order”. It was 
this moment that the definition of generators is provided. Here we remark that, though 

Fig 5: Cayley graph of puzzle 4 
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the definitive expression was finally given by the teacher, their cognitive process was 
rather different from the usual studying process which starts from providing definitions. 
In fact, they could consider how to express it, since they could distinguish the case of 
being generated from otherwise. These notions of generators and property of being 
generated should be the new technique to cope with the task t(1)

**T  and at the same time 
they could be a technological element θ(1)

T within group theory, relative to the type of 
tasks T (we also use “θ” for the technological elements like in the case of τ).  
Fifth and sixth session: Coset decomposition and subgroup, at the same time. 
In the previous session, we realized the difference between Puzzle 2 and 4, however, it 
remained mysterious that in the case of Puzzle 4, whole elements of S4 split into two 
congruent graphs, that is, t(1)

**T was not solved completely. To consider its reason, they 
were suggested by the teacher to understand this splitting phenomenon as a quotient set 
by an equivalence relation: what equivalence relation is behind this splitting? This is 
the new emerged task t(2)

**T, based on the application of some notions within set theory 
(θ(2)

T). Since it was difficult to consider from one example only, they were encouraged 
to analyse one more case, Puzzle 5 (Fig 6). 
Considering these cases, 
students noticed that, in the 
case of Puzzle 4, two 
permutations 𝑃𝑃  and 𝑃𝑃′  are in 
the same connected graph, if 
and only if “𝑃𝑃 can become 𝑃𝑃′ 
using 𝑆𝑆  and 𝑇𝑇 ” (this is 
student’s exact description). 
Again, the student’s 
description was not accurate. 
Then, with teacher’s help, they 
managed to elaborate the 
description: “it is if and only if 𝑃𝑃′can be expressed by the composition of 𝑃𝑃 and a finite 
composition of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1.” Here, we denoted this binary relation as 𝑃𝑃 ∼ 𝑃𝑃′. 
This is the basic concept of coset decomposition included in θ(1)

T. 
Then, the above notion led them to the task t(3)

**T of considering whether this binary 
relation is an equivalence relation or not and its reason. We checked the three 
properties: reflexivity, symmetry, and transitivity. The following is the result of our 
discussion. 
– Reflexivity holds, since 1 is one of finite compositions of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1. 
– Symmetry holds, since the inverse of a finite composition of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1 is 

also a finite composition of the same elements. 
– Transitivity holds, since the composition of two finite compositions of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 
𝑇𝑇−1 is also a finite composition of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1. 

 
Fig 6: Cayley graph of puzzle 5 (the edges connecting  
the top and bottom are omitted) 
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Through this consideration, we negotiated to denote the set of finite compositions of 𝑆𝑆, 
𝑇𝑇 , 𝑆𝑆−1 , and 𝑇𝑇−1  by 〈𝑆𝑆,𝑇𝑇〉, and realized that 〈𝑆𝑆,𝑇𝑇〉 has nice properties: it is these 
properties that make the corresponding binary relation ∼ to be an equivalence relation. 
Also, we reflected that what happens in cases of 〈𝐷𝐷,𝑅𝑅〉 in S4 (Puzzle 5) and 〈𝐵𝐵,𝐵𝐵,𝐴𝐴〉 in 
S4 (Puzzle 2), and found that the corresponding relation of 〈𝐷𝐷,𝑅𝑅〉 classifies S4 into 3 
classes and that of 〈𝐵𝐵,𝐵𝐵,𝐴𝐴〉 classifies S4 into just one class. 
Then, it was this moment that the definition of subgroup of Sn was provided: a subset K 
of Sn is a subgroup if and only if K includes 1 and is closed under the composition 
operation and the inversion. This definition was not forced from above, but rather 
naturally raised from the discussion to understand the splitting of Cayley graphs, and 
would be acceptable for students. These notions of subgroup, coset decomposition, are 
certainly elements of θ(1)

T in their praxeology. These were endowed with their raisons 
d’être from the first: the properties in the definition of subgroup were raised to support 
the concept of coset decomposition which was observed through the type of tasks **T. 
Seventh session: Coset and Lagrange theorem 
It was natural for students to focus on the question “Is there any subgroup whose 
corresponding coset decomposition consists of 4 classes or 5 classes?” In this manner 
we investigated the structure of a coset and found that each coset has the same number 
of elements (Lagrange theorem in symmetric groups). 

DISCUSSION 
The following is the list of praxeological elements at stake in the whole program. 

Table 1: Praxeological elements 

T: To find properties regarding puzzle operations 
 t(1)T, t(2)T, t(3)T,…: Puzzle 1, Puzzle 2, Puzzle 3, … 
*T: To express relations between operations and to find new relations between them 
 t(1)*T: To express the relation found in the first session 

t(2)*T: To consider whether every operation has a finite order 
**T: To consider and (or) explain the principle regarding the structure of the group 
 t(1)**T: To consider the principle of the splitting of Cayley graphs 

t(2)**T: To consider what equivalence relation is behind the splitting 
t(3)**T: To consider if the found binary relation is equivalence relation or not, why 
and what is behind it 

τ(1)T: To draw Cayley graphs 
τ(1)*T: To represent the relations between puzzle operations in algebraic way 
τ(2)*T: To deal with the inverse operations 
τ(1)**T: To formulate symmetric groups using set theoretical terms 
θ(1)T: Symmetric group theory—especially, notions of S3, S4, generator, subgroup, coset 

   
 
θ(2)T: Elementary set theory —maps, equivalence relation, and quotient set 
 (ΘT : General group theory) 
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Up to this point, we have described the study process in the program, where different 
technical and technological entities in group theory emerged from a sequence of lively 
tasks. The bundle of these tasks constructs a raison d’être of group theory for the 
students. Let us clarify here the relationship between such tasks and 
technical-and-technological elements, as the first property of our experiment (Fig. 7). 
On the one hand, each task brings about a derived technical-and-technological element. 
On the other hand, such an element produces a certain new task and is applied to some 
tasks. In Fig 7, the arrows indicate these deriving, producing, and applying relations. 
This dialectical interplay between tasks and techniques is the first property of our 
implementation. Note that our analysis relies on a basic assumption of the ATD, that is, 
the postulate of the relativity of praxeological entities. θ(1)

T and θ(2)
T are technological 

for T—which is the motivation of this praxeology—, but technical for **T. Type of 
tasks, techniques, technologies, and theories are not the natures of praxeological 
elements but their functions. 

The second property is related to the incompleteness of theoretical elements in the 
program. The praxeology has the algebraic nature but excessively focuses on 
symmetric groups, that is, not get access to the general group theory. This is a main 
reason why we call this seminar an introductory program of abstract algebra. However, 
the praxeology at stake could reach to standard structural results in symmetric group 
such as coset decomposition and Lagrange theorem, which can be easily extended to 
general groups. This potentially extendable structural results might be a gate for 
proceeding to general group theory with raison d’être. 
The third property related to the second property is the implicitness of associativity. 
The definition of group involves three conditions: associativity, existence of an 
identity element, and existence of inverse elements. In our program, the identity 
element was required to make equational representation of found relations (τ(1)

*T), and 
inverse elements also emerged to accomplish the task t(2)

*T. However, in this program 
all objects in consideration were maps and associativity was always satisfied from the 
first. Students knew that associativity holds but never focused on it. It was used with no 
special consciousness. Associativity seems often trivial and tends to be transparent for 

 
 
 
 
 
 
 
 
 
 
 
Fig 7: The dialectic between tasks and techniques 
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students. Thus, the teacher had no chance to highlight associativity regarding group 
theory with raison d’être. 

FINAL REMARKS 
Winsløw et al. (2014) points out the two types of institutional transitions in university 
mathematical praxeologies. The first type is the transition where a praxis part of a 
praxeology without the logos part gets its logos part. On the other hand, in the second 
type, a logos part of a mathematical praxeology changes to a praxis part of another 
advanced praxeology. Our program should fit as the first type transition. Taking above 
three properties of our program into consideration, we might be able to proceed to a 
further development of didactic situation for teaching group theory as follows: one is a 
situation where their understanding of potentially extendable technology elements 
derives the general group theory. Such situation would require group-like objects in 
entirely other context, to which the existing technology elements can be applied. Also, 
to focus on associativity group-like objects, in which associativity is not trivially 
satisfied, would be needed. 
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At Paderborn University, a new 6th semester geometry-course for upper secondary 

student teachers has been designed and taught by the first author of this paper. To 

show links between academic mathematics and school mathematics we established so-

called interface weeks. These are weeks during a course in which lecture, exercises 

and homework focus on topics that are related to the normal canon of content but 

specially chosen for their relevance in school contexts. In this article, we want to 

present our design for an interface week on the topic of congruence. In order to do so, 

we first illustrate how so-called interface aspects are used to systematize the 

mathematical background of the topic, thus giving future mathematics teachers the 

chance to act professionally. We then show examples of learning activities and first 

results of the accompanying research. 

Keywords: Transition to and across university mathematics, Teaching and learning of 

specific topics in university mathematics, Geometry, Student Teacher, Capstone 

INTRODUCTION 

In his well-known quote, Klein (1908, p. 1) describes two discontinuities, which must 

be clearly distinguished. The first discontinuity is a perceived disconnectedness 

between school mathematics and the academic mathematics that students encounter 

when they enter their university studies. Klein focusses exclusively on the aspect of 

mathematical knowledge. In current transition research, also differences at the level of 

teaching/learning methods or social challenges inherent in the transition are seen as 

responsible factors for the difficulties which students experience when they start their 

studies. These difficulties can even cause some students to completely drop the study 

of mathematics. Interventions that specifically address the transition problems at the 

aspect of mathematical knowledge explicitly build on existing knowledge and previous 

mathematical experience from school when designing teaching/learning processes in 

university mathematics. The focus of these efforts is the acquisition of competences in 

university mathematics. Although was formulated by Klein in the context of teacher 

education, the first discontinuity is also relevant for students who aim to major in 

mathematics. The second discontinuity assumes that students have acquired knowledge 

in university mathematics. However, students often perceive this mathematical 

knowledge as not very relevant for their future professional work. Solutions therefore 

aim, to identify the contents of academic mathematics that can be connected (in the 

sense of supporting professional teaching) to school mathematics and in a second step 

to develop learning opportunities that support students in discovering connections. The 
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aim is to better enable students to use their background in university mathematics as a 

basis for professional acting as a teacher. In most (German) universities, such linkage 

is provided in additional courses on the didactics of mathematics. Our new approach is 

to enhance the mathematics course itself so that the specific course on the didactics of 

geometry can focus on pedagogical content knowledge. The mathematics course is to 

be enriched by learning opportunities that help students to take a mathematical 

perspective on a profession-oriented situation (e.g. reacting to a student’s contribution 

or analysing a textbook page) and to act with the necessary professional knowledge. 

THEORETICAL BACKGROUND 

Talking about a discontinuity between school mathematics and academic mathematics 

requires analysing differences between the two. Dreher, Lindmeier, Heinze and 

Niemand (2018) summarize how these differences have already been described by 

Klein and, more recently, by Wu (2011) and other authors: 

Mathematics as the scientific discipline taught at university has an axiomatic-deductive 

structure and focuses on the rigorous establishment of theory in terms of definitions, 

theorems, and proofs. It usually deals with objects that are not bound to reality […]. 

[M]athematical objects [as taught at schools] are often introduced in an empirical manner 

and bound to a certain context. Concept formation […] is […] often done in an inductive 

way […]. Mostly intuitive and context-related reasoning is more in the focus than rigorous 

proofs. (Dreher et al., 2018, p. 323) 

In order to link these two types of mathematics, we follow the idea of mathematical 

background theories (e.g. Vollrath, 1979). Topics of school mathematics are 

characterized by several locally ordered domains, which are mostly unconnected to 

each other. They are often built up from an empirical phenomenon and are at the end 

networks of terms and concepts that are logical in themselves. (Freudenthal, 1973). 

Background theories phrased in the language of academic mathematics can now 

contribute to the foundation of these locally ordered domains in two ways: On the one 

hand, they can help to connect the domains with each other and thus clarify conceptual 

relationships and bring statements from the different areas into logical connections. On 

the other hand, such background theories provide the basis for the local ordering and 

selection of content foci within the individual domains. Based on extensive research, 

Ball and Bass (2002, p. 11) give a list of typical mathematical job tasks that a 

mathematics teacher has to master in everyday teaching. This list has been extended 

by Prediger (2013). Four of these job tasks that are important for our project are the 

following: 

A teacher must … 

• be able to master requirements set for students by her- or himself at different levels 

• analyse and evaluate approaches (used in e.g. textbooks) 

• analyse and rate student contributions and react to them in a way which is conducive 

to learning 
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• analyse mistakes of students and react in a way which is conducive to learning 

(Prediger, 2013, p. 156) 

The identification of the corresponding mathematical background theory is a 

prerequisite for professional teaching, since it enables a teacher to correctly analyse a 

given situation. With sufficient background knowledge, a mathematical perspective on 

a typical professional problem can be taken and a solution can be worked out in the 

context of this perspective. In the last step, this solution then must be didactically 

transferred back into school mathematics and adapted to the mathematical horizon of 

the respective school students. At this point, we would like to emphasize that this is 

just one of several perspectives that can be taken on typical professional situations, but 

it is the one in which the mathematical background plays the most important role, 

which makes it relevant for the design of lectures in mathematics. In terms of teachers’ 

professional knowledge, our aim is to establish links between school mathematics and 

academic mathematics in the sense of school-related content knowledge (SRCK) 

(Dreher et al., 2018). This construct supplements the known facets of content 

knowledge and pedagogical content knowledge with a profession-specific component. 

The latter consists of three facets, namely: Knowledge about the school curriculum and 

its structure as well as the understanding of its mathematical legitimation, secondly the 

knowledge of the interrelations between school mathematics and academic 

mathematics both top-down, and thirdly bottom-up. We call learning opportunities that 

evoke the conscious passing through the described three-step process (Take the 

mathematical perspective. - Solve your problem. – Didactically transfer your solution) 

interface learning opportunities (to bridge the second discontinuity) and thus 

generalize the term interface task as used for example by Bauer (2013). Our research 

interest lies in the development and evaluation of interface learning opportunities with 

the aim of identifying generalizable principles for success and failure and formulating 

general design principles for interface activities.  

ABOUT THE GEOMETRY COURSE 

The course in which our project takes place is located in the 6th semester of the degree 

programme for future upper secondary math teachers. Since it was newly introduced 

as part of a change in the study regulations, we had many design options for 

implementing the requirements of the module manual, which are: an axiomatic system 

for Euclidean geometry should be treated according to the module description of the 

course and, the role of the parallel postulate should be discussed using a model of 

hyperbolic geometry. For this purpose we use an axiom system developed by Iversen 

(1992). His system is equivalent to the known axioms of Hilbert, but it needs fewer 

axioms, which are of course more charged with content (as for example, the axioms 

for ℝ are already included.), but also more intuitively understandable. In addition, we 

also consider the Euclidean plane by means of analytical geometry using Euclidean 

motions and thus include the geometry as it is usually treated in upper secondary 

school. In this way we can take different views on typical terms of school geometry 
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(straight lines, orthogonality, reflections, etc.). The course took place for the first time 

in the summer semester 2019 with about 25 active participants. The presence part 

consisted of a weekly two-hour lecture and two two-hour tutorial groups of about 13 

students each. As usual in mathematics lectures in Germany, weekly homework 

assignments were set for the students to work on. Within this context, students also get 

tasks for linking school and university mathematics, which are part of a semester-

accompanying so-called interface ePortfolio. We follow Bruder, Scholz and Menhard 

(2012) with this concept of an accompanying e-portfolio. It must be emphasised that 

the course differs significantly from the usual mathematics courses in university 

teacher education, which are usually the standard bachelor-of-science courses and thus 

do not specifically address the specific needs of student teachers. Most of the existing 

projects in which special courses for student teachers are developed are placed at the 

start of university education. The topic of elementary geometry is well suited for an 

exclusive teacher education lecture, because although it is an important topic for 

student teachers, it usually does not play a role in the subject studies. 

RESEARCH DESIGN 

We develop and study our interface activities within the framework of a design 

research approach following the methodology of Prediger et al. (2012). In our project 

we go through the following cycle three: (Step 1) specifying and structuring the 

interface topic, (Step 2) (re)designing interface learning activities, (Step 3) use and 

research interface activities and (Step 4) developing and refining (local) theories. The 

initial run just took place in summer semester 2019: In order to specify and structure 

the interface topic (step 1), we must link a school mathematics topic with 

corresponding academic mathematics. The challenge now is to systematize the 

background theory so that it can be used as a basis for professional teaching. It is 

utopian to assume that teachers will later think, “Oh yes, lemma 4.2 can help me here.” 

Our approach is to work out so-called interface aspects that channel the work with the 

mathematical background in a typical professional situation. In the next section this 

will be explained by an example. We decided to focus our project on the interface 

topics symmetry and congruence. For design and later redesign (step 2), we had to 

develop three types of interface learning activities: The lecture itself, tasks for the 

weekly tutorial groups and tasks for the weekly homework. In the first run, we were 

primarily dependent on experience from other mathematics lectures for student 

teachers, other projects on interface tasks and our conceptual considerations, which are 

described above. In the next two runs, we will also be able to build on our research 

results according to the principles of design research.  For the research on our interface 

learning activities (step 3), we have collected a lot of data both at the level of the cohort 

as a whole and in case studies. Details about the data collection will be presented in the 

next section. Based on the research results from step 3, we can then develop and refine 

local teaching-learning theories (step 4) that relate to the developed activities 

belonging to the selected interface topic. In this article we would like to illustrate the 
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implementation of the different steps of the cycle using various examples from the 

interface week “congruence”. 

DATA COLLECTION 

The students’ solutions of the interface tasks were scanned and will be evaluated with 

methods of qualitative content analysis. A small sub-group from each tutorial group 

was videographed in an extra room while working on the tasks. By evaluating the 

students' discussions, we hope to gain insights into the conception of interface tasks as 

well as into how students use the newly acquired background theory in their 

communication with peers. Some students were interviewed about their experiences 

during their work on the homework and their view on the tasks. This enables us to gain 

insights into the subjective perception of the learning processes during the interface 

week. In the following week, we used an acceptance questionnaire in the whole group 

with mainly closed items, which gives us a general picture of the perceived difficulty, 

comprehensibility, motivation, etc. of the interface tasks. 

DESIGN OF THE INTERFACE WEEK ON “CONGRUENCE” 

For one of the interface weeks, we chose congruence, which is an important topic of 

geometry teaching in lower secondary school. Among other things, the topic forms an 

important background for constructions with compasses and rulers and represents an 

essential method of geometric argumentation in school mathematics. 

Mathematical Background 

The first part of the lecture on the interface week on “congruence” deals with the 

clarification of the underlying academic mathematics. 

We call a figure (that means subsets of ℝ2) 𝐹 congruent to 𝐺, if there is an (bijective) 

isometry 𝜑: ℝ2 → ℝ2 with 𝜑(𝐹) = 𝐺. We prove that congruence is an equivalence 

relation. That leads us to the question of what information is needed to unambiguously 

determine the equivalence class of a plane figure. Prominent tools for this are the 

congruence theorems for triangles, which are also proved in the lecture. 

Congruence in school mathematics 

Weigand et al. (2018, p. 202) describe congruence as an important basic concept for 

topics of lower secondary geometry. This includes constructions with compasses and 

rulers, justifications and proofs as well as the determination of lengths and area 

contents via congruent subfigures. Congruence can be introduced as a basic concept 

explained on the enactive level (in the sense of fitting when laying one figure on top of 

the other) or based on the theory of Euclidean isometries (Weigand et al., 2018, p. 203). 

Interface Aspects  

In accordance with step 1 of our research design, we worked out the following four 

interface aspects for congruence as a kind of meta-knowledge for constituting a 

systematized view of the mathematical background. The notion of “interface aspect” 

is an important theoretical concept of our approach. 
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1. Aspect of quantities with identical size: Because there is always an isometry (by 

definition) between a figure and a congruent figure, it is guaranteed that 

congruent figures will match in several geometric quantities. This applies 

especially not only to the border of the figure and the distance between corner 

points, but also to the dimensions of other objects that can be constructed from 

the figure (diagonals, intersections, incircles, …) and their equivalent objects in 

the congruent figure. 

2. Aspect of relation: Congruence is an equivalence relation on the power set of ℝ. 

The statement delivers characteristics that are connected intuitively with the 

concept of congruence: Each figure is congruent to itself (reflexivity). If A is 

congruent to B, then B is also congruent to A (symmetry). It is only in this way 

that the phrase "figures are congruent to each other" is meaningful. If two figures 

are congruent to a third one, they are also congruent to each other (transitivity).  

3. Aspect of classification: The aspect of relation provides a disjunctive 

classification of all subsets of ℝ² into congruence classes. The classification 

aspect now emphasizes the typical question of identifying and describing 

particularly relevant congruence classes, as well as working out common 

properties of all figures within these classes. The latter is a specification in the 

sense of the aspect of quantities with identical size. The following question about 

the smallest possible amount of information for the unambiguous assignment of 

a figure to its congruence class leads to the classical congruence theorems. 

4. Aspect of mapping: While the aspect of quantities with identical size statically 

compares the measurable properties of congruent figures, the question as to how 

one figure can be “transformed” into the other is part of the mapping aspect: (1) 

For every two congruent figures there exists by definition a mapping (bijective 

isometry) which transfers the figure into the other. (2) We can always express 

these mappings by the composition of a maximum of three straight line 

reflections (three-reflections theorem). (3) This mapping is always a glide 

reflection, a rotation or a translation. All this is especially valuable if you have 

proven the congruence of two figures over a congruence theorem. Automatically 

we already know about the existence of such a mapping. 

We can now use the interface aspects to illustrate links between school mathematics 

and academic mathematics. Many activities in dealing with congruence in school use 

congruence in the sense of the aspect of classification. This includes in particular 

constructions: Unambiguous constructability of triangles or other figures means that 

all figures that can be constructed from a given set of sizes are in the same congruence 

class. Also, the solving of plane triangles and the associated question of a minimum 

number of determining characteristics for a congruence class of triangles fall under this 

aspect. The determination of lengths or area contents using (sub)figures is based on the 

view of the concept of congruence described in the aspect of quantities with identical 

size. Proofs can use congruence in the sense of a mixture of both aspects: Congruence 

theorems are used to identify congruent figures with the aim of connecting different 

quantities with identical sizes. The aspect of relation is contained in the usual wording 
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in textbooks: "congruent to each other". This is well-defined, only because congruence 

is a symmetrical relation. And finally, when the enactive action of laying congruent 

figures on each other, through reflections etc., is formalized, the aspect of mapping 

always comes into play. 

The interface aspects take up all areas of the mathematical background of the topic 

“congruence” and systematize them on a level independent of the degree of abstraction. 

Our hope is that the aspects are suitable to support the taking of a meaningful 

mathematical perspective in a typical professional situation. We have shown that for 

each aspect there are areas of school mathematics in which it can be addressed. 

Examples for interface tasks on the topic of congruence 

The following task was used in the exercise group on congruence. 

Consider the following textbook task (Neue Wege 7, NRW (2014), p. 195): 

 

a) For each of the figures shown, consider whether their shape can be changed or not. 

Explain your observations and discuss which role the theorem SSS plays. 

b) Discuss, the role of the interface-aspects of congruence in the given task. 

c) Based on your considerations in a), consider at least one congruence theorem for 

squares in your group and justify its validity. (our translation). 

The professional relevance of the task lies in the domains (in the sense of Prediger, 2013) "be 

able to master requirements set for students by her- or himself at different levels " and 

"analyse and evaluate approaches (used in e.g. textbooks)". The content-related focus of the 

task lies in the aspect of classification, since it is a question of a sufficient number of given 

quantities for the unambiguous description of congruence classes (of quadrangles). The 

aspect of quantities with identical size also plays a role, as the modifiable figures are 

characterised by the fact that there are lengths (e.g. of diagonals) which are not clearly defined 

by the given lengths. 

Quotes from students working on the task  

As already described, we have video recordings from the tutorial meetings at our 

disposal, which we evaluate using methods of qualitative content analysis (Kuckartz, 

2018). This analysis is still work-in-progress. One of our foci is students’ use of the 

interface aspects that the students have learned in the previous lecture. We now want 

to illustrate three of our categories using examples from the discussion of a group of 

three students on the above task (Table 1). 
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Category name Category description Example 

proper and expected use of 

an interface aspect 

The students use an interface aspect 

in an appropriate manner, in 

accordance with our preliminary 

considerations 

(referring to the aspect of quantities with 

identical size) “[…] If we look at the 

[undrawn] diagonals, the lengths change if 

they (the figures) can move.” 

proper but unexpected use 

of an interface aspect 

The students adequately address an 

interface aspect in a way not 

anticipated by us. 

Student uses the aspect of mapping in the 

context of the moving figures as follows: In 

the case of a moving figure, the different 

possibilities do not go into each other 

through reflection, rotation or translation 

and are therefore not congruent. 

Incorrect use of an 

interface aspect 

The students use an interface aspect 

in the wrong way. 

(referring to the aspect of classification) 

“[…] Then we have in principle two classes, 

one where something can move and one 

where nothing can move. […]” 

Table 1: Categories of content analysis of video recordings of tutorial groups. 

Especially the second two categories (proper but unexpected use and incorrect use) are 

very valuable for redesigning the learning activities according to our Design Research 

cycle. Passages which fall in the second category expand our knowledge about 

anticipated learning processes and thus indirectly also about possible problems. The 

example of the third category described in the table provides a reason to reconsider the 

formulation of the aspect of classification. The aim of the redesign is to make it clear 

to the students during the course that the classes are congruence classes and not sets 

defined by other features such as "All figures that are created by deformation of a 

moving figure". The first category shows us where the aspects seem to function exactly 

in the intended sense. 

FURTHER SELECTED RESEARCH RESULTS 

As described above, we also studied the interface week with a questionnaire with 

closed items. At this point, we like to present first results of two scales that deal with 

the self-assessment of students after the interface week (Table 2). Figure 1 shows a 

histogram of both scales. It becomes clear that the maj-ority of the students in both 

scales assess themselves rather positively and - after the interface week - are confident  

that they can work with the background theory in the field of congruence and act 

professionally on this basis. The interesting question is what role the interface aspects 

play here. The item 'The interface aspects to congruence have helped me to better 

structure the mathematical background of the topic congruence.' was answered by all 

21 surveyed students on a Likert scale from 1 to 5 with 4 (rather true, 14 students) or 

5 (completely true, 7 students). 
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Scale Description Example Item 
scale 

consistency 

Background 

theory self-

perception 

(5 items) 

Self-perception of the ability to 

act in the background theory of 

congruence. 

I think that after the interface 

week, I can precisely define 

school mathematical terms from 

the area of congruence. 

𝛼 =  .85 

Professional 

acting self-

efficacy 

expectation 

(9 items) 

Expectation to self-efficacy to act 

professionally in the area of 

congruence as a teacher 

(Item formulations are based on 

the job-tasks described by 

Prediger (2013) 

I think that after the interface 

week, I can analyse and 

evaluate a textbook excerpt on 

the topic of congruence. 

𝛼 =  .79 

Table 2: Two scales of the acceptance questionnaire to the interface week congruence. 

 

Figure 1: Histograms of the two scales from Table 2. 

This is first and foremost a positive assessment, but it also shows that there is still room 

for improvement. Here, the results of the video evaluation described above, and the 

analysis of homework provide a good basis for a reformulation of the aspects in order 

to increase their accessibility of. The fact that the aspects are perceived as helpful is 

also supported by first results of our interview study, as the following original quote of 

one of the interviewed students shows: 

[...] The aspects already were very useful. So especially the whole thing of getting a 

structure like that in there. That you say: I have the aspects and can then relate them to 

them [to situations] and could think about which aspect I could use where or emphasize 

where. 

FURTHER PERSPECTIVES 

In the next step, we will continue the descriptive evaluation of the collected data and 

connect them with each other in order to be able to make more profound statements 

about learning processes in the interface weeks. However, it is already clear that the 
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idea of interface aspects is positively received by the students, but it is still unclear, 

how such aspects can be schematically set up for other mathematical concepts. 
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Relation between understandings of linear algebra concepts in the 
embodied world and in the symbolic world 

Mitsuru Kawazoe 
Osaka Prefecture University, Faculty of Liberal Arts and Sciences, Japan, 

kawazoe@las.osakafu-u.ac.jp 
For the use of embodied notions in teaching linear algebra, some studies indicate that 
it is helpful, but another study indicates that it is sometimes problematic. Hence more 
study is needed. In this study, linear (in)dependence and basis were focused on, and 
the relation between understandings of them in the embodied world and in the symbolic 
world was investigated. The effectiveness of an instruction emphasizing geometric 
images of them was also investigated. The main results of the study were the following: 
conceptual understanding of linear dependence of four spatial vectors such that any 
three of them do not lie on the same plane was positively associated with understanding 
of basis in the symbolic world; however, understanding of linear dependence of such 
vectors had not been improved by a geometrical instruction. 
Keywords: linear algebra, teachers’ practices, linear independence, basis. 

BACKGROUND AND THE PURPOSE OF THE STUDY 
It is widely recognized that linear algebra is a difficult subject to learn due to its abstract 
and formal nature. Dorier and Sierpinska (2001) stated that “linear algebra remains a 
cognitively and conceptually difficult subject.” It has been a big challenge to overcome 
the difficulty in teaching linear algebra. Some researchers pointed out that the use of 
embodied notions, namely the use of visual images, helps students to understand 
concepts in linear algebra (cf. Stewart & Thomas, 2007; Hannah et al., 2014; 
Donevska-Todorova, 2018, p. 268). However, there is another study indicating that 
using visual images is sometimes problematic in teaching linear algebra (Sierpinska, 
2000, p. 244). These studies indicate that the use of visual images in teaching linear 
algebra and its effectiveness should be more investigated. That is a motivation of our 
research to investigate students’ conceptions of linear algebra concepts in the context 
of geometric vectors.  
In our previous studies, we observed the following: (1) there are many students who 
fail to determine linear dependence of four spatial vectors such that any three of them 
do not lie on the same plane (Kawazoe et al., 2014); (2) some of those students take a 
longer time to image that three spatial vectors not lying on the same plane span the 
whole space (Kawazoe & Okamoto, 2016; Kawazoe, 2018). However, we have not 
investigated how these observations are related to understanding of concepts and 
procedures in linear algebra.  
In this study, we focused on concepts of linear (in)dependence and basis, and studied 
the following research questions: (1) Is geometrical understanding of linear 
(in)dependence in the embodied world related to understanding of linear 
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(in)dependence and basis in the symbolic world?; (2) Can geometrical understanding 
of linear (in)dependence in the embodied world including the case of four vectors be 
improved by an instruction emphasizing a geometric image of linear (in)dependence? 

THEORETICAL FRAMEWORK 
We use Tall’s model of three worlds (Tall, 2013) combined with APOS theory (Arnon 
et al., 2014) to distinguish students’ understanding for linear algebra concepts, 
following Stewart and Thomas (2007). Tall (2013) described the development of 
mathematical thinking in terms of three worlds: embodied world, symbolic world, and 
formal world. Tall stated that “the combination of embodied and symbolic mathematics 
can be seen as a preliminary stage to the axiomatic formal presentation of mathematics.” 
In linear algebra, the embodied world is a world of geometric vectors (arrows), the 
symbolic world is a world of numerical vectors, matrices, polynomials, and operations 
using symbols. APOS theory enables us to distinguish students’ conceptions into four 
levels: Action, Process, Object, and Schema. Then, students’ conceptions in linear 
algebra can be described in each of three worlds (cf. Stewart & Thomas, 2007). As for 
linear (in)dependence, Action-Process-Object conceptions in the embodied world are 
described as follows. Students having Action conception draw a linear combination 
explicitly in a discussion of linear (in)dependence. Students having Process conception 
can use a set of linear combinations but cannot use a spanned space correctly. Students 
having Object conception can completely understand that any two non-parallel 
geometric vectors are linear independent and they span a plane, any three geometric 
vectors not lying on the same plane are linear independent and they span the whole 
space, and any four geometric vectors are always linearly dependent.  
We view some linear algebra concepts from the viewpoint of Lakoff and Núñez (2000). 
For an example, we regard a role of basis of a vector space as the ‘discretization’ of a 
space, following the explanation given by Lakoff and Núñez (ibid., p. 260-261). To 
give a basis for a vector space is equivalent to give a coordinate for the space. In the 
embodied world, it means to represent every point in a plane or a space as a pair or a 
triple of numbers. Moreover, we apply the ‘Basic Metaphor of Infinity’ (ibid., p. 158) 
to students’ image of spanned space, according to an observation of our previous study 
(Kawaoze & Okamoto, 2016) that many students image a space spanned by linearly 
independent three spatial vectors as a ‘gradually expanding three-dimensional object’ 
which finally fills the whole space. We used these viewpoints in designing linear 
algebra lessons in this study.  

CONTEXT: THE COURSE, STUDENTS, DESIGN OF LESSONS AND TASKS 
The study was conducted in a linear algebra course aiming at engineering students at 
our university, but in a special class for students who failed to pass it when they were 
in the first-year. The course consists of a spring semester class and a fall semester class. 
The former is a 2-credit class, meeting for 90 minutes each week for 15 weeks. The 
latter is a 4-credit class, meeting for 180 minutes each week for 15 weeks. Each of 
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them is followed by an examination period. The course covers usual linear algebra 
topics: matrix, gaussian elimination, system of linear equations, and determinant, etc. 
in the spring semester; formal vector space, spanned space, linear (in)dependence, basis, 
dimension, linear map, inner product, orthogonal basis, eigenvalue, eigenvector, and 
diagonalization, etc. in the fall semester. This study was conducted during the first five 
weeks in the fall semester class. In these weeks, students learned formal vector space, 
spanned space, linear (in)dependence, basis, and dimension.  
Design of lessons 
Each lesson consisted of a lecture part and an exercise part. Lectures were given in the 
first half, and exercises were given in the second half. The lecture part was designed as 
to emphasize geometric images of linear algebra concepts especially by using the 
image of a spanned space in the embodied world. In the lecture part, the teacher 
introduced linear algebra concepts in the following way.  
First, the notions of linear combination and spanned space were introduced. A space 
spanned by three linearly independent spatial vectors was shown to students by using 
teacher’s fingers, and it was emphasized that linear combinations with negative 
coefficients were contained in the spanned space. The teacher stressed the importance 
of imaging a part of the space consisting of linear combinations with some (or all) 
coefficients being negative in order to grasp the correct image of the spanned space.  
The notions of linear independence and dependence were introduced by using usual 
formal definitions, but the meaning of linear independence and dependence of vectors 
v1, v2, …, vn in a vector space were explained in terms of spanned space as follows: 

Vectors v1, v2, …, vn are linearly dependent if and only if one of the n vectors can be 
represented by a linear combination of the other n-1 vectors, that is, one of the n 
vectors is contained in the space spanned by the other n-1 vectors.  
Vectors v1, v2, …, vn are linearly independent if and only if none of the n vectors can 
be represented by a linear combination of the other n-1 vectors, that is, none of the 
n vectors is contained in the space spanned by the other n-1 vectors. 

It was also explained that linearly independent vectors v1, v2, …, vn give an ascending 
sequence of vector spaces V1⊊V2	⊊…⊊Vn where Vk (k=1, 2, …, n) is the space spanned 
by v1, v2, …, vk. 
Then, the notion of basis was introduced by using a usual formal definition: 

Vectors v1, v2, …, vn in a vector space V is a basis of V if and only if they are linearly 
independent and any vector in V can be represented as a linear combination of them. 

It was explained that the second condition is equivalent to that V is spanned by v1, v2, 
…, vn. In the introduction of basis, the role of basis was explained as to give a coordinate 
system, and a basis was explained as a set of ‘axes.’ It was explained that the second 
condition means that it contains a sufficient number of axes to represent the whole 
space and that the first condition means that there is no extra axis in the set.  
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In the exercise part, students worked on paper-based exercises given by the teacher. 
Exercises mainly consisted of questions in the symbolic world and some of them can 
be viewed as questions in the embodied world: determining linear (in)dependence of 
vectors in  ℝ$ (n=2,3,4) or in polynomial spaces, determining whether a given set of 
vectors in  ℝ$ (n=2,3,4) or in polynomial spaces is a basis or not, finding a basis and 
the dimension of given subspaces in  ℝ$ (n=2,3,4) or in polynomial spaces, etc. Many 
of the questions were computational ones. Some of them were related to the geometric 
instruction given in the lecture part and they can be answered with geometrical 
reasoning.  
Design of tasks 
The following four tasks, which were translated from Japanese, were designed in order 
to investigate students’ understanding of dimension, linear (in)dependence and basis.  
Task 1: Answer the following questions. If you do not know (or if you have not learned), 
write your answer as “I don’t know.” 

(1) Describe your image of an example of one dimension, two dimension, and three 
dimension, respectively, using figures and words freely.  
(2) For vectors v1, v2, …, vn, vn+1, assume that vectors v1, v2, …, vn span an n-
dimensional space V, and that v1, v2, …, vn, vn+1 span an (n+1)-dimensional space W. 
When you draw a picture showing this situation, what kind of picture do you draw? 
Draw a picture of your image. 

Task 2: Determine whether spatial vectors given in each picture are linearly 
independent or not. Note that each vector lies on a line or a plane shown in the picture. 
(If there are multiple planes, each vector lies on one of them.) 

(1) (2) (3) (4) (5) 

(6) 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

Figure 1: Test items in Task 2 

Task 3: (Q1) For vectors v1, v2, …, vn in a vector space V over K, describe two conditions 
(in the definition of basis) for v1, v2, …, vn to be a basis of V. Write your answer in the 
answer columns (A) and (B). (Q2) Determine whether the following set of vectors is a 
basis or not. If it is not a basis, answer which condition that you described in Q1 is not 
satisfied. In the latter case, write your answer by using the symbol A or B, and write 
“A, B” in both cases. (Vector spaces are as follows: (1) ℝ%, (2) ℝ&, (3) ℝ', (4) ℝ&, (5) 
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the space of polynomials 𝑓(𝑥) with degree less than 3 whose coefficients are in ℝ, (6) 
the space of polynomials 𝑓(𝑥) with degree less than 2 whose coefficients are in ℝ.) 
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Task 4: (Q1) Determine whether spatial vectors given in each picture are linearly 
independent or not, and describe the reason. (Q2) Determine whether the given vectors 
in ℝ& are linearly independent or not, and describe the reason. 

Q1(1) 

 

Q1(2) 
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Figure 2: Test items in Task 4 

A priori analysis of tasks 
Task 1 and Task 2 are pre-tests conducted at the beginning of the semester. Task 1(1) 
can be answered as ‘line’, ‘plane’, and ‘space’. Task 1(2) is a non-routine task to 
examine whether students have an image that V is contained in W, or W extends outside 
of V as a space. Task 2 includes all of the important cases of less than or equal to four 
spatial vectors regarding linear (in)dependence. Task 2 is the same one that we used in 
our previous study (Kawazoe & Okamoto, 2016). According to our previous result 
(ibid.), Task 2 (8) was expected to be difficult for the participants. Task 2 (8) contains 
four vectors and any three of them do not lie on the same plane, hence it cannot be 
reduced to the case of less than or equal to three vectors. Task 2 (3) also contains four 
vectors, but it can be reduced to the case of three vectors because the vectors a, b, c lie 
on the same plane. The terms ‘dimension’, ‘span’, and ‘linearly independent’ were used 
in the texts in these tasks. Since the participants were in the second-year or higher, they 
had already learned them when they were in the first-year. 
The aim of Task 3 is to investigate students’ understanding of the definition of basis. 
For any set of vectors listed in (1)-(6), one can determine their linear (in)dependence 
without computation. Only (2) and (6) are basis, and the others are not. 
In Task 4, Q1 is a task in the embodied world, and Q2 is a task in the symbolic world. 
The two pictures in Q1 was taken from Task 2. According to the result of our previous 
study (ibid.), determining linear (in)dependence of four spatial vectors is problematic. 
Q1(1) and Q2(2) present essentially the same situation, and Q1(2) and Q2(1) present 
essentially the same situation. Q1(1) and Q1(2) can be answered by drawing vectors 
representing linear combinations, or by using the fact on vector subspaces spanned by 
two or three vectors. Q2(1) and Q2(2) can be answered by using numerical computation 
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(with or without the use of the Gaussian elimination), but they also can be answered 
with geometrical reasoning.  

METHODOLOGY AND DATA COLLECTION 
We implemented four-weeks lessons whose design is described in the above. Task 1 
and 2 were conducted at the beginning of the first lesson. Task 3 was conducted at the 
third week, and Task 4 was conducted at the beginning of the fifth week lesson. 
Participants’ answers for Task 1 were analyzed whether they have an image of 
dimension less than or equal to three and whether they have an image of increment of 
dimension. Participants’ reasoning for Task 4 Q1 were analyzed with APOS theory. 
Participants’ reasoning for Task 4 Q2 were classified into two types: algebraical 
reasoning, and geometrical reasoning. For other tasks, participants’ answers were 
evaluated depending on their correctness. Then, the relations between the results of 
these tasks were investigated. 
The study was conducted in the fall semester in the academic year 2018. All data were 
collected during the first five weeks in the linear algebra class for engineering students 
who had failed in the previous year or before. The number of students in the class were 
58. Among the 58 students, 38 of them worked out all the tasks from Task 1 to Task 4. 
In this study, the data of the 38 participants was statistically analyzed. 

RESULTS 
The result of each task and setting of groups 
Task 1. For Task 1 (1), almost all participants described their images for dimension 1, 
2, 3, as ‘line’, ‘plane’, ‘space’, respectively. For Task 1 (2), only 11 (28.9%) of them 
could draw their image of increment of dimension as extending outside the space. We 
set two groups according to the result of Task 1 (2): GI+ is the group of 11 participants 
having a geometric image of increment of dimension, GI- is the group of the others.  
Task 2. The percentages of correct answers for Task 2 were as follows: (1) 97.4%, (2) 
94.7%, (3) 65.8%, (4) 97.4%, (5) 89.5%, (6) 94.7%, (7) 86.8%, (8) 52.6%, (9) 89.5%, 
(10) 86.8%. The percentages of correctness for (3) and (8) were much lower, compared 
with the others. The pictures of (3) and (8) contain four vectors. The number of vectors 
in the others is less than four. The result of Task 2 was almost the same as the one in 
our previous study (Kawazoe & Okamoto, 2016), except for the result of (3). In the 
previous study, the percentage of correct answers for (3) was 84.5%. The median of 
the number of correct answers per participant was 9. We set two groups according to 
the result of Task 2: GV+ is the group of participants who answered correctly to more 
than 8 questions, and GV- is the group of the others.  
Task 3. For Q1, the number of participants who could describe two conditions in the 
definition of basis correctly was 23 (60.5%). While 34 (89.5%) of the participants could 
describe linear independence of the vectors correctly as one of the conditions, 24 
(63.2%) of them could described correctly that the vectors span V or that any vector in 
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V can be represented as a linear combination of the vectors. 8 (21.1%) of the them 
described ‘dim V=n’ as one of the conditions, which is a wrong answer because ‘dim 
V’ is defined after the definition of basis is introduced.  
For Q2, while the percentages of correct answers for (2), (3), (4) were high, those of 
(1), (5), (6) were relatively low: (1) 78.9%, (2) 97.4%, (3) 94.7%, (4) 94.7%, (5) 78.9%, 
(6) 65.8%. As for reasoning in (1), (3), (4), and (5), we evaluated whether a participant 
could answer correctly based on the necessary and sufficient conditions to be a basis. 
Hence, for a participant who described ‘dim V=n’ in Q1, we evaluated his/her answer 
for Q2 whether it was logically correct based on his/her answer in Q1. The percentages 
of correct answers for reasoning were as follows: (1) 65.8%, (3) 63.2%, (4) 36.8%, (5) 
65.8%. The median of the number of errors in Q2 (including errors in reasoning in the 
case of non-basis) per participant was 2. We set two groups according to the number 
of incorrect answers for Task 3 Q2: B+ is the group of participants whose incorrect 
answers were less than or equal to 2, and B- is the group of the others. 
Task 4. The percentages of correct answers for Task 4 were as follows: Q1(1) 89.5%, 
Q1(2) 55.3%, Q2(1) 86.8%, Q2(2) 89.5%. The pictures in Q1(1) and Q1(2) are same 
as in Task 2 (3) and Task 2 (8), respectively. While the percentage of correct answers 
for Q1(2) remained still low, the one for Q1(1) was much improved from the result of 
Task 2 (3). Though Q1(2) is essentially same as Q2(1) from a geometrical viewpoint, 
the results of them were different. According to the reasoning in Q1, we set the 
following groups: For j=1, 2, Oj+ is the group of participants showing Object 
conceptions in the reasoning for Q1(j), Oj- is the group of participants showing 
Action/Process conceptions or giving no reason in the reasoning for Q1(j). According 
to the reasoning in Q2(j), we set the following groups: For j=1, 2, GRj+ is the group of 
participants using geometrical reasoning for Q2(j), GRj- is the group of the others.  
The relations between the results of each task 
In the following analysis, we used Fisher’s exact test instead of the Chi-square test 
because there were small numbers in cross-tabulation.  
Relation between understanding in the embodied world and understanding of basis: 
Fisher’s exact test indicated that having a geometric image of increment of dimension 
(Task 1 (2)) and the result of Task 3 Q2 were positively associated (p<0.05, Table 1). 
Fisher’s exact test also indicated that showing Object conceptions in reasoning for Task 
4 Q1(2) and the result of Task 3 Q2 were positively associated (p<0.05, Table 2). On 
the other hand, we could not find any significant relation between O1+/- and B+/-. 

 B+ B- 

GI+ 9 2 
GI- 11 16 

Table 1: Relation between the results of 
Task 1(2) and Task 3 Q2 

 B+ B- 

O2+ 8 1 
O2- 12 17 

Table 2: Relation between having Object 
conception and the result of Task 3 Q2 
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Relation between understandings in the embodied world and in the symbolic world: 
Fisher’s exact test indicated that showing Object conception in reasoning for Task 4 
Q1(2) and the number of correct answers in determining linear (in)dependence in Task 
4 were positively associated (p<0.01, Table 3), where NC means the number of correct 
answers in determining linear (in)dependence in Task 4. On the other hand, we could 
not find any significant relation between O1+/- and the result of Task 4. Fisher’s exact 
test also indicated that the use of geometrical reasoning for Task 4 Q2 and the number 
of correct answers in determining linear (in)dependence in Task 4 were positively 
associated (p<0.05, Table 4), where GR+= GR1+∪GR2+, GR-= GR1-∩GR2-, and NC is 
the same as in Table 3. Fisher’s exact test also indicated significant correlations for 
GR1+/- (p<0.05) and for GR2+/- (p<0.05).  

 NC=4 NC<4 

O2+ 8 1 

O2- 9 20 

Table 3: Relation between having Object 
conception and the result of Task 4 

 

 NC=4 NC<4 

GR+ 10 5 

GR- 7 16 

Table 4: Relation between the use of 
geometrical reasoning and the result of 

Task 4 

Difference of understanding of linear (in)dependence between before and after of four-
weeks lessons: The picture in Task 4 Q1(1) and Q1(2) are same as the one in Task 2 
(3) and (8), respectively. McNemar’s test indicated that there was a significant 
difference between the results of Task 2 (3) and Task 4 Q1(1) (p<0.05, Table 5), where 
the participants were divided into two groups depending on whether their answers for 
Task 2(3) were correct (T2(3)+) or not (T2(3)-), and they were divided into two groups 
depending on whether their answers for Task 4 Q1(1) were correct (T4Q1(1)+) or not 
(T4Q1(1)-). On the other hand, Fisher’s exact test indicated that the result of Task 2 and 
the number of correct answers in determining linear (in)dependence in Task 4 Q1 were 
positively associated (p<0.01, Table 6), where NCQ1 means the number of correct 
answers in determining linear (in)dependence in Task 4 Q1. 

 T4Q1(1)+ T4Q1(1)- 

T2(3)+ 23 2 

T2(3)- 11 2 

Table 5: Relation between the results of 
Task 2 (3) and Task 4 Q1(1) 

 NCQ1 =2 NCQ1 <2 

GV+ 16 7 

GV- 3 12 

Table 6: Relation between the result of 
Task 2 and the result of Task 4 Q1 

DISCUSSIONS 
As for the first research question, we observed some relations between understanding 
in the embodied world and understanding in the symbolic world. The analysis for Table 
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1 indicated that having a geometric image of increment of dimension and 
understanding of basis in the symbolic world were positively associated. The analysis 
for Table 4 indicated that the use of geometrical reasoning in the symbolic world and 
understanding of linear (in)dependence in both embodied and symbolic world were 
positively associated. The analysis for Table 2 and 3 indicated that having Object 
conception for linear (in)dependence in the embodied world, especially for the case of 
four spatial vectors such that any three of them do not lie on the same plane (as in the 
picture of Task 2(8) and Task 4 Q1(2)), was positively associated with understanding 
of basis in the symbolic world (Table 2), and also positively associated with 
understanding of linear independence in both embodied and symbolic world (Table 3).  
As for the second research question, we observed that the effectiveness of the 
implemented instruction emphasizing geometric images was limited. The analysis for 
Table 5 indicated that understanding of linear dependence of four spatial vectors in the 
picture of Task 2 (3) had been improved during the four-weeks lessons. On the other 
hand, the result of Task 4 and the analysis for Table 6 indicated that understanding of 
linear dependence of four spatial vectors in the picture of Task 2 (8) had not been 
improved. Improving students’ understanding of Task 2 (8) was more important 
because conceptual understanding of linear dependence in the case of Task 2 (8) was 
related to understanding of basis and linear independence in the symbolic world. How 
should we consider this result? There may be the following two possibilities: one is 
that the geometrical instruction implemented in this study was insufficient and it can 
be more improved; the other is that there is a limitation of students’ perception even in 
the embodied world and it is cognitively hard to overcome such limitation. In the latter 
case, we should take into account of such limitation in teaching linear algebra, and it 
may lead us to reconsider how to design a linear algebra course under the framework 
with Tall’s model of three worlds, especially to reconsider the balance and integration 
between geometric and algebraic presentation. However, the two possibilities need to 
be carefully examined in the future study. 
Finally, we should mention the limitations of the study. First, the sample size was small. 
Second, the participants were not ordinary because they were students who had failed 
to pass the subject in the earlier years. Hence, further studies with a larger number of 
first-year students are needed. 
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Investigating high school graduates’ personal meaning of the notion of 

“mathematical proof” 
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In this paper, we report on the results of a pilot study to investigate high-school 

graduates’ personal meaning of mathematical proof. By using proof tasks and a 

following interview phase with meta-cognitive questions, we will describe students’ 

personal meaning of the notion of mathematical proof and show that some students 

hold different meanings of the word “proof” simultaneously.  

Keywords: reasoning, proof, generic proof, personal meaning, example. 

 

INTRODUCTION  

Mathematical proof can be considered being a major hurdle for mathematics freshmen 

(Selden 2012, p. 293). However, when trying to teach mathematical proof and proving 

to first-year students, their previous knowledge on the topic has to be taken into account 

(ibid., p. 414). Besides learners’ competencies concerning proof construction, reading, 

and evaluation, the personal meaning they assign to the notion of mathematical proof 

seems to play a crucial role in their mathematical behaviour (Harel & Sowder 1989). 

While different studies have investigated university students’ proof competencies, we 

focus on students’ knowledge concerning mathematical proof after graduating from 

high school. Accordingly, we aim at investigating students’ personal meaning of proof 

as a part of their existing knowledge of mathematical proof when entering university. 

For this purpose, we rely on the study of Recio and Godino (2001). These authors 

elaborated on different personal meanings of mathematical proof. We expand their 

investigation to today’s high-school graduates and deepen their approach making use 

of qualitative methods. When clarifying high-school graduates’ personal meaning of 

mathematical proof, the socialisation process concerning proof in school mathematics 

can be elaborated. Moreover, the consensus on the meaning of mathematical proof has 

to be considered as an inevitable requirement for teaching mathematical proof at 

university. In this sense, it might become possible to link university studies to previous 

experiences from school mathematics and the enculturation process to higher 

mathematics can be undertaken more consciously. Finally, it might get possible to 

conceptualize or to expose popular misconceptions concerning mathematical proof. In 

this paper, we report on the design and the results of a pilot study, where four high-

school graduates were asked to prove two mathematical claims and to explain and to 

validate their performances afterwards. 
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THEORETICAL BACKGROUND  

Empirical findings from the literature 

Kempen and Biehler (2019) evaluated first-year pre-service teachers’ proof validation. 

In their study, 29.7% of the 37 first-year students rated a purely empirical verification 

as “correct proof” when starting their university studies. Selden (2012, p. 398 ff.) 

summarizes several problems of first-year students with mathematical proof and 

highlights i. a. a nonstandard view of proof (e.g., what constitutes a proof and how the 

proof process is interpreted). Following Kempen and Biehler (2019, p. 246 ff.), first-

year students mainly link the concept of proof with some prototypes of proof, like the 

proof of Thales’ theorem or the proof of the binomial formulas. Also, beginning 

students do not have much experience with proof construction. While proving at 

university is associated with the use of definitions, the application of theorems about 

abstract concepts and deductive reasoning (Selden & Selden 2007), the named 

examples from school mathematics display another ‘concept’ of proof: In school 

geometry, proofs make use of a figure to perform reasoning. In elementary arithmetic, 

many proofs utilize simple calculations using variables (e.g. in the proof of the 

binomial formulas). Besides, following the TIMS-Study in 1998, German high-school 

students showed only low abilities concerning the construction and evaluation of 

mathematical proof (compare Reid & Knipping, 2010, p. 68).  
 

 

Categorization of students’ proof productions 

Recio and Godino (2001) investigated the proof competencies of first-year university 

students in Spain. In their study, i. a. 429 students entering university were asked to 

work on two elementary proving tasks. The authors conclude that the percentage of 

students giving a substantially correct mathematical proof to each problem is less than 

50%. Only 32.9% of the students gave correct answers to both proving tasks. 

Interestingly, about half of the students (53.8%) formulated a purely empirically based 

answer to at least one of the given tasks. The authors classified student’s proof attempts 

using the following set of categories: (1) “The answer is very deficient (confused, 

incoherent)”, (2) “The student checks the proposition with examples, without serious 

mistakes”, (3) “The student checks the proposition with examples, and asserts its 

general validity”, (4) “The student justifies the validity of the proposition, by using 

other well-known theorems or propositions, by means of partially correct procedures”, 

and (5) “The student gives a substantially correct proof, which includes an appropriate 

symbolization”. Finally, the authors tried to link the named categories with personal 

proof schemes in reference to Harel and Sowder (1998). Answers of type (2), the mere 

empirical confirmation of a proposition, are connected with the “explanatory 

argumentative scheme”, because “There is neither a true intention to validate the 

proposition, nor an intention to affirm the validity of the proposition for all possible 

cases.” (ibid.). Answers of type (3) are considered to be in line with the “empirical-

inductive proof scheme”; these answers are based on verifying the proposition by using 

particular examples, without the intention of justifying the general validity. In contrast 
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to the former categories, answers of type (4) and (5) include the intention of verifying 

the general validity of the proposition by using deductive reasoning. Accordingly, 

answers of type (4) are connected with the so-called “informal deductive proof 

scheme”. Finally, the answers of type (5) follow a more formal approach, making use 

of a symbolic and algebraic language. These answers are assigned to the “formal 

deductive proof scheme”. When students’ performances in the two tasks seemed to 

correspond to each other, the authors interpreted the proposed categories as personal 

schemes of mathematical proof to describe students’ personal meaning. 
 

Reid and Knipping (2010, p. 130 ff.) distinguish four kinds of proof or argument 

according to the representations involved. (1) “Empirical”: Those arguments in which 

specific examples are used but do not represent a general case, (2) “Generic”: Those 

arguments in which specific examples are used to highlight a general idea, (3) 

“Symbolic”: Those arguments in which words and symbols are used as representations, 

and (4) “Formal”: Those arguments in which symbols are used without semantic 

reference. In this paper, we make use of this categorization of proofs to categorize 

students’ proof productions. Since we are dealing with high-school students’ proof 

attempts, the fourth kind of proof will not appear in the analysis. We split the third type 

of proof to distinguish an increased used of words (“narrative proof”) and an increased 

application of symbols and variables (“symbolic proof”). An example of each type of 

argument is given below. 

Research Questions  

Based on the theoretical considerations above, we formulate the following two research 

questions: (1) How do upper secondary school students prove claims from elementary 

arithmetic and geometry? (2) Which personal meaning of the notion of mathematical 

proof can be assigned to the students? 

METHODOLOGY 

Interview design 

In our study, four students from upper secondary school were supposed to work on two 

proving tasks, one from elementary arithmetic and one from elementary geometry (see 

below). Afterwards, the students were asked to explain their solutions and to answer 

metacognitive questions. We used a combination of task-based interviews according 

to Goldin (2000) and the Precursor-Action-Result-Interpretation (PARI) method (Hall 

et al., 1995) modified by Kortemeyer and Biehler (2017) for the use within 

mathematics education research. Both methods intend two main stages: the solving of 

mathematical problems and a following interview concerning the participants’ 

approach, their reasons for choosing it and the interpretation of their results. Mainly, 

the modified PARI methodology was added to develop and organise the interview 

questions in three phases (working individually on the task, recapitulating one’s 

solution with the interviewer, reflecting on one’s strategies and decisions). 
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In accord with Goldin (2000, p. 522 f.), the study was split into the following stages: 

(i) posing the questions with sufficient time for working on the tasks, (ii) minimal 

heuristic suggestions and assistance, if the participants display serious problems (e.g., 

“Can you tell me what the claim is about?”), (iii) questions concerning students’ 

approaches (e.g., “What did you do?”), and (iv) metacognitive questions. In this last 

part, the students were questioned i. a. about their satisfaction with their solutions and 

the reasons for choosing the respective approach. We also asked the participants to 

evaluate their solutions in order to see if they consider them as correct proofs.  

Task analysis and expected solution 

The proving tasks used in the study should be accessible to all students and allow for 

different approaches. We followed the idea of Recio and Godino (2001) to use one 

claim from elementary arithmetic and one from geometry. This way, we also wanted 

to investigate if students’ proving approaches and personal meaning on the notion of 

mathematical proof differ with respect to the subject. We replaced the first claim from 

Recio and Godino (2001) with a proving task from Biehler and Kempen (2013), 

because this task seemed to be more suitable for us. The second claim was taken from 

the original study. The named tasks were slightly modified for the use within this study. 

Finally, the participants were supposed to solve the following tasks: 

Task 1: Prove that the sum of an odd natural number and its double is always odd. 

Task 2: We consider two adjacent angles � and �. Prove that the bisectors of � and � 

always form a right angle.  

In Table 1, a non-exhaustive set of expected solutions with regard to the categorisation 

of arguments according to Reid and Knipping (see above) is presented.  

 Task 1 Task 2 

empirical 

argument 
1 + 2 ⋅ 1 = 3 

3 + 2 ⋅ 3 = 9  

120° + 60° = 180° 

60° + 30° = 90°  

generic 

proof 
1 + 2 ⋅ 1 = 3 ⋅ 1 = 3; 3 + 2 ⋅ 3 =

3 ⋅ 3 = 9  

Comparing the equations, one can 

recognise that the result must 

always be three times the initial 

number. Since three times an odd 

number is always odd, the result is 

an odd number (see Biehler and 

Kempen 2013, p. 89).  

130° + 50° = 180°;
���°

�
+

��°

�
=

�

�
⋅ �130° + 50°� = 90°  

The sum of the adjacent angles � 

and � is 180°. The bisectors split � 

and � into two equal angles. 

Accordingly, the sum of the half-

angle of � and the half-angle of � is 

always 90°.  

narrative 

proof 

The double of an odd number is 

always even. Since the sum of an 

odd and an even number is always 

odd, the statement is proven.  

The sum of the adjacent angles � 

and � is 180°. The bisectors split � 

and � into two equal angles. 

Accordingly, their sum equals half 
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of 180°. Therefore, the sum of the 

half-angle of � and the half-angle of 

� is always 90°. 

symbolic 

proof 
Let � be an odd number. Then � +

2� = 3�. Since three times an odd 

number is always odd, the 

statement is proven (see Biehler and 

Kempen 2013, p. 90).  

Let � and � be adjacent angles. 

Then � + � = 180°. Accordingly, 

we have: 
�

�
+

�

�
=

���

�
=

���°

�
=

90° (see Recio and Godino 2001, 

pp. 85).  

Table 1: Possible solutions of the proving tasks in accordance with the categorisation of 

Reid and Knipping (2010). 

The two tasks comprise mathematical content from middle school and are meant to be 

easy to understand. A diagram was added to the second task, where the angles have 

been drawn and named for clarifying the given claim. Both tasks allow for different 

approaches, which might give a hint to students’ personal meaning of proof. 

Data collection and data analysis 

This pilot study was conducted with four students in their last year in a high school 

(two females, average age was 20; two students attending an advanced course in 

mathematics and two students attending a basic course). Students’ proof construction 

and the following interview phase were filmed in order to be able to base the analysis 

of the proving process not only on the participants’ description of their approach but 

also on observations of the filmed process.  

The analysis of the concrete proofs created by the participants focusses on the type of 

proof corresponding to the participants’ approaches (see Table 1) and on the 

mathematical correctness. We consider a proof being correct when the arguments given 

are mathematically correct and link the given data with the formulated claim in a 

deductive manner. For describing participants’ personal meaning of the notion of 

mathematical proof, we made use of the categories proposed by Recio and Godino 

(2001) (see above). However, we did not want to assign the personal meanings of the 

notion of proof only based on students’ proof productions. We also carried out a 

qualitative analysis of students’ responses from the interview to increase the validity 

of our research.  

For answering the first research question, we will categorize students’ proof 

productions and rate their correctness. (We consider a proof being correct, if the claim 

is logically derived from the premises. We call a proof incorrect, if at least one of the 

arguments used is not true (in general) or if part of the whole chain of argument is 

missing.) We will combine the results of students’ proof productions, their proving 

process and their answers from the interview to describe their personal meaning on the 

notion of mathematical proof (research question 2). 
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RESULTS 

In this section, we will describe and discuss the results of each participant separately 

to work out a uniform description for each participant. Due to the size of the paper, we 

had to look for a selection from students’ responses to analyse their performances. 

Students’ proof productions and personal meanings 

Participant 1 creates a generic proof for the first task and a narrative proof for the 

second (see Figure 1). However, the argument explicated in the generic proof is 

incomplete, because the fact that one addend is odd does not explain the parity of the 

result. In the second task, the student’s use of the word parallel is not correct. Moreover, 

she seems to give some kind of intuitive argument, why the angle stays the same. 

 

 

 

 

 

 

Fig. 1: Participant 1’s proof productions (left: task 1; right: task 2; our translation) 

When working on the first task, Participant 1 checks several examples and tries to find 

and to assemble arguments. She recalls her proving process as follows:  

Participant 1: So, I started with 3, added 6, because 6 is the double, and then you have 9. 

And then I was thinking, what will happen with other numbers, and there will 

always be an odd sum because when you have an odd number, when you take 

its double, which is an even number, and when you add an odd and an even 

number, you obtain an odd number. (Transcript 1; our translation) 

This student uses concrete examples to find a pattern that might constitute a generic 

argument. Accordingly, she constructs a generic proof (see Figure 1, left). Unlike her 

explanation given in the interview, the explication of the argument in the written proof 

is incomplete. Concerning task 2, the student uses her set square to measure the angle 

in the graphic on the exercise sheet: 

Participant 1: I took the set square to check if the angle is 90°. […] Then I was thinking 

about, how one might prove this, because, one sees that the angle has 90°. I 

did not come up with a calculation or an equation […]. And then I was 

thinking: When you move this [the angle bisectors of � and �], they stay 

parallel; you always move them parallel; accordingly, this angle stays the 

same. (Transcript 1, our translation) 

This approach of measuring the angle seems to be interesting, because the fact about 

the right angle has been mentioned explicitly in the task. Afterwards, as she recalls, she 
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was looking for some kind of calculation. Not coming up with an equation, she tries to 

describe some kind of “dynamic” argument about moving the bisectors. Her ‘narrative 

proof’ is based on a visual impression and not convincing. 

Participant 1’s meaning of proof is beyond purely empirical evidence. She is trying to 

find an argument to verify the given claims in general. However, she expressed her 

satisfaction with her solution, because she “proved the claim given in task one”. To 

sum up, participant 1’s personal meaning of proof seems to be in line with the informal 

deductive-proof scheme. While looking for deductive reasoning in order to verify the 

given claim in general, she makes use of rather informal arguments.  

Participant 2 has serious problems to understand the first proving task. Accordingly, 

we will not discuss his solution for task one here. In the second task, the student is 

finally making use of algebraic variables and equations to verify the given claim in 

general and he constructs a symbolic proof. 

 

 

 

 

Fig. 2: Participant 2’s solution to task 2  

Like Participant 1, also this student uses his set square to measure the angle in the 

graphic on the exercise sheet. Afterwards, he creates a special case for the given claim. 

He explains his use of this example (the special case shown in Figure 2) as follows:  

Participant 2: OK, that’s true. But why? Stop, I’ll take another example. […] When I do it 

like this; I take 90° and both halves have 45°, and that’s again 90°. A 

Coincidence? I didn’t know. Good to know! That’s really true. 

Afterwards, he transmits the idea of the bisectors � and � to variables � and �: 

Participant 2: OK, � has a certain angle, called �. And for � we take �. I would say: x 

divided by two plus y divided by two equals 90. […] I know why it’s true. 

Since half of 180 is 90, true? Yes, here we have 180° and half of it is 90° 

Participant 2 is engaged to give a general argument and an explanation of why the 

claim holds in every case. He uses a special case to find a general argument. Since he 

is particularly making use of algebraic variables, we assign his personal meaning of 

proof with the formal-deductive proof scheme. 

Participant 3’s solution for the first task can be considered as a sketch for a generic 

proof; his answer to the second question seems to be a description of the given facts, 

not containing any argument (see Figure 3.) 
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Fig. 3: Participant 3’s proof productions (left: task 1; right: task 2; our translation) 

In the interview, Participant 3 explains her use of the concrete example in the first task: 

Participant 3: You have … to prove something … you need examples. You have to prove 

it and that’s the evidence.1 […] Yes, I succeeded, the presentation … to prove 

it. But to prove it logically, that was harder for me. 

Interviewer: OK. Accordingly, how to prove it logically? 

Participant 3: Yes […]. Not just based on one example. But to say that it is always like this. 

I guess, there’ll be a logical explanation, but I just don’t know it. 

Here, the example is used to show that the statement is true in this special case. 

Interestingly, the student calls this a proof. But she also displays a second notion of 

proof when talking about „to prove it logically“. In the second case, a proof is „not 

based on one example“ but concerned with generality. 

In the second task, this student determines the 90° angle (see Figure 3). However, she 

expresses dissatisfaction with her solution and her preference for mathematical 

symbols in the context of proving: 

Interviewer: What did you not do well? 

Participant 3: Maybe, I did not explain the connection, so... proving. […] I guess, there will 

be something like a rule or something like this. […] 

Interviewer: You just mentioned that a general rule was important for you. Of what 

importance is the use of mathematical symbols and variables for proving? 

Participant 3: It is important. It is easier to understand, the proof. So, I think, it is always 

important. 

Participant 3 seems to be aware of the general character of mathematical proofs. 

However, there seems to exist two different kinds of notion of mathematical proof for 

her. One kind of “proof” is about empirical evidence about the truth of a statement in 

in some concrete cases. This view is in line with the meaning called “explanatory 

argumentative scheme” (see above). On the other hand, there is the “logical proof”, as 

she calls it. This kind of proof is concerned with generality. To perform the 

corresponding kind of proving, the student is trying to use valid arguments and rules 

or formulas. In this case, the meaning of proof seems to be in line with a deductive 

proof scheme. 

                                           
1 In original language (german): „Man muss das ja belegen, das ist sozusagen der Beleg.“ 
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Fig. 4: Participant 4’s proof productions (left: task 1; right: task 2; our translation) 

Participant 4 checks two concrete examples when working on the first task. Like 

Participant 3, his solution of the second task is a description of the given facts without 

any argument (see Figure 4). He comments his approach in the first task as follows: 

Participant 4: Here [in the claim], it says “always”. That’s what bothers me with my 

solution because I do not cover this, because I have only a limited number of 

examples. I have two, but there are infinite. In this manner, I cannot prove [it 

for] all. I would need a paper, where I could write down all of them. […] 

Interviewer: To sum up: Would you consider your solution being a proof? 

Participant 4: Yes, because I showed it with two examples. That it is…yes… as long as 

there is no counterexample, then I would say: “It is like this”. 

Concerning the task 2, the student mentions some dissatisfaction with his solution: 

Participant 4: I think, it is weaker than the other […], because here again, it is written 

“always”. And I have shown that the angle in the diagram has 90°. And when 

you …, yes, I did not do so well, that the angle is always about 90° […] 

Participant 4 is aware of the limitation of his approach for task 1. Like Participant 3, 

this student seems to distinguish two different meanings of “proof”. The first is 

concerned with illustrating the truth of a given claim with some concrete examples. 

The latter is in line the generality of mathematical statements. In this case, the testing 

of a finite number of examples cannot form a mathematical proof. 

To sum up, all participants seemed to be aware of some kind of generality when dealing 

with the given mathematical claims. In this sense, a deductive proof scheme could be 

assigned to all students, when mentioning that the mere use of concrete examples 

without further argument cannot prove a given claim in general. However, two students 

also held a second view on proof simultaneously, being somehow in line with the 

explanatory argumentative scheme or the empirical-inductive proof scheme.  

FINAL REMARKS  

As one output from this pilot study, we want to highlight that the combination of proof 

productions and the following interview phase to reflect on one’s solutions seems to 

be valuable to investigate students’ personal meaning of mathematical proof. While 

some students only tested some concrete examples when working on the task, they 

clearly mentioned the limitation of their approach in the interview. Interestingly, two 

participants in this study displayed several different personal meanings of the notion 
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of mathematical proof. Therefore, a one-to-one assignment of student and personal 

meaning does not seem to be possible nor desirable, because it would lead to an 

oversimplification of the issue. This result might give a hint, why some students call 

an empirical argument a “proof”. These students might use the word “proof” in a 

special way, being nevertheless aware of the limitation of an empirical-inductive 

approach. This first result has to be checked in the upcoming main study.  

REFERENCES  

Biehler, R., & Kempen, L. (2013). Students’ use of variables and examples in their 

transition from generic proof to formal proof. In B. Ubuz, C. Haser, & M. A. Mariotti 

(Eds.), Proceedings of the 8th Congress of the European Society for Research in 

Mathematics Education (pp. 86-95). Ankara: Middle East University. 

Goldin, G. (2000). A scientific perspective on structured, task-based interviews in 

mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of 

Research Design in Mathematics and Science Education (pp. 517–545). Mahwah, 

NJ: Erlbaum. 

Hall, E. P., Gott, S. P., & Pokorny, R. A. (1995). A procedural guide to cognitive task 

analysis: The PARI Methodology (No. AL/HR-TR-1995-0108). Armstrong Lab 

Brooks AFB TX Human Resources Directorate.  

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory 

studies. Research in collegiate mathematics education III, 7, 234-282.  

Kempen, L., & Biehler, R. (2019). Pre-service teachers’ benefits from an inquiry-based 

transition-to-proof course with a focus on generic proofs. International Journal of 

Research in Undergraduate Mathematics Education, 5(1), 27-55. (23.09.2019) 

Kortemeyer, J., & Biehler, R. (2017). The interface between mathematics and 

engineering – problem solving processes for an exercise on oscillating circuits using 

ordinary differential equations. In T. Dooley & G. Guedet (Eds.), Proceedings of the 

10th Congress of the European Society for Research in Mathematics Education (pp. 

2153-2160). Dublin, Ireland: DCU Institute of Education and ERME. 

Recio, A. M., & Godino, J. D. (2001). Institutional and personal meanings of 

mathematical proof. Educational Studies in Mathematics, 48, 83-99. Retrieved from 

http://www.springerlink.com/content/htw93tfdk9cyw6jx/ (09.09.2019) 

Reid, D. A., & Knipping, C. (2010). Proof in mathematics education: Research, 

learning and teaching. Rotterdam: Sense Publishers. 

Selden, A. (2012). Transitions and proof and proving at tertiary level. In G. Hanna & 

M. de Villiers (Eds.), Proof and Proving in Mathematics Education: The 19th ICMI 

Study (pp. 391-422). Heidelberg: Springer Science + Business Media. 

Selden, A., & Selden, J. (2007). Overcoming students’ difficulties in learning to 

understand and construct proofs. Making the Connection: Research and Practice in 

Undergraduate Mathematics: MAA Notes. 

367 sciencesconf.org:indrum2020:295348
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Nous présentons l’analyse de preuves de chercheurs sur l’équivalence de deux 

définitions du concept d’arbre en théorie des graphes, l’une des deux définitions 

étant de type récursif et l’autre non. L’analyse vise à mettre en lumière la relation 

entre les notions de récurrence et de récursivité, telle qu’elle est perçue par les 

experts, afin d’éclairer les questions didactiques que soulève leur apprentissage. 

Keywords : Epistemological studies of mathematical topics, Teaching and learning of 

logic, reasoning and proof, Teaching and learning of number theory and discrete 

mathematics. 

INTRODUCTION 

Contexte et problématique 

Cette communication s’inscrit dans le cadre du projet ANR DEMaIn, qui explore les 

interactions entre mathématiques et informatique d’un point de vue épistémologique 

à visée didactique, et s’intéresse aux relations entre le raisonnement par récurrence et 

la récursivité dans la perspective d’une ingénierie didactique (Artigue, 2014). Les 

travaux existants montrent que la récurrence et la récursivité s’avèrent 

problématiques, de nombreux étudiants ayant du mal à comprendre les preuves par 

récurrence et les structures et algorithmes récursifs (Michaelson, 2008 ; 

Rinderknecht, 2014). Certains travaux semblent indiquer que la relation entre ces 

deux notions pourrait être l’une des clés pour aborder les difficultés qu’elles suscitent 

(voir par exemple Leron et Zazkis, 1986 ; Polycarpou, 2006). 

Nous présentons dans ce qui suit une étude exploratoire de cette relation en analysant 

des preuves produites à notre demande par des experts ayant recours à la récurrence 

et à la récursivité dans leur travail. À travers cette analyse de preuves, nous cherchons 

à identifier des invariants opératoires pouvant attester des conceptions (au sens de 

Vergnaud, 2009) relativement à ces notions. Nous avons retenu pour cette étude la 

preuve de l’équivalence de deux définitions en théorie des graphes, l’une donnée sous 

forme classique par une propriété et l’autre sous forme récursive. Après une 

explicitation de notre point de vue sur l’analyse de preuves d’experts, nous 

présentons et analysons l’énoncé que nous avons soumis aux chercheurs et présentons 

ensuite les résultats des analyses de preuves menées. 

 

1     Communication réalisée avec le soutien de l’Agence 

Nationale pour la Recherche <ANR-16-CE38-0006-01>. 
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Point de vue sur les preuves d’experts dans une perspective didactique 

L’analyse de preuves mathématiques fait partie de l’activité du mathématicien ou de 

l’informaticien, mais également des professeurs, des élèves et des étudiants. Suivant 

Durand-Guerrier & Arsac (2009) nous considérons que l’analyse logique de preuves 

remplit trois fonctions principales : contrôler la validité ; comprendre la stratégie de 

l’auteur ; comprendre et s’approprier les preuves d’une part en tant que constitutif de 

l’étude des contenus en jeu et d’autre part comme moyen de comprendre ce que sont 

les preuves mathématiques et leurs spécificités éventuelles dans un domaine donné. 

En outre, l’analyse logique de preuve est un moyen de repérer les implicites inhérents 

à la rédaction de preuves dont nous faisons l’hypothèse qu’ils peuvent éclairer les 

pratiques expertes. En accord avec Weber & Alcock (2004) et Wilkerson-Werde & 

Vilensky (2011) nous faisons l’hypothèse que l’étude du travail d’experts avec les 

preuves est de nature à éclairer nos questions didactiques. 

Pour conduire les analyses de preuves, nous prenons comme logique de référence le 

calcul des prédicats du premier ordre avec un point de vue sémantique (Durand-

Guerrier, Meyer & Modeste, 2019). Par ailleurs, Durand-Guerrier & Arsac (2009) 

identifient un certain nombre de questions à se poser lors de l’analyse de preuves. 

Nous listons ici celles que nous avons retenues pour nos analyses : Quels objets sont 

introduits tout au long de la preuve et quel est leur rôle ? À quelles évidences est-il 

fait appel et comment être sûr de pouvoir contrôler la validité de la preuve ? 

Qu’entendons-nous par récurrence et récursivité ? 

Dans cet article, le mot « récurrence » renvoie au sens habituel du terme, c’est-à-dire 

au type de raisonnement inductif portant sur les entiers naturels. Nous nous 

intéressons également au raisonnement dit « par induction structurelle », qui 

généralise en quelque sorte le raisonnement par récurrence. 

La « récursivité » s’applique dans de nombreux contextes et avec des significations 

qui peuvent différer légèrement (par exemple, on associe la récursivité à des 

définitions, des algorithmes, des types de données, des suites, etc.). Pour penser aux 

articulations entre récurrence et récursivité (León, 2019), nous nous intéressons au 

cadre de la construction récursive (ou inductive) de structures, consistant à prendre un 

certain ensemble d’éléments de base et à en construire un autre par l’application 

réitérée de certaines fonctions, appelées « constructeurs » – c’est le cas, par exemple, 

des structures des listes et des arbres, en informatique, ou de celle des formules bien 

formées, en logique des propositions. Les raisonnements par induction structurelle 

permettent de prouver les propriétés des éléments de ces structures récursives, en 

montrant que ces propriétés tiennent pour les éléments de base, et que les fonctions 

constructeurs les préservent.  

369 sciencesconf.org:indrum2020:295686



  

   

 

ÉNONCE SELECTIONNE ET ANALYSE MATHEMATIQUE A PRIORI 

L’énoncé choisi est le suivant : 

Démontrez l’équivalence des deux définitions ci-dessous : 

Définition 1 : « Un graphe G est un arbre si et seulement si entre deux sommets 

quelconques de G, il existe un unique chemin ». 

Définition 2 : « Un graphe G est un arbre si et seulement si G est soit un sommet isolé, 

soit un arbre auquel on ajoute un sommet pendant* ». 

* Un sommet pendant d’un graphe est un sommet qui n’est adjacent qu’à un seul autre sommet. 

Il s’agit de démontrer l’équivalence de deux définitions, l’une récursive (définition 2) 

l’autre par une propriété (définition 1). Nous faisons l’hypothèse que la rédaction de 

la preuve conduit à expliciter des connexions entre récurrence et récursivité. 

Notre choix s’est porté sur la théorie des graphes car c’est un champ à l’interface des 

mathématiques et de l’informatique, qui peut être enseigné au niveau universitaire, et 

dans lequel la recherche est encore très active. Dans ce domaine, les différentes 

définitions ou caractérisations des objets sont souvent nécessaires pour pouvoir 

ensuite choisir le point de vue le plus adéquat, en fonction des besoins (preuves, 

définition, manipulation, traitement informatique, etc.). L’arbre est un objet récursif 

par excellence, suffisamment élémentaire pour produire des preuves accessibles, mais 

dont la construction récursive est suffisamment complexe pour être représentative 

d’une grande partie des situations récursives. Il existe de nombreuses définitions 

équivalentes de l’objet arbre, Ouvrier-Buffet (2015, p. 344) en identifie au moins 10, 

dont les définitions 1 et 2 ci-dessus, que nous avons retenues parce que la preuve de 

cette équivalence n’est pas classique dans l’approche courante sur la caractérisation 

des arbres. De plus, le fait que la récursivité ne soit apparente que dans l’une des 

deux définitions laisse ouverte la possibilité de voir apparaître des raisonnements par 

récurrence ou par induction structurelle. 

Ouvrier-Buffet liste également la définition « G est un arbre si et seulement si G est 

un graphe connexe sans cycle », qui apparaît dans les démonstrations des chercheurs 

que nous avons analysées (voir la stratégie S2 ci-dessous). 

Preuve de l’équivalence des définitions 

Nous proposons d’abord une preuve complète de l’énoncé sélectionné. 

Posons A1 l’ensemble des graphes vérifiant la définition 1 et A2 l’ensemble des graphes 

vérifiant la définition 2. On veut montrer A1 = A2. 

Montrons A2 ⊂ A1 : 

Montrons cela par induction structurelle, c’est-à-dire, montrons que les éléments de 

base de A2 sont dans A1 et que l’opération de construction de A2 préserve le fait de 

vérifier la définition 1. 

 Soit a ∈ A2, un sommet isolé. Alors a ∈ A2. 
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 Montrons que l’ajout d’un sommet pendant à un graphe de A1 le maintient dans A1.  

Soit a’ ∈ A1 et a obtenu par l’ajout d’un sommet pendant à a’. 

Dans a’, pour tous sommets s et s’, il existe un unique chemin de s à s’. 

Soient s1 et s2 deux sommets de a, montrons l’existence d’un unique chemin 

entre eux dans a. 

Existence : 

◦ Si s1 et s2 sont des sommets de a’ : c’est garanti par a’ ∈ A1. 

◦ Si s1 est le sommet pendant ajouté à a’, notons s’ son voisin dans a. 

Comme s’ et s2 sont dans A1, il existe un chemin (s’,…,s2) dans a’. 

On construit alors un chemin (s1,s’,…,s2) dans a entre s1 et s2. 

◦ Si s2 est le sommet pendant ajouté à a’ : idem. 

Unicité : Soit C=(s1,…,s2)  chemin de s1 vers s2 dans a. Montrons son unicité. 

Soit s’ le sommet pendant ajouté et s son voisin. 

Comme dega(s’) = 1, si s’ ∈ C, alors s’ = s1 (ou de façon similaire s’ = s2). 

◦ Si s’ = s1, alors C = (s1,s,…, s2) et le chemin entre s et s2 est unique car 

on n’a pas ajouté d’autres arêtes dans a’ que (s1,s). Et alors, le chemin 

C est unique dans a. 

◦ Sinon, il existe un unique chemin entre s1 et s2 dans a’, car on n’a pas 

ajouté d’autres arêtes dans a’ que (s1,s). 

On en déduit que A2 ⊂ A1. 

Montrons A1 ⊂ A2 : 

Soit a ∈ A1, montrons que l’on peut construire a à partir d’un sommet isolé en 

ajoutant des sommets pendants. 

 Si a a un seul sommet : alors a ∈ A2. 

 Sinon, il existe s un sommet pendant (donc de degré 1). (Sinon, tous les sommets 

seraient de degré supérieur ou égal à 2 et il existerait un cycle dans a, donc il n’y 

aurait pas unicité des chemins entres deux sommets). 

On retire le sommet s à a (et l’arête adjacente) pour obtenir un graphe a’. 

a’ est un élément de A1, puisque tout chemin entre deux sommets de a 

(différents de s) est préservé et reste unique. 

En réitérant le processus, et puisque le nombre de sommets diminue 

strictement, on obtient une déconstruction de a, jusqu’à un sommet isolé, 

par élimination de sommets pendants. En inversant cet algorithme, on peut 

construire a à partir d’un sommet isolé par l’ajout de sommets pendants. 

Donc a ∈ A2.      

Variante de A1 ⊂ A2 par « élément minimal ». 

Supposons qu’il existe des éléments de A1 qui ne soient pas dans A2, et soit a un plus 

petit élément de A1 (au sens du nombre de sommets) qui n’est pas dans A2. 

a a au moins 2 sommets. De plus, dans a il existe s un sommet pendant (donc de 

degré 1) : sinon, tous les sommets seraient de degré supérieur à 1 et il existerait un 

cycle dans a, donc il n’y aurait pas unicité des chemins entres deux sommets. 
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On retire le sommet s à a (et son arête adjacente) pour obtenir un graphe a’. 

a’ est un élément de A1, puisque tout chemin entre deux sommets de a (différents de 

s) est préservé et reste unique. 

Et a’ ∈ A2 par minimalité de a. Et donc, par construction, a ∈ A2. Contradiction. 

Donc A1 \ A2 = ∅, autrement dit A1 ⊂ A2. 

Cette preuve nous servira de référence dans l’analyse des preuves de chercheurs, en 

particulier pour identifier des implicites. 

Preuve générique de l’équivalence de deux définitions 

Comme d’autres preuves sont envisageables, et afin de permettre une analyse plus 

complète, nous présentons une étude de la preuve générique de l’équivalence entre 

une définition par propriété et une définition récursive. De façon générale, on a deux 

définitions l’une sous forme d’une propriété, l’autre récursive : 

Soit E un ensemble. 

Def 1 : Un x ∈ E est de type 1 si et seulement si P(x). 

Def 2 : Un x ∈ E est de type 2 si et seulement si x ∈ {x0,…,xk} ou x est obtenu par 

application d’un opérateur f1,…, fn à un élément de type 2. 

L’analyse mathématique et logique a priori des preuves possibles de l’équivalence de 

deux telles définitions nous permettra d’identifier certains types de stratégies et de les 

repérer dans les preuves des chercheurs. 

Pour prouver que Def 1 équivaut à Def 2, il faut montrer que x est de type 1 si et 

seulement si x est de type 2. 

type 2 ⇒ type 1 : 

Il faut prouver que les xi sont de type 1 (i.e. vérifient P) et que les opérateurs fj 

préservent le fait d’être de type 1 (si a est de type 1 alors fj(a) est de type 1). 

C’est une induction structurelle, que l’on pourrait aussi transformer en récurrence 

classique sur ℕ. 

type 1 ⇒ type 2 : 

Il y a plusieurs alternatives pour parvenir à cette preuve. Par exemple : 

1. On peut montrer que si un élément a satisfait P(x), alors 

i. Soit il est égal à un xi, et donc il est de type 2. 

ii. Soit il existe un constructeur fj tel que a = fj(b), avec et b ∈ {x0,…,xk} 

ou P(b). Par un argument de finitude de cette « déconstruction » on 

s’assure qu’il existe un xi à partir duquel on peut construire a par 

application réitérée d’opérateurs de type fj. Ceci implique que a est de 

type 2. 

2. On peut raisonner par l’absurde et par élément minimal : on suppose qu’il 

existe un élément a de type 1 qui n’est pas de type 2. Sans perte de généralité, 

on suppose qu’il est minimal. Ensuite, on montre qu’on arrive à le construire à 

partir d’un élément « plus petit » b par application de l’un des constructeurs fj. 
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Par l’hypothèse de minimalité de a, b est de type 2. On en déduit que a est 

aussi de type 2, ce qui est contradictoire avec l’hypothèse de départ. 

Quelle que soit la méthode choisie, il faut noter l’importance d’avoir un ordre bien 

fondé, plus ou moins explicite, assurant que la « déconstruction » se « termine ». 

Sur la base de ces analyses, nous avons étudié les preuves des chercheurs. Nous 

rendons compte d’une partie de nos analyses dans la section ci-dessous. 

ANALYSE DES DEMONSTRATIONS DES CHERCHEURS 

Méthodologie et données recueillies 

Dans le cadre plus général de notre étude, nous avons réalisé des entretiens avec des 

chercheurs en mathématiques et en informatique. Les chercheurs ont été invités, à la 

fin de l’entretien, à démontrer l’énoncé que nous avons présenté et à nous envoyer 

leurs preuves plus tard. Nous leur avons indiqué seulement qu’elles seraient 

analysées pour mieux cerner les pratiques des experts : en particulier, nous n’avons 

pas spécifié qui pourrait être le lecteur hypothétique de la preuve. Les chercheurs 

n’ont eu aucune contrainte de temps pour fournir leur réponse. Parmi les 10 

interviewés, nous avons reçu des preuves de trois chercheurs (C1, C2, C3). En 

particulier, C1 nous a envoyé non seulement sa démonstration finale, mais aussi trois 

brouillons que nous avons également étudiés. C1 est un informaticien ayant fait des 

recherches en algorithmique et complexité, C2 est un mathématicien spécialisé en 

mathématiques discrètes et C3 est un mathématicien qui développe des recherches en 

informatique théorique. 

L’analyse détaillée des preuves des experts, qui ne sera pas présentée ici, a été menée 

à la lumière de l’analyse mathématique a priori. Cela nous a permis d’identifier et 

d’expliciter leurs stratégies de preuve. Nous voyons ces stratégies comme de 

potentiels invariants opératoires, pouvant rendre compte des conceptions des 

chercheurs autour de la récurrence et de la récursivité. En outre, nous avons étudié les 

implicites dans les preuves conformément à notre positionnement didactique. 

Stratégies des chercheurs 

Pour la suite, nous introduisons les notations suivantes : 

 UC(G) := entre deux sommets quelconques de G, il existe un unique chemin. 

 R(G) := soit G est un sommet isolé, soit G contient un sommet pendant x tel 

que R(G \ {x}). 

 AC(G) := G est acyclique et connexe. 

S1 : Chercher une injection vers ℕ ou vers ℕm. 

Il s’agit de la recherche d’une injection de la structure de départ (ici, l’ensemble des 

graphes non orientés) vers ℕ, ou plus généralement vers ℕm, permettant d’effectuer 

un raisonnement par récurrence. Pour cela on peut considérer la fonction qui associe 

à un graphe G son ordre |G|, comme le font C1 et C2. Notre analyse mathématique a 
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priori montre l’utilité de cette injection pour prouver que UC(G) implique R(G) dans 

la variante « par élément minimal ». 

Nous avons observé un autre choix dans le premier brouillon de C1, où il cherche une 

injection vers ℕ2, associant à un graphe G le couple (v,l) constitué du nombre de 

chemins de taille maximale dans G et de la longueur de chacun de ces chemins. 

L’injection peut également permettre d’effectuer un travail par disjonction de cas, 

comme le fait C2 quand il considère d’abord les graphes d’ordre 1 et ensuite ceux 

d’ordre supérieur. C1 utilise lui aussi une injection vers ℕ, mais qui envoie chaque 

sommet vers son degré, pour réaliser une disjonction de cas.  

S2 : Passage vers une définition alternative équivalente 

Les chercheurs se servent de définitions équivalentes du même objet pour prouver ses 

propriétés plus aisément. Dans notre cas, le couple de propriétés « acyclique et 

connexe » joue ce rôle de médiateur qui facilite le passage d’une définition à l’autre. 

C1 rend explicite l’équivalence UC(G) ⇔ AC(G), dont il se sert à plusieurs reprises, 

dans un sens et dans l’autre. Pour C3 il est suffisant d’établir que UC(G) ∨ R(G) 

implique que G est connexe, et puis de faire appel implicitement à l’implication 

UC(G) ⇒ AC(G) et explicitement à l’implication R(G) ⇒ AC(G). 

S3 : Déconstruire/reconstruire le cas générique 

La déconstruction du graphe générique G peut se faire à plusieurs niveaux, selon le 

but recherché. Puisque la définition récursive fait référence à la présence d’un 

sommet pendant, il semble naturel de déconstruire le graphe en enlevant ce sommet 

pendant, pour explorer les relations entre le sous-graphe ainsi obtenu et le graphe de 

départ. Bien entendu, dans le cas où l’on présuppose UC(G), l’existence d’un sommet 

pendant doit être prouvée au préalable. Autant C1 que C2 recourent à cette 

déconstruction. Nous trouvons une approche différente chez C3, qui fournit un 

algorithme de construction d’un graphe G tel que UC(G), à partir d’un sommet 

quelconque lui appartenant s0. Cet algorithme ajoute les sommets de G par 

« couches » selon leur distance par rapport à s0 et est conçu pour montrer 

qu’effectivement G peut être obtenu à partir du sommet s0 par des ajouts successifs 

de sommets pendants. Cette façon de procéder est proche de celle que nous avons 

conçue lors de l’analyse mathématique a priori (A1 ⊂ A2) ; la seule différence étant 

que dans notre algorithme les sommets sont ajoutés un par un. 

S4 : Décrire un algorithme construisant un objet pour prouver son existence 

Pour prouver que si G est tel que |G| ≥ 2 et UC(G), alors G contient au moins deux 

sommets pendants distincts, C2 élabore un algorithme permettant de trouver un 

chemin de taille maximale à partir d’un chemin quelconque dans G. Les deux 

sommets pendants correspondent alors aux extrémités du chemin maximal. Le 

contenu d’une itération de l’algorithme est présenté par l’ajout d’un sommet au 

chemin de départ, sous l’hypothèse que ce chemin n’est pas déjà de taille maximale. 

Le choix de montrer cet algorithme de construction nous semble intéressant. Il aurait 
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été envisageable d’argumenter qu’un chemin maximal doit exister, les sommets du 

graphe étant finis, sans avoir à détailler comment on l’obtient – d’ailleurs, C2 fait 

appel à la finitude du nombre de sommets pour justifier que son algorithme s’arrête. 

S5 : Dérécursiver une définition récursive 

C3 nous met en garde contre les « dangers » des définitions récursives : « Les 

définitions récursives sont toujours un peu dangereuses dans le sens qu’elles font 

parfois penser aux fausses preuves qui supposent le résultat pour le démontrer. ». 

Pour s’en débarrasser, il propose une définition non-récursive qui est censée être 

équivalente à la définition 2 : « Un graphe G est un arbre si et seulement si G peut 

être obtenu à partir d’un sommet isolé en insérant successivement ses autres sommets 

comme des sommets pendants. » 

Cette nouvelle définition « algorithmique » pose cependant deux questions : celle de 

valider son équivalence à la définition 2, et celle de décider si la nouvelle définition 

n’est pas elle-même récursive de façon détournée, cachée par l’expression 

« successivement ». Quoi qu’il en soit, dès que l’équivalence entre une définition 

récursive et une définition non récursive a été établie, on peut ensuite faire appel au 

point de vue le plus adéquat en fonction des besoins. 

S6 : Décrire/évaluer des cas simples d’une construction inductive ou de l’hérédité 

d’une récurrence 

C3 étudie des cas particuliers de l’hérédité d’une propriété, par exemple P(1) ⇒ P(2), 

avant d’aller vers la preuve de P(n) ⇒ P(n+1). On peut interpréter que cette 

redondance a des fins purement explicatives, ou supposer que c’est par l’exploration 

de ces cas élémentaires que C3 parvient à rédiger ensuite la preuve du cas général, 

voire s’assurer que les cas élémentaires y correspondent bien. Par ailleurs, il applique 

une procédure analogue pour définir une suite finie de sommets (si)i=0,...,|G| et une 

relation de filiation qu’il utilise pour prouver que ∀G R(G) ⇒ UC(G). 

Identification d’implicites 

Le chercheur peut choisir de sauter une étape de la preuve pour plusieurs raisons. Par 

exemple, il peut considérer que cette partie a peu de valeur explicative ou trouver 

qu’elle est fastidieuse pour le lecteur, ou pour lui-même. Mais on peut supposer que, 

dans certaines situations, le chercheur peut sauter une étape d’une manière moins 

volontaire, parce qu’un certain geste répétitif lui est devenu si familier qu’il n’a plus 

besoin de franchir les pas intermédiaires pour arriver à sa conclusion. Même s’il est 

difficile d’identifier les causes des ellipses rencontrées dans les démonstrations, nous 

pensons qu’elles nous renseignent sur les possibles raccourcis dans le raisonnement 

des chercheurs. Parmi les implicites, nous pointons ceux qui sont en lien direct avec 

les raisonnements de type inductif : 

Faire l’ellipse du (des) cas de base 

On trouve cette sorte d’ellipse dans le travail de C1, avec des omissions plus ou 

moins drastiques : au premier brouillon, il qualifie le cas de base de « trivial », mais il 
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consacre quand même une ligne à l’expliquer ; au deuxième brouillon, il continue à 

qualifier le cas de base de « trivial », mais ne donne plus aucune explication ; et la 

récurrence de la version finale ne mentionne même pas le cas de base. Nous voyons 

donc, que même chez un seul chercheur la pratique consistant à omettre la preuve du 

cas de base n’est pas systématique et pourrait dépendre de la difficulté relative qu’il y 

attribue, ou de sa familiarité avec ce cas, parmi d’autres facteurs. 

Faire l’ellipse du raisonnement inductif en entier 

Nous voulons dire par là que le chercheur affirme sans démonstration un fait qui 

pourrait être démontré par un raisonnement inductif, et que ce raisonnement est soit 

mentionné mais non développé, soit complètement éclipsé. Nous trouvons un 

exemple du premier cas dans la preuve de C1 où ce qui serait formellement énoncé 

comme un raisonnement par induction structurelle est résumé par la phrase 

« R(G) ⇒ AC(G) trivial, car le procédé de construction maintient invariant les 

propriétés de connexité et d’acyclicité ». Nous soulignons ici que ce raisonnement 

inductif, associé à la preuve de UC(G) ⇔ AC(G), que C1 qualifie également de 

triviale, constitue l’une des deux implications (R(G) ⇒ UC(G)) de l’énoncé à 

prouver. Nous pensons que C1 est prêt à résumer cette procédure inductive aussi 

brièvement car il est très habitué à ce qu’il suffise de trouver un invariant du (des) 

constructeur(s) pour en déduire l’implication universellement quantifiée associée.  

Nous trouvons aussi des ellipses complètes, où un fait mathématique pouvant être 

prouvé par récurrence est affirmé, sans aucune allusion à la preuve. Par exemple, 

dans un brouillon, C1 affirme sans démonstration qu’il ne peut y avoir de cycle dans 

les arbres selon la définition 2. On peut prouver ce fait par induction structurelle, en 

montrant que le graphe à un seul sommet est acyclique, et que si l’on ajoute un 

sommet pendant à un graphe acyclique, il reste acyclique. L’acyclicité des arbres est 

une propriété classique présente dans plusieurs définitions et il peut être difficile de 

travailler sur les arbres sans utiliser ces propriétés bien connues. 

Nous voyons un autre exemple dans l’argument que C3 donne pour affirmer la 

connexité de chaque graphe vérifiant sa version de la définition 2 : « si un graphe 

s’obtient à partir d’un sommet isolé en y insérant des sommets pendants, c’est que le 

sommet isolé initial est relié à tous les autres sommets pendants insérés par la suite ». 

Ici, l’existence d’un chemin allant du dernier sommet ajouté vers le sommet initial 

pourrait faire l’objet d’une preuve par récurrence. 

CONCLUSIONS ET PERSPECTIVES 

Nous avons analysé des pratiques d’experts en lien avec la récurrence et la 

récursivité, afin d’envisager leurs conceptions sur ces notions. Notre analyse 

mathématique a priori s’est révélée utile pour montrer le rôle que peuvent jouer les 

notions ciblées dans l’activité de preuve en étude, ainsi que pour anticiper certaines 

stratégies que les chercheurs ont adoptées par la suite. Nous faisons l’hypothèse que 

les stratégies ayant émergé lors des analyses sont des invariants opératoires. De plus, 

nous avons relevé certains implicites qui pourraient également contribuer à éclairer la 
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conceptualisation. Nous nous appuierons sur els éléments dégagés dans cette étude 

lors de la conception de séquences didactiques visant à faire travailler la récurrence et 

la récursivité et leurs interactions. 
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This paper highlights the relevance of the articulation between syntax and semantics 

in proof and proving activities. In the first part, we define what we call syntax and 

semantics for a proof. In the second part, we present a logical and didactical analysis 

of a university course entitled "Mathematical Reasoning". This analysis relies on 

three types of data: interviews with teachers, worksheets and an assessment test. 

Keywords: Teaching and learning of logic, reasoning and proof ; Teaching and 

learning of specific topics in university mathematics ; syntax ; semantics. 

INTRODUCTION 

À leur arrivée à l’université, les étudiants sont confrontés à la nécessité d’étudier et 

d’élaborer par eux-mêmes des raisonnements et des preuves de plus en plus 

complexes, ce qu’ils ont peu eu l’occasion de faire dans leurs études secondaires, y 

compris dans les sections scientifiques. De nombreuses recherches, tant au niveau 

national qu’international, mettent en évidence qu’ils ne peuvent pas s’appuyer sur 

une bonne maîtrise des connaissances et des compétences logiques nécessaires pour 

affronter la formalisation et la complexification de la structure logique des énoncés 

mathématiques. Dans certains cursus de l’enseignement supérieur des dispositifs de 

formation au raisonnement et à la preuve sont mis en place. Cependant, nous prenons 

pour hypothèse qu’il n’y a pas de savoir de référence pour de tels enseignements qui 

ferait consensus dans la communauté, le rôle de la logique mathématique dans 

l’apprentissage du raisonnement et de la preuve étant notamment l’un des éléments 

sur lequel les positions divergent (Durand-Guerrier, Boero, Douek, Epp et 

Tanguay, 2012). C’est pourquoi, au sein du groupe de travail « Logique, langage, 

raisonnement, preuves » du Groupe de Recherche DEMIPS (Didactique et 

Épistémologie des Mathématiques, interactions Informatique Physique, dans le 

Supérieur), nous cherchons à étudier les différentes épistémologies relatives à la 

preuve des professeurs proposant ces cours à l’université. Celles-ci peuvent 

transparaître de manière plus ou moins explicite dans leurs choix didactiques ou dans 

leur discours sur ces cours. Nous cherchons aussi à mettre en lien ces choix avec les 

difficultés et apprentissages effectifs des étudiants. 

Pour caractériser ces différentes épistémologies de la preuve, et sans aller pour 

l’instant jusqu’à l’élaboration complète d’une telle modélisation, nous souhaitons 

construire une grille d’analyse autour de différents aspects de la preuve, en prenant 

comme première entrée, présentée ici, l’articulation entre les aspects syntaxique et 

sémantique. Nous faisons l’hypothèse que chacune de ces dimensions sera plus ou 
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moins mise en avant dans un cours sur la preuve, et nous nous servons alors de cette 

grille pour analyser des documents de cours, des entretiens avec des enseignants, des 

productions d’élèves relatifs à un cours donné. Nous présentons d’abord plus 

précisément ce que nous entendons par aspects sémantiques et syntaxiques puis nous 

présentons quelques résultats de cette première étude de cas. 

ASPECTS SYNTAXIQUE ET SÉMANTIQUE DE LA PREUVE 

Le point de vue de la logique 

L’objet de la logique est l’étude de la validité des raisonnements, c’est-à-dire qu’elle 

vise à fournir des outils pour établir quels sont les raisonnements corrects et pour 

débusquer ceux qui ne le sont pas. Pour cela, elle liste des schémas de raisonnement, 

ou des règles de déduction et modélise alors les raisonnements comme étant des 

mises en relation entre des propositions conformes à ces schémas ou à ces règles. La 

validité du raisonnement peut donc être attestée par sa structure et celle des 

propositions qui y interviennent, c’est-à-dire par des arguments d’ordre syntaxique. 

Mais bien sûr, il est attendu de ces schémas ou de ces règles valides qu’elles 

préservent la vérité (on ne reviendra pas ici sur la distinction vérité/validité, voir 

Durand-Guerrier, 2008) : une proposition obtenue comme conclusion d’un 

raisonnement valide dont les prémisses sont vraies doit nécessairement être vraie. Ce 

critère permet de justifier quels sont les raisonnements valides, et d’établir la non-

validité d’un raisonnement par des arguments d’ordre sémantique. 

Cette articulation entre syntaxe et sémantique est au cœur de la démarche des 

logiciens, depuis les travaux « fondateurs » d’Aristote dans l’Antiquité Grecque 

jusqu’à la récente naissance de la logique mathématique contemporaine (Blanché, 

1970). Dans la théorie du syllogisme d’Aristote (voir par exemple Aristote, 2007) le 

point de vue sémantique est bien présent (par exemple dans la justification des 

syllogismes de la première figure), mais finalement, les syllogismes sont décrits d’un 

point de vue syntaxique, même si la variété des formulations utilisées par Aristote 

montre qu’il « ne pousse pas le souci formel jusqu’au formalisme » (Blanché, 1970, 

p.48). En revanche, bien plus tard, Frege a ce souci du formalisme en construisant 

son Idéographie, qui est un système de signes permettant d’exprimer les déductions 

dans un langage entièrement formalisé, seule façon de garantir leur validité (Frege, 

1999).  

Nous retiendrons, pour notre propos, la caractérisation de la syntaxe et de la 

sémantique de Duparc (2015) : 

La syntaxe est le monde des symboles, de ces « coquilles vides » que manipulent les 

ordinateurs. C’est le lieu des opérations grammaticales indemnes de tout contenu, 

dépourvues de sens. 

La sémantique c’est au contraire le lieu des interprétations et des réalisations, des 

modèles ou des mondes possibles là où toute la syntaxe « prend corps ». C’est le lieu de 

la signification. (p. 12) 
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Duparc précise que « cette dichotomie ne renvoie pas à deux visions de la logique », 

mais plutôt à « deux faces d’une même feuille de papier » (p.13). Dans les travaux 

évoqués d’Aristote et de Frege, nous pouvons observer un phénomène de 

sémantisation de la syntaxe, et la relation syntaxe/sémantique, au départ intuitive 

dans les travaux des logiciens, est finalement formellement décrite depuis la 

définition sémantique de la vérité (au sens de la satisfaisabilité dans un modèle) de 

Tarski en 1933. Il est ainsi possible de vérifier pour un système syntaxique de 

déduction qu’il préserve la vérité, cela revient à montrer que si une proposition est 

prouvable (au sens syntaxique) dans une théorie, alors cette proposition est vraie dans 

tout modèle de cette théorie. Et un pas décisif a été fait par Gödel en 1930 qui, avec 

le théorème de complétude de la logique du premier ordre, montre la réciproque, à 

savoir que si une proposition F est vraie dans tout modèle d’une théorie T, alors F est 

prouvable à partir de T.  

Articulation syntaxe/sémantique dans les recherches sur la preuve 

Pour insister sur le fait que, dans la métaphore de Duparc, il s’agit d’une même 

feuille de papier, plutôt que d’insister sur le fait qu’il y a deux faces, nous préférons 

utiliser le terme articulation. En effet, pour qui s’intéresse à l’enseignement et 

l’apprentissage, l’important n’est pas tant une différence formelle que l’on peut faire 

entre syntaxe et sémantique, mais bien de voir comment ces deux aspects, leur 

articulation et éventuellement leur distinction, contribuent à la compréhension. On 

retrouve d’ailleurs ce point de vue dans de nombreuses recherches sur la preuve dans 

l’enseignement supérieur. Par exemple, dans une des premières recherches sur ce 

thème, Moore (1994) distingue trois usages des définitions et des théorèmes 

pertinents pour produire des preuves : nous situons le premier « produire et utiliser 

des exemples »  du côté sémantique, alors que nous situons le troisième « utiliser les 

définitions pour structurer la preuve » du côté syntaxique. Et plus récemment, dans 

une liste de difficultés des étudiants identifiées par la recherche établie par Selden 

(2012), nous retrouvons également des difficultés en lien avec l’aspect syntaxique 

« the proper use of logic, the neccessity to employ formal definitions », alors que 

d’autres sont en lien avec l’aspect sémantique « the need for a repertoire of examples, 

counterexamples, and nonexamples, the need for strategic knowledge of important 

theorems ». 

Nous reprenons la caractérisation de Weber et Alcock (2004) qui distinguent une 

approche syntaxique et une approche sémantique dans la production des preuves : 

We define a syntactic proof production as one which is written solely by manipulating 

correctly stated definitions and other relevant facts in a logically permissible way. […] 

We define a semantic proof production to be a proof of a statement in which the prover 

uses instantiation(s) of the mathematical object(s) to which the statement applies to 

suggest and guide the formal inferences that he or she draws. (p. 210) 

La séparation entre ces deux aspects n’est cependant pas toujours si claire : dans la 

phase de recherche d’une preuve (proving), certains moments peuvent relever d’un 
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traitement uniquement syntaxique, par exemple lors de manipulations d’énoncés, et 

d’autres d’un traitement sémantique (par exemple, considérer l’instanciation d’un 

théorème universel par des éléments singuliers, et essayer de comprendre ce qui se 

passe pour ces éléments-là). De même, en ce qui concerne la preuve dans son aspect 

produit (proof), les textes de preuve ne sont pas des produits formels élaborés 

uniquement selon un traitement syntaxique mais montrent au contraire des choix de 

l’auteur sur les arguments et leur formulation (Hache & Mesnil, 2015). Gandit (2008) 

a d’ailleurs montré les effets néfastes pour l’apprentissage d’une approche se 

focalisant sur une mise en forme codifiée.  En outre, Deloustal-Jorrand (2004) a 

montré, que la connaissance des tables de vérité de l’implication ne suffisait pas à la 

bonne appréhension et utilisation de celle-ci dans un raisonnement. Cependant, les 

liens entre structure logique d’un énoncé et structure logique de sa preuve peuvent 

servir de guide, et Selden et Selden (1995) ont montré que les étudiants étaient en 

difficulté pour exhiber la structure formelle d’un énoncé, et conséquemment, pour 

produire ou contrôler la structure d’une preuve de cet énoncé. 

ÉTUDE DE CAS : LE COURS « RAISONNEMENT MATHÉMATIQUE »  

À la suite de ces recherches, nous faisons donc l’hypothèse que chacune de ces 

dimensions syntaxique ou sémantique sera plus ou moins mise en avant dans un cours 

sur la preuve, selon l’épistémologie relative à la preuve propre à l’enseignant. Nous 

présentons ici une première étude de cas menée sur un cours intitulé « Raisonnement 

Mathématique », proposé en première année de licence de mathématiques à 

l’Université Paris Diderot en 2017. Nous avons donc cherché à repérer ces deux 

entrées syntaxique et sémantique sur différentes données issues de ce cours. En effet, 

nous avons, d’une part, conduit et analysé des entretiens avec les deux responsables 

du cours et, d’autre part, nous avons analysé le polycopié de référence du cours, les 

feuilles d’exercices, et le sujet d’examen. Pour voir si les choix des enseignants 

pouvaient être mis en lien avec les difficultés des étudiants, nous avons complété ces 

analyses du cours par des analyses des réponses des étudiants à l’examen. 

Étude de la mise en œuvre du cours : polycopiés et entretiens de professeurs 

Lors des entretiens, à la question « selon toi est-ce que c'est important qu'il y ait un 

enseignement spécifique sur le raisonnement mathématique ? », l’une des professeurs  

évoque spontanément des éléments de logique mathématique (quantificateurs, 

connecteurs, variables...) et donne à voir le choix d’une entrée syntaxique dans son 

enseignement : il s’agit de « décortiquer des énoncés », d’apprendre « comment on 

s’exprime en mathématiques, comment lire un énoncé, le comprendre », même si elle 

mentionne la nécessaire articulation avec la sémantique. D’autre part, elle choisit de 

faire travailler des démonstrations pour lesquelles « il n’y a pas besoin d’avoir 

d’idées ». On retrouve aussi chez l’autre professeur la volonté de donner aux 

étudiants des automatismes de rédaction de preuves selon la structure de l’énoncé : 

« on a tel type d'énoncé, donc la forme A implique B par exemple, et donc pour 

montrer ça qu'est-ce qu'on fait en général, on suppose A on montre B ». 
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L’analyse du polycopié donne également à voir cette entrée syntaxique dans 

l’enseignement de la preuve. Par exemple, dans une des sections intitulée « Stratégies 

de preuve en fonction de la forme de l’énoncé à prouver », où « forme » renvoie bien 

à l’aspect syntaxique, l'auteur s’efforce de fournir aux étudiants une méthode 

permettant de générer une preuve et cela quelle que soit la forme des énoncés 

considérés. Cette méthode vise à analyser, puis à modifier les énoncés en fonction de 

leur structure, suivant des règles issues des tables de vérité.  

Regardons enfin l’analyse des deux premiers exercices de la feuille d’exercices n°1 : 

 

Figure 1 : Exercices de la première feuille 

Dans l'exercice 1, il est question de noms, ce qui renvoie à la distinction 

noms/énoncés parmi les expressions mathématiques. Le point de vue est syntaxique : 

on s'intéresse à l'expression, non pas à ce qu'elle désigne. Au contraire, dans 

l'exercice 2 il est question d'objets, le point de vue est ici sémantique. Par ailleurs, 

dans l'exercice 1, il est demandé de préciser les variables libres et les variables liées. 

Nous faisons l’hypothèse que la technique attendue est purement syntaxique : par 

exemple, pour les items (d) et (e), les variables qui sont sous le symbole ∑ sont 

muettes, les autres sont libres, aucune reformulation de ces noms n'est demandée (ces 

sommes sont difficiles à interpréter pour des étudiants de première année). Au 

contraire dans l'exercice 2, il est d'abord question de reformulation, ce qui nécessite 

de comprendre les sens des mots utilisés dans la désignation de l'objet. 

L’exercice 1 donne pourtant la possibilité d'articuler les dimensions syntaxiques et 

sémantiques : bien que le critère d'identification des quantificateurs soit le plus 

rigoureux pour repérer le statut des variables et soit suffisant, l'articulation avec la 

reformulation des noms amène un travail mathématique intéressant. Cette articulation 

permet alors de développer des outils de contrôle des résultats (par exemple, la 

variable i ne peut pas apparaître dans le calcul de la somme (d)). Cette articulation 

n'est pas demandée explicitement dans la consigne de l'exercice. Nous n'avons pas pu 

observer de déroulement des séances d’exercices, nous n'avons donc pas d'indication 

sur la manière dont les enseignants corrigent cet exercice. 
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Dans l'exercice 2, l'articulation syntaxe/sémantique est plus explicitement attendue 

puisque qu'après avoir demandé une reformulation, qui est aussi l'occasion 

d'apprendre à manipuler l'écriture en compréhension d'un ensemble, il est demandé 

d'indiquer les variables libres. Nous faisons l'hypothèse que ce qui est attendu est bien 

que les étudiants repèrent la variable rendue muette par l'assemblage {…|…}, les 

autres variables apparaissant libres dans le nom de départ étant toujours libres dans 

l'énoncé caractéristique de l'ensemble, et donc dans le nom reformulé. 

Ces trois exemples donnés sont représentatifs de l’ensemble de nos analyses qui 

montrent une entrée syntaxique fortement affirmée, même si elle n’est pas coupée 

d’une volonté d’articulation avec l’aspect sémantique. 

Étude de l’examen et des copies des étudiants 

Nous avons analysé plus particulièrement deux exercices de l’examen (parmi 6) 

proposé à la fin du cours, qui comportent selon nous des possibilités d’articulation 

des dimensions syntaxique et sémantique. Nous mettons en regard les réponses des 

étudiants. Étudions tout d’abord le premier exercice de l’examen : 

 

Figure 2 : Premier exercice de l’examen 

La question (1) de cet exercice est un classique des exercices de calcul 

propositionnel : il s’agit de dresser la table de vérité de deux propositions. Cette tâche 

s’apparente à un travail syntaxique : une fois connues les règles pour remplir une 

table de vérité, il n’est pas nécessaire pour les appliquer de se ramener au sens des 

connecteurs. Les étudiants ont été entraînés sur ce type d’exercices lors des séances 

de travaux dirigés. Sur 150 copies analysées, 140 étudiants répondent à cette 

question, et 68 (soit 45% des réponses) dressent une table de vérité correcte, 62 (soit 

41% des réponses) dressent une table de vérité incomplète ou comportant plus de 3 

erreurs. 

La formulation de la question (2) ouvre plus de possibilités de résolution de la tâche. 

Une formulation du type « Démontrer que l'énoncé A⇒B est toujours vrai », voire 

« démontrer que l'énoncé A⇒B est une tautologie » aurait été plus dans la continuité 

de la démarche syntaxique attendue pour la question 1, en restant dans le registre du 

calcul des propositions. Au contraire, une formulation du type « Démontrer que 

A⇒B » se situe plus dans le registre du raisonnement déductif, avec des démarches 
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du type « supposons A, montrons B ». La formulation choisie ici est finalement 

intermédiaire entre ces deux formulations, et effectivement, les étudiants ont mis en 

œuvre différentes procédures plus ou moins syntaxiques ou sémantiques. La 

procédure complètement syntaxique consistant à établir la table de vérité de A⇒B a 

été mise en œuvre par 44 étudiants de façon correcte, et par 46 étudiants avec des 

erreurs (soit en tout 76% des 119 étudiants ayant répondu). Une autre procédure 

s’appuie également sur les tables de vérité, mais fait plus appel à la sémantique de 

l’implication : il s’agit de vérifier que lorsque A est vrai, B est vrai. Elle a été mise en 

œuvre par 9 étudiants. Une troisième procédure se situe dans le registre du 

raisonnement déductif : elle consiste à supposer A vrai, et à en déduire que B est vrai. 

Construire ainsi le canevas de la démonstration est une démarche syntaxique, dont 

nous avons vu qu’elle était prônée par les enseignants et dans le polycopié du cours. 

Cette procédure a été mise en œuvre par 10 étudiants, mais seulement 2 étudiants le 

font correctement,  en listant les distributions de valeurs de vérité qui rendent A vrai, 

et en étudiant la valeur de vérité de B dans chaque cas, ce qui ramène l’exercice dans 

le registre du calcul propositionnel, et qui mobilise la sémantique de l’implication. 

Les 8 autres étudiants cherchent à transformer l’énoncé A ou l’énoncé B, mais de 

façon non correcte. Une autre démarche, qui n’a pas été mise en œuvre, consiste à 

transformer A en la disjonction [(NON P ET R) OU Q] et à faire une disjonction des 

cas. Une quatrième procédure similaire consiste à démontrer la contraposée (NON 

B⇒NON A), elle n’a pas non plus été mise en œuvre. Notons que 23 étudiants 

accompagnent leur réponse à cette question de transformations des propositions, 

essentiellement en utilisant l’équivalence entre A⇒B et (NON A OU B). 

De même, la formulation de la question (3) ouvre différentes possibilités de 

résolution. Sur les 126 étudiants ayant traité la question, 53 répondent en comparant 

les tables de vérité, ce qui en fait la procédure syntaxique majoritairement mise en 

œuvre. Bien que l’énoncé A⇔B n’apparaisse pas explicitement, 27 autres étudiants 

continuent de mobiliser une démarche syntaxique, en faisant les tables de vérité de 

B⇒A ou de A⇔B. Notons tout de même que 43% des étudiants qui avaient traité la 

première question avec des tables de vérité, notamment ceux qui ne les avaient pas 

mobilisées correctement, ne les utilisent pas ici pour répondre à la question de 

l’équivalence des énoncés, ce qui montre que ce registre syntaxique des tables de 

vérité est bien mobilisé dans une tâche où elles sont explicitement convoquées, mais 

moins bien dans une tâche où cela est plus implicite. 

Finalement, environ 35% des étudiants mobilisent pour les 3 questions une résolution 

syntaxique par les tables de vérité, malgré les formulations des questions (2) et (3) 

ouvrant d’autres possibilités. Ce traitement purement syntaxique s’explique par 

l’inscription de la tâche dans le registre du calcul propositionnel, même si elle n’y 

reste pas strictement. 

Regardons maintenant le dernier exercice de l’examen (figure 3). Là encore, la 

formulation de la tâche oscille entre plusieurs registres : il s’agit de démontrer, donc 
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d’élaborer un raisonnement déductif. Mais l’énoncé à prouver est formulé dans un 

registre formel du calcul des prédicats, faisant ainsi ressortir sa structure logique, et 

permettant peut-être plus facilement une approche syntaxique de la preuve. Les 

quantificateurs, l’équivalence, le « ou » sont notés sous leur forme symbolique, 

l’étudiant n’a pas à exhiber la structure logique de l’énoncé, ce qui aurait été le cas 

s’il avait été formulé sous la forme « le produit de deux nombres est nul si et 

seulement si l’un des deux nombres est nul ». 

 

Figure 3 : Dernier exercice de l’examen 

De fait, concernant la structure des démonstrations produites, 84 étudiants, soit 72% 

des 117 réponses, cherchent bien à montrer les deux implications. Et 55 d’entre eux 

concluent leur raisonnement en reprenant l’énoncé initial bien quantifié. Par contre, 

seuls 12 étudiants introduisent explicitement les variables a et b manipulées dans la 

preuve (un effet sans doute du fait qu’elles sont déjà présentes dans l’énoncé, même 

si elles sont muettes). 

Pour ce qui est du contenu des démonstrations produites, l’implication ∀a∀b 

((a=0⋁b=0)⇒ ab=0) est beaucoup mieux réussie que sa réciproque. 68 étudiants, soit 

58% des réponses, produisent pour cela un raisonnement par disjonction des cas, et 

22 étudiants produisent un raisonnement incorrect. Dans la copie ci-dessous, 

l’étudiant exhibe tous les éléments de structuration de la démonstration : (1) 

introduire a, b des réels, (2) supposer a=0⋁b=0, (3) faire une disjonction des cas, (4) 

dire que dans chaque cas on a ab=0, et (5) conclure que l’implication est vraie. 

 

Figure 4 : Un extrait d’une réponse au dernier exercice 

Peu d’étudiants ont une rédaction dans laquelle nous retrouvons tous ces éléments de 

structure, notamment les éléments (1) et (4) sont peu présents, les éléments (2) et (5) 

le sont dans un peu plus de 50% des copies. Cette différence reflète ce qui se fait dans 
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les pratiques usuelles de rédactions. Pour la réciproque, seuls 25 étudiants produisent 

un raisonnement correct (qui correspondent, à 1 étudiant près, aux 21%, qui ont 

finalement résolu correctement la tâche), contre 43 qui produisent un raisonnement 

incorrect. 

L’analyse de cet exercice montre, là aussi, que la plupart des étudiants se sont 

approprié le traitement syntaxique de la preuve d’une équivalence consistant à 

démontrer une double implication. Cette réussite est peut-être renforcée par l’aspect 

formel de l’énoncé à prouver. Cependant, nous voyons aussi que structurer 

correctement la preuve n’est bien sûr pas suffisant, puisque l’une des implications 

met une grande partie des étudiants en échec. Nous relions le choix de cet exercice, 

dans lequel l’énoncé à prouver est un résultat connu depuis plusieurs années par les 

étudiants, aux propos des enseignants sur le fait qu’ils cherchent des démonstrations 

pour lesquelles il n’y a pas besoin d’avoir d’idées mathématiques difficiles à trouver. 

Cependant, nous voyons que les étudiants sont familiers du traitement syntaxique 

consistant à transformer l’équivalence en une double implication, mais pas du 

traitement syntaxique consistant à transformer A⇒(B∨C) en (A∧NON B)⇒C, 

transformation qui permettrait une résolution plus simple de la deuxième implication.  

CONCLUSION 

Les analyses montrent que pour le cours étudié, l’entrée choisie est fortement ancrée 

dans l’aspect syntaxique. Cependant, les réponses des étudiants à l’examen montrent 

une appropriation relative de ce cadre syntaxique. En effet, dans le cas d’une tâche où 

il est explicitement demandé de mobiliser une approche syntaxique dans le registre 

du calcul des propositions en dressant une table de vérité, seulement 45% des 

étudiants répondent correctement. Et sur des tâches où le recours à des tables de 

vérité n’est pas explicitement demandé, et où d’autres procédures éventuellement 

moins syntaxiques sont possibles, il y a encore moins de réussite. Par ailleurs, nous 

avons repéré en analysant les entretiens avec les enseignants et le polycopié du cours 

une volonté de donner aux étudiants des moyens de produire des preuves en fonction 

de la forme de l’énoncé. Dans le cas d’une preuve simple, la majorité des étudiants 

qui produisent un raisonnement correct exhibent effectivement des éléments de 

structuration de la preuve. 

Après cette première étude de cas, et ce premier choix d’une analyse selon les 

dimensions syntaxique et sémantique, nous souhaitons élargir notre analyse à la prise 

en compte d’autres articulations telles que fonction d’explication/fonction de 

validation (Hanna, 2000), aspect processus/aspect produit (Gandit, 2008), logique 

naturelle/logique mathématique (Deloustal-Jorrand, 2004). Dans le cours présenté ici, 

l’entrée syntaxique est fortement liée à la fonction de validation et à l’aspect produit : 

la forme de l’énoncé guide l’écriture de la preuve, et permet de garantir sa validité. 

L’articulation logique naturelle/logique mathématique n’apparaît pas dans le cours ou 

l’examen, mais elle transparaît bien dans les entretiens, et est l’objet de certains 

exercices. Nous envisageons également de reconduire ces analyses sur d’autres cours, 
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et pour mener à bien cette analyse comparative, nous aurons besoin de construire un 

test indépendant du cours étudié, permettant d’évaluer l’appropriation par les 

étudiants des différents aspects de la preuve. 
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In this proposal we discuss from an APOS (Action-Process-Object-Schema) viewpoint 

student conceptions involved in the construction of conceptions about domain, image 

and inverse image of a linear transformation from ℝ2 to ℝ2 as well as the relations 

between these notions. We present the design of a set of tasks which allows exploring 

different facets of the above concepts, evidenced by the analysis of the production of a 

student. Thanks to the design of the instrument it was possible to highlight some 

conceptions that may not be evident in typical teaching situations. Some suggestions 

related to teaching strategies are included. 

Keywords: teaching and learning of linear and abstract algebra, teaching and learning 

of specific topics in university mathematics, linear transformation, task design, APOS 

theory 

INTRODUCTION AND RESEARCH OBJECTIVES 

The process of learning new concepts builds on previously constructed concepts, 

particularly in advanced mathematics. Domain, image and inverse image are among 

such previous concepts for the understanding of linear transformations. These concepts 

play an important role within linear algebra as well as in connection with other subjects 

such as calculus and analysis. In the teaching of linear transformations, very often the 

algebraic and algorithmic nature related to the linearity properties is favored, as 

opposed to more functional aspects. Zandieh et al. (2017) explore the relationship 

between a high school function conception and a university linear transformation 

conception. These authors advocate a unified function-transformation concept; 

according to APOS Theory this happens when the vector space Object gets assimilated 

into the function Schema as a possible domain (Roa-Fuentes & Oktaç, 2010). The 

relationship between these two concepts was also studied by Bagley et al. (2015) in the 

context of inverse, composition and identity. 

Reports about students’ difficulties are abundant in linear algebra education research 

(Dorier & Sierpinska, 2001). Some of these difficulties might be related to the lack of 

previous concepts that need to be constructed adequately and coordinated. We have not 

found any literature about the role that the concepts of domain, image and inverse 
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image play in the construction of the linear transformation concept, although the latter 

has been widely studied (Sierpinska, 2000; Andrews-Larson et al., 2017; Oktaç, 2018). 

Given the context explained in the previous paragraphs, the aim of this study is to 

evidence student conceptions about domain, image, inverse image and linear 

transformation in ℝ2including the relations between them. Also of interest is to 

investigate the role that the former notions play in the construction of the linear 

transformation concept. 

Given the importance of linear algebra as a support for developing advanced topics in 

mathematics, as well as their applications in different university programs and in real 

life, we consider it necessary to investigate these relations in order to contribute to 

existing strategies for an adequate understanding of these concepts. 

THEORETICAL AND METHODOLOGICAL CONSIDERATIONS 

In our research group we have studied the linear transformation concept from various 

angles including algebraic, geometrical and matrix representations (Ramírez-Sandoval 

et al., 2014); dynamical exploration (Camacho-Espinoza & Oktaç, 2018) and 

connections between research and teaching (Oktaç et al., 2019). The present study is a 

continuation of this general project that has as its objective to study the understanding 

of linear transformations. 

In this study APOS Theory is adopted as a framework, as it provides a cognitive 

approach applied in the context of the understanding of advanced mathematical topics. 

The basic elements of this theory are known as mental structures, stages or 

conceptions, that are constructed by means of mental mechanisms. Actions are driven 

externally, where the individual can transform previously constructed Objects. 

Processes are developed when an internal stimulus replaces the external algorithms or 

rules via the mechanism interiorization. When Processes are encapsulated they 

become Objects to which Actions or Processes related to other concepts can be applied. 

Finally all these structures and their relationships can come together to form part of a 

Schema. 

The research cycle related to APOS Theory has three components: Theoretical analysis 

(called a genetic decomposition); design and application of instruction; and collection 

of empirical data and their analysis. The construction of the linear transformation 

concept was studied theoretically and empirically from an APOS viewpoint (see Arnon 

et al., 2014). In previous research studies that we conducted, some student difficulties 

that were detected in the construction of this concept gave the impression that they 

might be related to the lack of construction of previous notions. In order to delve into 

the role that these concepts play, we designed a research study about student 

conceptions on these topics, some of whose results we report here. 

We designed an instrument comprising of four questions that was applied to a total of 

31 university students from three different institutions in Mexico who were enrolled in 

an introductory linear algebra course. In the design of the problems special care was 
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taken to involve different facets of the concepts in question. Usually in textbooks and 

in classroom activities only some of these aspects are offered to students, who get used 

to working on them from certain angles. When this angle is changed, and this is new 

to the student, it becomes easier to identify where the difficulties lie. In the case of 

linear transformations, the favored aspect can be the linearity properties over the 

functional characteristics. 

In the design of the research instrument, algebraic, geometrical as well as functional 

aspects of a linear transformation were used, integrating in this way different facets of 

the concept. By a functional aspect we mean considering the linear transformation as a 

correspondence that associates the vectors of a domain space to the vectors of an image 

space; this is related to a Process conception because of its generality. In what follows 

we go into more depth about this issue. 

A Process conception of domain, coordinated with a Process conception of image, is 

required for the Process conception of linear transformation. Conceptions that students 

have about domain and image, and even about systems of linear equations and their 

solutions, can intervene in their conceptions about linear transformation and inverse 

image. All these considerations were taken into account in the design of the questions 

that made up the instrument, with the aim of investigating the relationships between 

the different elements related to the linear transformation Process, and hence offering 

suggestions for its construction and enrichment. 

ANALYSIS OF DATA 

We now present two of the questions from the instrument, their analysis as well as the 

results obtained from a student. With the application of the instrument we have realized 

that even if a student gives the appearance of having constructed a conception that 

allows the solution of a problem with success, when the problem is changed to one that 

explores different facets of the same concept, the conceptions that are evidenced by the 

new situation can be quite different from the ones detected initially. We now analyze 

the production of a student (E) who handles very efficiently algorithmic procedures, 

when working on questions 3 and 4 of the instrument. 

Question 3 was stated as follows:  

3.- Consider the linear transformation 𝑇:ℝ2 → ℝ2 associated to the matrix (
1 1
1 1

).  

a) Determine its domain. 

b) Determine its image. 

c) ¿Does the vector (
3
2
) belong to the image of the transformation? If the answer is 

YES find the corresponding inverse image and graph it. If the answer is NO, justify. 

d) Graph the domain of 𝑇. 

e) Graph the image of 𝑇. 

f) ¿Does the vector (
5
5
) belong to the image of the transformation? If the answer is 

YES find the corresponding inverse image and graph it. If the answer is  NO, justify. 
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Different parts of Question 3 of the instrument allow an investigation into student 

conceptions on domain, image and inverse image of a linear transformation via its 

matrix. Action and Process conceptions about these concepts can be detected in the 

context of algebraic and geometric representations, as well as the way students relate 

them to the linear transformation concept. 

Before we start analyzing E’s responses and arguments, we would like to comment on 

the cognitive structures that are involved here. 

Construction of a Process conception of domain allows the individual to accept that the 

transformation acts on all the vectors of the domain. This conception might be revealed 

with the use of generic vectors that represent any vector in the domain. However 

applying the linear transformation on general vectors does not necessarily imply a 

Process conception of the domain and hence, does not always lead to the construction 

of a Process conception of image. 

A Process conception of image permits the individual determine how the domain and 

image vectors are related to each other, what conditions a vector should satisfy in order 

to belong to the image, how that set is represented geometrically and in general terms, 

how the transformation acts on the domain vectors. 

Constructing a Process conception of inverse image requires the individual to identify 

the set of vectors in the domain that are related to a specific vector in the image through 

the linear transformation. It also requires determining the characteristics that vectors in 

the domain should satisfy in order to form part of the inverse image set. Included in 

this Process conception is the identification of its geometric representation. 

In what follows we present empirical evidence that shows that even if an individual 

can work quite efficiently with algorithms and procedures in solving a problem, this 

does not imply that solid conceptions about the concepts in questions have been 

developed. 

Items a) and d) of Question 3 aim at exploring the conceptions that a student might 

have about the domain of a linear transformation. Student E gives the impression that 

he has constructed a Process conception of domain, since he identifies the domain of 

the given transformation as ℝ2 and graphs it shading the whole plane as shown in 

Figure 1.  

 
 

Figure 1. Domain of the linear transformation according to E 
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In order to determine the image of the transformation, E uses algebraic algorithms 

applied to generic vectors as shown in Figure 2. 

 
Figure 2. Production of E to determine the image of the transformation  

This might give the impression that the student has constructed a Process conception 

of image starting form a Process conception of domain, evidenced by the use of a 

general vector (
𝑥
𝑦) ∈ ℝ2 on which the transformation acts through its matrix. However, 

this does not necessarily imply that the student has understood how the transformation 

acts on all the vectors in the domain, what the nature of this process is, and what 

properties it fulfills. One evidence that shows that E has not yet quite understood the 

nature of this image Process is that even though he determines the image set 

algebraically, he cannot associate it to the identity line and cannot graph it (see Figure 

3). 

 
Figure 3. Image of the transformation and its graphical representation according to E 

In this case the condition that the vectors of the image satisfy is that the 𝑥 and 𝑦 

components should be equal. However, the algorithm used by E in order to find the 

image does not provide enough tools for him to realize this property; in parts c) and f) 

he does not make use of it to determine if the vectors (3,2) and (5,5) belong to the 

image set, as we shall see below.  

In order to determine whether a vector belongs to the image set or not, E resorts to the 

Gaussian elimination technique applied to the augmented matrix of a linear system of 

equations. In the case of the vector (3,2) this system is inconsistent and for (5,5) it has 

infinitely many solutions (Figure 4).  

 

 

 

Figure 4. Gaussian reduction technique for vectors (3,2) and (5,5)  
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Setting up a system of equations related to a transformation in order to determine 

whether a vector belongs to the image set or not, might require a coordination between 

a linear transformation Process and a system of linear equations Process. This allows 

the individual to recognize that 𝑦 = 𝑇(𝑥) if and only if the augmented system (𝐴: 𝑦) 
has a solution, where 𝐴 is the matrix associated to 𝑇. Despite the skill in algorithmic 

manipulation of systems of linear equations, lack of Process conception might lead to 

the need to repeat this procedure every time regardless of the number of vectors to be 

determined as belonging to the image set or not. This is related to an Action conception. 

In summary, somebody who can perform Actions on a generic vector of the form (𝑥, 𝑦) 
may or may not have constructed a Process conception of image; this is related to 

understanding the way a linear transformation acts on its domain. 

Finding the inverse image of a given vector can be conceivably more complex than 

establishing the image of a linear transformation. However a solid Process conception 

of system of linear equations concept helps E to determine the inverse image set of the 

vector (5,5), using a parametric form and graphing the corresponding line as seen in 

Figure 5.  

 

 
Figure 5. Parametric form of the inverse image of (5,5) and its graph 

On the other hand, although apparently E might have constructed a Process conception 

of the domain concept, there are three pieces of evidence that manifest that he has not 

constructed a Process conception of image concept: (i) he cannot graph the image, (ii) 

he cannot determine whether a vector belongs to the image without performing a 

specific action and (iii) he does not have it clear how the transformation acts on the 

vectors of the domain. Furthermore, although he was able to determine the inverse 

image of a particular vector, this is thanks to his solid conceptions about systems of 

linear equations.  

As we mentioned before, a coordination between the Processes of domain and image 

concepts is necessary so that a Process conception of linear transformation concept can 

be constructed. If any of these Processes is absent, it is very probable that the 

conceptions about linear transformations would be limited. 
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In order to consolidate our interpretations about these conceptions, we now turn into 

the work that E has produced when working on Question 4 of the instrument, hence 

examining his conceptions in a different context. 

Question 4 was stated as follows:  

Find the rule of a linear transformation under which the image of (
1
0
) is (

0
−4

) and where 

the transformation is the combination of a rotation followed by a dilation. Determine the 

matrices of rotation and dilatation for the transformations used. Justify your response.  

 

This question was designed so that it would be accessible to students with Action, 

Process or Object conceptions who would employ different kinds of strategies. Figure 

6 shows the work of E. 

 

Figure 6. E’s solution to Question 4 
 

Here E shows an Action conception about image, by choosing to work with a single 

vector and its image, where 𝑇(1,0) = (0,−4). As can be seen from his strategy, he 

employs a generic vector (𝑥, 𝑦), which might indicate a Process conception, however 

he only tries to make sure that the conditions of the problem are satisfied by these two 

vectors and does not take into account the rest of the domain vectors. We should note 

that the image vector denoted by (𝑦,−4𝑥) does not correspond to rotation and dilation 

transformations. It is possible that he is mixing up a rotation with a reflection about the 

line 𝑦 = 𝑥. In order to find the image of (𝑥, 𝑦) he interchanges the coordinates (𝑥, 𝑦) →
(𝑦, 𝑥) and then multiplies the second one by −4, that is (𝑥, 𝑦) → (𝑦, 𝑥) → (𝑦, −4𝑥). 
The linear transformation that he finds complies with the condition 𝑇(1,0) = (0,−4). 
However the rest of the domain vectors do not actually configure into the solution. This 

confirms the lack of a Process conception of linear transformation concept, because of 

a lack of a Process conception of image concept, and probably lack of a Process 

conception of domain concept as well. 

CONCLUSIONS 

The design of the instrument enabled us to look into the conceptions related to the 

concepts of domain, image and inverse image of a linear transformation from different 

angles and how these conceptions intervene in the construction of the linear 

transformation concept. Question 3 allows the exploration of conceptions about notions 
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that until now have not been prioritized in research as key in the construction of the 

concept of linear transformation.  

Question 4 was designed to explore Action, Process and Object conceptions of the 

concepts mentioned before. Even though its complete solution requires an Object 

conception of linear transformation, students can tackle the problem partially evoking 

Action and Process conceptions. The analysis of the production of a student when 

confronted with these questions allowed us to investigate and demonstrate the 

structures involved and those that are to be constructed for the learning of the linear 

transformation concept. 

When we talk about exploring different facets of concepts and conceptions we refer to 

the different roles that are played by them in different situations. For example in 

Question 3 the student is asked directly to find the domain, the image and the inverse 

image set. The student could not graph the image set, which indicated the absence of a 

Process conception. On the other hand, he was able to graph the domain, which could 

give the impression that he has constructed a Process conception for this concept. 

However Question 4 involves the same concept, namely domain, in a different way; 

the student has to use it in order to solve the problem, even though it is not even 

mentioned in the statement. Presenting situations that involve the concept in question 

from different angles allow us to identify the real conceptions that the student has 

constructed.  

In teaching situations usually algorithmic and algebraic aspects of the linear 

transformation concept are favored, leading to Action-based strategies on the part of 

the students. The construction of a Process conception requires the interiorization of 

these Actions, leading to an internal control over them, including the ability to work 

with general situations. The functional aspect of a linear transformation is precisely 

related to a Process conception, in which the concepts of domain and image play an 

important role, which should be taken into consideration when establishing teaching 

strategies. 

As for the limitations of the study, we mention that since it was only conducted in the 

context of ℝ2, care should be taken when generalizing into other contexts. 

Acknowledgement: This material is based upon work supported by a grant from the University of 
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INTRODUCTION 

The fourth Topic Working Group (TWG4) of the third conference of the International 

Network for Didactic Research in University Mathematics (INDRUM2020) was 

dedicated to students’ and teachers’ practices in the teaching and learning of 

mathematics at university level. Eleven papers and three posters were proposed and 

discussed in two thematic groups:  digital or other resources and the use of technology 

and teachers’ practices and innovations. In this report, we present a synthesis of the 

papers and the posters in each thematic group. Also, we present a summary of our 

discussion on emerging issues related to the recent Covid-19 outbreak, especially in 

relation to the shift to online or blended modes of teaching. We conclude with a 

reflection on the studies presented on the TWG4 and propositions for future research. 

DIGITAL OR OTHER RESOURCES AND THE USE OF TECHNOLOGY 

Five papers and three posters addressed topics related to resources, specifically digital 

resources, and use of technology in the teaching and learning of university 

mathematics. Specifically, Fleischmann, Mai, and Biehler proposed the design and the 

evaluation frame of a four-week bridging course. The course employed a blended 

learning design that included face-to-face lectures incorporated together with self-

regulated e-learning with multimedia learning materials outside the lectures. The paper 

proposed a methodological approach for the evaluation of the course that connected 

the teaching design with student responses to a questionnaire. Results suggest that 

students appreciated the integration of interactive activities to the face-to-face part of 

the course. Regarding assessment, Hadjerrouit discussed student engagement with a 

computer-based assessment that provided formative feedback. The study employed 

Gibson’s affordance theory (1977) on the physical properties of an object and the user-

object interactions, to analyse 15 teacher students’, who engaged with the computer-

based assessment, responses to a questionnaire. Findings indicate that student 

interactions with the assessment through the formative feedback created affordances 

for learning at the technological, mathematical, and assessment level.  

Gueudet, Buteau, Muller, Mgombelo, and Sacristàn employed the instrumental 

approach (Rabardel 1995) to analyse the engagement of university students with 

programming in the context of “authentic” mathematical investigations. The study 

considered programming as an artefact that develops to an instrument incorporating a 

structure of schemes that have mathematical only (m-schemes), programming only (p-

schemes) or both mathematical and programming (p+m-schemes) goals. The structure 
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of schemes above was illustrated in the case of the participation of one undergraduate 

student. This participation is elaborated further in the Buteau, et al. poster in which the 

development of student’s engagement with programming is visualised in a diagram 

that incorporates the complex structure of m-, p-, and p+m-schemes developed by the 

student. The instrumental approach was used in the Topphol poster as well to analyse 

university students’ participation in task-based interviews, where mathematical tasks 

are seen as instruments in the development of mathematical competences. 

The Heinrich, Hattermann, Salle, and Schumacher paper explains the relationship 

between the interactivity of 63 pairs of students working in different instructional 

media on a descriptive statistics activity and their learning gain after participating to 

this activity. The paper proposes a theoretical instrument based on the ICAP-

framework on the engagement activities between learners or between a learner and 

learning materials (Chi & Menekse, 2015) to analyse students’ interactivity. In 

addition, learning gain through student responses to pre- and post- test was measured. 

Findings indicate a significant link between students’ communicational behaviour and 

their learning gain. Collaboration is also related to the Glassmeyer poster that analysed 

the affordances offered by portfolio, which use peer feedback within an online graduate 

course on problem solving, for mathematics teachers’ practices. 

Finally, Sabra employed the documentational approach (Gueudet, 2017) to study the 

relation between research and teaching practices of three university teachers who are 

also active researchers. The study focused on the interactions between resources and 

teachers by analysing those teachers’ research activities and teaching practices 

together. Analysis of audio-recorded interviews proposed three forms of use of 

research resources in teaching practices: use research resource in teaching instantiation 

processes; research resource to scaffold the learning of a given content; and, no relation 

of resources. 

In the discussion session of the group, we had the chance to address emerging issues 

from the recent Covid-19 outbreak, especially in relation to the shift to online or 

blended modes of teaching. Specifically, we dealt with two questions:  How would the 

research knowledge we have been accumulating all these years in research on the use 

of technology and resources in the teaching and learning of mathematics at university 

level help us to address emerging situations due to Covid-19? and What new research 

can emerge from the impact of the Covid-19 outbreak on the teaching and learning of 

mathematics at university level? 

Our discussion highlighted that studies on students’ participation and communication 

with peers and teachers could inform studies on students’ collaboration online. 

However, when online is the central medium of communication, other factors should 

be considered as well, such as technological affordances and availability (or lack of) 

and changes in the visual mediation (e.g. gestures, body language, etc.). In addition, 

there are potential methodological consequences. For example, studies that were 

possible before the pandemic (e.g., classroom face-to-face observations or activities 

that involve students’ physical interaction), probably will not be possible in an online 
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mode. For example, a study that involves classroom observations should change 

radically in the midst of the pandemic where remote is the dominant mode of teaching. 

A concern that emerged from our discussion is that current online teaching may 

privilege direct instruction led by the teacher with less opportunities for student 

engagement. A potential approach might be alternating between short pieces of direct 

instruction (before learners go into cinema-mode, quiet and passive attendance) and 

invitations for student interaction and contributions between such short pieces of direct 

instruction. E-assessment might be an issue as well; studies in this area are gaining 

more significance in the current circumstances. 

It might be too early to study and experiment on online teaching. However, one 

observation is that after Covid-19 outbreak there is a substantial attention to teaching. 

This increase of attention might be an opportunity for enhancement of the teaching 

provision at university level overall. 

TEACHERS’ PRACTICES AND INNOVATIONS 

Six papers of our group were related to teachers’ practices and innovation in university 

mathematics. Specifically, Gascón and Nicolás drew on the anthropological theory of 

the didactic (Chevallard, 1999) to analyse the transition of future teachers from the 

institution of tertiary mathematics (as students) to an institution of secondary education 

(as teachers). Their study put forward the necessity for future teachers to undertake 

deep changes in the institutional “teaching ends” of mathematics and to look for a 

missing epistemological model. Still on transition, Ghedamsi and Fattoum investigated 

the possibility to reduce differences in the learning expectations of calculus in the 

transition between high school and university by engaging high school teachers in 

reforming their actions and making a connection between the two levels. They 

deployed a collaborative method founded on guided reflection (Husu, Toom & 

Patrikainen, 2008) to support teacher reflection on his/her actions by taking into 

account transitional issues.  

In a different transition, this time from mathematics to mathematics education, is the 

work of Biza and Nardi who presented examples of activities and their assessment 

frame for mathematics undergraduate students’ introduction to mathematics education 

research. The proposed activities follow task design principles that contextualise the 

use of theory and the mathematical content to specific learning situations (MathTASK). 

Students’ responses to these activities are assessed in relation to clarity; coherence; 

consistency; specificity; use of terms and constructs from mathematics education 

theory; and, use of terms and processes from mathematical theory. The application of 

these activities and the assessment frame is exemplified through the responses from 

one student. 

Drawing on literature results about students’ difficulties and affordance for the 

teaching of limit notion, Chorlay and Mesnil analysed and compared three lectures by 

focusing on the use of definitions and examples. Post lecture interviews were used 

towards a further analysis of lecturers’ actions and an investigation of the possibilities 
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for lecturers to discuss alternatives to their actions. The results show that all three 

lecturers identified possibilities to consider potential changes on their own actions. Still 

on the teaching of calculus at university level, Karavi, Potari, and Zachariades analysed 

the characteristics of proof teaching in an introductory mathematical analysis lecture 

and lecturer’s rationale underlying this teaching. Findings show a link between the 

pattern of proof teaching and the development of proof image for students as well as 

the impact of lecturer’s experience on the building of this pattern.    

Finally, Martinez, Gehrtz, Rasmussen, LaTona-Tequida, and Vroom explored what 

guides course coordinators’ actions towards the goal of improving students’ learning. 

They draw on Philipp’s (2007) review of mathematics teachers’ beliefs and affect to 

shape what they call “orientation toward coordination”. The analysis of interviews with 

coordinators resulted in the identification of two main orientations: humanistic-growth 

orientation and knowledge-managerial orientation. Raising awareness to such 

orientations provides coordinators with materials to reflect on how they can act on the 

available drivers for change at their institutions. 

REFLECTION AND WAYS FORWARD 

In reflection on the studies presented and discussed in the group, it would appear that 

teaching interventions were at the heart of our group also in relation to the use of 

resources and digital technology. We were introduced to design principles and 

evaluation approaches that can facilitate the design and assess the effectiveness of such 

interventions. In addition, evidence was shared on how and what type of collaborative 

and participatory approaches in learning university mathematics may generate 

substantial learning gains. Furthermore, the role of digital curriculum resources and 

educational technology, for example programming, in both teaching and learning at 

university level, was a significant part of the works presented in the group. 

Transition was a recurring theme into research on studies on students’ and teachers’ 

practices. We discussed studies addressing issues related to the transition from 

secondary education to university and, also, studies related to the transition from 

university to school level, especially in relation to teacher preparation. The importance 

of double discontinuity raised by Klein (1908/1932) was highlighted as essential in 

research that goes beyond the description of the problem. Such research proposed 

interventions that can prepare students for the transition while they are at secondary 

education or interventions that can prepare teachers before embarking for a teaching 

profession. Also, we discussed the transition for mathematical to mathematics 

education practices, in which undergraduate mathematics students are introduced to 

the theory (and the practices) of mathematics education.  

At a more general level, the role of theory in university mathematics research was 

central in our discussions with the expansion of the use of well-established theoretical 

perspective to address new research questions. Some examples are the use of the 

instrumentational approach in the case of programming; the use of the documentational 

approach in the analysis of teachers’ research practices; the use of the anthropological 
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theory of the didactic in the transition of teachers to secondary education. 

We dedicated the final session on potential open questions and research areas related 

to students’ and teachers’ practices that deserve more attention for the years to come. 

Topics that emerged from our discussion regard a range of areas. For example, 

inclusive mathematical experiences, was one of these areas, especially in relation to 

the challenges for teachers in the current (and the post-) pandemic era of serving 

students with special needs. Another emerging area was the equity in university 

mathematics education in relation to student opportunities for access to tertiary 

education. Furthermore, more research is needed on challenges and opportunities in e-

learning and e-teaching, such as blended approaches to teaching, e-assessment or e-

collaboration. In addition, we discussed the need for more opportunities for 

collaboration between mathematics education researchers, mathematics educators, 

mathematicians and mathematics teachers. Finally, we would like to investigate further 

new methodological and theoretical approaches with potencies in research on e-

teaching and e-learning. We look forward to the next INDRUM conference and the 

new advances in research on teachers’ and students’ practices. 
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In this paper, we present examples of activities and their assessment frame for 

mathematics undergraduate students’ introduction to mathematics education research. 

The activities are inspired by studies that have identified and addressed differences 

between discursive practices in mathematics and in mathematics education. The 

proposed set of activities uses task design principles that contextualise mathematical 

content and the use of mathematics education theory to specific learning situations. 

Students’ responses to these activities are assessed in relation to: clarity; coherence; 

consistency; specificity; use of terms and constructs from mathematics education 

theory; and, use of terms and processes from mathematical theory. We exemplify the 

application of these activities through responses from one student. 

Keywords: Novel approaches to teaching, teachers’ and students’ practices at 

university level, mathematical discourse, mathematics education discourse, 

MathTASK. 

INTRODUCTION 

Some institutions have introduced courses on mathematics education in mathematics 

undergraduate programmes. The motivation for such courses is to introduce 

mathematics students to the field of mathematics education research or/and to prepare 

them for mathematics teaching. Very often, these courses familiarise students not only 

with the new content of the social science of education but also with the new, to them, 

practices of educational research, which is a very different enterprise from research in 

mathematics (Schoenfeld, 2000). For example, in mathematics education, in 

comparison to mathematics, the perspective is less absolutist, more contextually 

bounded and more focus on the reasons behind a student’s error. Approaches are more 

relativist on what constitutes knowledge (Nardi, 2015) and evidence is not in the form 

of proof, but rather more “cumulative, moving towards conclusions that can be 

considered to be beyond a reasonable doubt” (Schoenfeld, 2000, p. 649). Thus, findings 

are rarely definitive and are more suggestive. Such epistemological differences affect 

the experiences of those who, although familiar with mathematics research and 

practices, are newcomers to mathematics education. Boaler, Ball and Even (2003) 

analysed the challenges of mathematics graduates when they embark on postgraduate 

studies in mathematics education. They describe the epistemological shift these 

students experience in their transition from systematic enquiry in mathematics to 

systematic enquiry in mathematics education. Nardi (2015) addresses challenges with 

such epistemological shifts in the context of a postgraduate programme in mathematics 

403 sciencesconf.org:indrum2020:295758



  

education that enrols mathematics graduates and with a focus on the programme’s 

activities “designed to facilitate incoming students’ engagement with the mathematics 

education research literature” (ibid, p. 135). 

In this paper, we draw on studies that have observed and addressed such shifts at a 

postgraduate level to discuss a course that introduces mathematics education to 

undergraduate mathematics students. Specifically, we propose course activities and an 

assessment frame for students’ engagement with both mathematics and mathematics 

education discourses. Mathematical discourse is related to the mathematical content 

seen at upper secondary and first year university level, whereas mathematics education 

discourse is related to theories on the teaching and learning of mathematics and key 

findings from mathematics education research. 

In the next sections, we describe the theoretical underpinnings of this proposal and the 

teaching context in which these activities are implemented. Then, we offer an outline 

of the course and its learning objectives before presenting the assessment and the 

marking criteria with examples of activities. Finally, we exemplify data collected from 

one student, Emily, as well as analysis of this data in which we apply the proposed 

assessment frame to evaluate her responses. Our goal is to investigate whether and how 

the proposed activities and their assessment frame can generate insight into 

mathematics students’ engagement with both mathematical content and mathematics 

education theory. We conclude with a brief discussion of the potentialities of such 

activities in undergraduate students’ introduction to mathematics education research. 

CONTEXTUALISING MATHEMATICS EDUCATION DISCOURSE 

The theoretical perspective of this work is discursive and is inspired by the 

commognitive framework proposed by Sfard (2008) that sees mathematics and 

mathematics education as distinctive discourses and learning of mathematics and 

mathematics education as a communication act within these discourses. We are 

interested in discursive differences – and potential conflicts – between mathematics 

and mathematics education and we aim towards a balanced engagement with both. 

Specifically, we are interested in how students transform what they know about 

mathematics from their mathematical studies and about mathematics education theory 

they are introduced to during aforementioned courses into discursive objects that can 

be used to describe teaching and learning. This transformation is the productive 

discursive activity of reification proposed by Sfard (2008, p. 118). For example, the 

reification of the theoretical construct of sociomathematical norms (Cobb & Yackel, 

1996) can describe a situation in which students negotiate different approaches in 

solving a problem with integrals, while the reification of integration processes can 

describe the mathematical choices, and the accuracy of such choices.    

Nardi (2015) proposed a set of activities for Masters and doctoral level students for 

their introduction to mathematics education research. In these activities, students are 

asked to engage with literature from mathematics education research and to produce 

accounts of their readings. In addition, students are asked to produce accounts of 
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instances in “their personal and professional experiences that can be narrated in the 

language of the theoretical perspective” (ibid, p. 151) featured in those readings. These 

accounts of students’ experiences are called Data Samples. Engagement with literature 

together with the production of Data Samples has supported students situating their 

readings in their own experiences and their engagement with the discourse of 

mathematics education research.  From the analysis of student interviews and written 

productions, emerged four themes regarding students’ transition from studies in 

mathematics to studies in mathematics education: learning how to identify appropriate 

mathematics education literature; reading increasingly more complex writings in 

mathematics education; coping with the complexity of literate mathematics education 

discourse; and, working towards a contextualised understanding of literate 

mathematics education discourse (ibid). The contextualisation of the mathematics 

education discourse triggered by the Data Samples and described by the fourth theme 

are the inspiration for the activities we outline in this paper. 

Another inspiration was from our work with pre- and in- service mathematics teachers 

in the MathTASK1 programme in which we engage teachers with fictional but realistic 

classroom situations, which we call mathtasks (Biza, Nardi & Zachariades, 2007). 

Mathtasks are presented to teachers as short narratives that comprise a classroom 

situation where a teacher and students deal with a mathematical problem and a 

conundrum that may arise from the different responses to the problem put forward by 

different students. The mathematical problem, the student responses and the teacher 

reactions are all inspired by the vast array of issues that typically emerge in the 

complexity of the mathematics classroom and what prior research has highlighted as 

seminal.  Teachers are invited to engage with these tasks through reflecting, responding 

in writing and discussing. At the heart of MathTASK is the claim that, theoretical 

discussion related to the teaching and learning of mathematics is not productive unless 

it becomes focused on particular elements of mathematics and its teaching embedded 

in classroom situations that are likely to occur in actual practice (Speer, 2005). The 

MathTASK design was followed in the activities we outline in this paper. 

Recently, we analysed the responses to mathtasks of mathematics teachers who 

attended a master’s level course in mathematics education (Biza, Nardi & Zachariades, 

2018). Our analysis focused on teachers’ engagement with mathematics and 

mathematics education research discourses – particularly in relation to mathematics 

education theories they had been introduced to during the course. A typology of four 

interrelated characteristics emerged from this analysis of the teachers’ responses and 

used later in the analysis of trainee teachers’ engagement with mathtasks (Biza & 

Nardi, 2019). An adaptation of this typology became the frame we deployed to assess 

students’ engagement with the course activities: 

                                           

1 We use MathTASK (https://www.uea.ac.uk/groups-and-centres/a-z/mathtask) when we refer to the programme 

and its principles, whereas we use mathtask to refer to specific tasks designed with the principles of the MathTASK. 
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Consistency: how consistent is a response in the way it conveys the link between the 

respondent’s stated pedagogical priorities and their intended practice? For example, do 

those who prioritise student participation in class propose a response to a classroom 

situation that involves such participation of students? Or, does their proposed response 

involve only telling students the expected answer to a mathematical problem? 

Specificity: how contextualised and specific is a response to the teaching situation under 

consideration? For example, do those who write generally about valuing the use of vivid, 

visual imagery in mathematics teaching, propose a response to a classroom situation that 

involves specific examples of such imagery? Or, does the response include only a general 

statement of their preference? 

Reification of pedagogical discourse: how reified is the pedagogical discourse that 

respondents have become familiar with during the course? For example, how productively 

are terms such as “relational understanding” (Skemp, 1976) or “sociomathematical norms” 

(Cobb and Yackel, 1996) used in the responses?  

Reification of mathematical discourse: how reified is the mathematical discourse that 

respondents have become familiar with during prior mathematical studies? For example, 

how productively does prior familiarity with natural, integer, rational and real numbers 

inform a respondent’s discussion about fractions in a primary classroom situation? 

Before presenting how the typology was used in the assessment of students’ responses 

to the activities, we first describe the context of the course and its learning objectives. 

THE COURSE: CONTEXT, OBJECTIVES, STRUCTURE 

The mathematics education course we discuss in this paper is offered as optional to 

final year mathematics undergraduate students in a research-intensive university in the 

UK. The aim of the course is to introduce students to the study of the teaching and 

learning of mathematics typically included in the secondary and post compulsory 

curriculum. The learning objectives of the course include: to become familiar with 

learning theories in mathematics education; to be able to critically appraise research 

papers in mathematics education; to be able to compose arguments regarding the 

learning and teaching of mathematics by appraising and synthesising recent literature; 

to become familiar with the requirements of teaching mathematics – mathematical 

knowledge for teaching; to become familiar with key findings in research into the 

learning and teaching of mathematics; and, to practise reading, writing, problem 

solving and presentation skills with a particular focus on texts of theoretical content, 

yet embedded in key issues in mathematics education research.  

Teaching activities include four hours per week (two for lectures and two for seminars). 

In the lectures, led by the first author, the theoretical content is introduced while in the 

seminars, led by the first author and teaching assistants, students present and discuss 

their work that involves preparing presentations of papers they have read, identifying 

examples from their experience (data samples, as per Nardi, 2015), solving problems 

and reflecting on their solution; and, responding to mathtasks (Biza et al., 2007). 
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Opportunities for feedback are offered during the seminars and in formative and 

summative pieces of writing. We now exemplify how mathtasks are used in the course 

and how the typology of the four characteristics (Biza et al., 2018) shaped the frame 

we deployed to assess student engagement with said tasks.  

SUPPORTING AND ASSESSING STUDENTS’ ENGAGEMENT WITH 

MATHEMATICS EDUCATION AND MATHEMATICS DISCOURSES 

We now present an example from the summative assessment that was taken by the 

students in the middle of the term. This assessment had two parts. In Part I, students 

were asked to solve a mathematical problem and reflect on their solution by using the 

mathematics education terms they had been introduced up to that point. In Part II 

(Figure 1), which is our focus in this paper and was inspired by the MathTASK design, 

students are asked to choose and discuss one set of mathematics education theoretical 

constructs from a list of four that had been discussed in the sessions up to that point 

and, then, to use these constructs to respond to one of two proposed mathtasks.  

In discussing the theoretical constructs, the students were also expected to give 

examples of (1) how these constructs have been used in research, and, (2) how these 

constructs can be used to describe their own experiences. (1) was aiming to assess 

students’ skills to identify relevant literature and (2) to contextualise the use of these 

theoretical constructs in their own experiences (as in Nardi’s (2015) Data Samples). 

Mathtask A (Differential Equation) is in Figure 1 (left) and mathtask B (Reasoning) is 

in Figure 1 (right). Students’ use of the theoretical constructs in their responses to these 

mathtasks, together with their aforementioned Data Samples, provide evidence of how 

mathematics education and mathematics discourses have been reified in the students’ 

communication about teaching and learning issues.  

For the purpose of this paper, we analysed students’ written responses according to the 

marking criteria: clarity; coherence; consistency; specificity; use of terms and 

constructs from mathematics education theory; and, use of terms and processes from 

mathematical theory (Figure 2) based on the four characteristics proposed by Biza et 

al. (2018): consistency, specificity, reification of pedagogical discourse and reification 

of mathematical discourse, where “reification of the pedagogical and the mathematical 

discourses” have been replaced by the “use of terms and processes from mathematical 

theory” and “use of terms and processes from mathematical theory”, respectively.  

Our aim is to investigate mathematics students’ engagement with both mathematical 

content (mathematical discourse) and mathematics education theory (mathematics 

education research). We now present excerpts from the responses of Emily 

(pseudonym), one of the students who attended the course and consented to the use of 

her responses as data for our study. Emily’s responses were chosen for presentation in 

this paper as their articulation and subtlety allows us to illustrate how we used the 

assessment frame consisting of the aforementioned six marking criteria. 
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In Part II (2,000 words), you will discuss mathematics education theoretical constructs 

we have seen thus far and use these constructs to discuss learning incidents. Specifically, 

for this part of your assignment, you will choose one of the options below: 

 Relational and instrumental understanding (Skemp, 1976) 

 Procepts and reification (Gray & Tall, 1994) 

 Social and sociomathematical norms (Cobb & Yackel, 1996) 

 Semantic and syntactic proof (Weber & Alcock, 2004) 

and one of the learning incidents below: 

A: Differential Equation B: Reasoning 

 

 

You will structure your work on Part II as follows: 

Discussion of theoretical constructs [1000 words, 25 marks]: You will present the 

theoretical constructs of your choice through: discussing their meaning; describing their 

relationship with learning theories we have seen so far; giving examples (from research 

papers) on how these constructs have been used to analyse students' responses or 

behaviour in the classroom; and, giving an example from your own experience.  

Discussion of the learning incident [1000 words, 25 marks]: You will discuss the incident 

of your choice by using the language of the theoretical constructs you have chosen in the 

first section. It will help you to choose a theoretical construct that can explain the issues 

you have identified in the incident of your choice. In this section: you will solve the 

mathematical problem of the incident; you will identify what the issues are in students’ 

responses; and, you will describe your interpretation of why the student(s) have 

responded in such way.  

Figure 1: Assessment activity inspired by the MathTASK design 

408 sciencesconf.org:indrum2020:295758



  

 

Clarity: How clear, justified and transparent the arguments are. 

Coherence: How logically connected the arguments are. 

Consistency: How consistent the arguments are across the text. 

Specificity: How contextualised and specific the arguments are in the used examples 

and the discussed situation.  

Use of terms and constructs from mathematics education theory: How precise and 

accurate the arguments are in relation to the used mathematics education constructs and 

terms. 

Use of terms and processes from mathematical theory: How precise and accurate the 

arguments are in relation to the used mathematical concepts and process, such as 

definitions and proof. 

Figure 2: The six marking criteria.  

 

EMILY’S ENGAGEMENT WITH THE ACTIVITY 

Emily chose the theoretical constructs of instrumental and relational understanding 

(Skemp, 1976) and mathtask A (Differential Equation).  In her response, Emily 

summarises the constructs well (use of terms and constructs from mathematics 

education theory) and draws on a range of research literature that uses these constructs. 

Also, she reflects on her experiences with high specificity, by attributing students’ 

approaches to their schooling experience (e.g., teaching practices, assessment, etc.) and 

by recognising that relational understanding “has never been required”:  

It is clear that achieving a relational understanding is ideal, however, it does have its 

drawbacks and isn't always necessarily the optimal form of understanding. In lower levels 

of a student's mathematical education, topics do not need to be understood at a relational 

level [Skemp, 1976]. Throughout our schooling, when certain topics are met, pupils are 

often told that they do not need to understand how something works and just simply how 

to apply it. In my experience of first dealing with quadratic equations at GCSE, I did not 

know how the formula found the roots of the equation and was told that I did not need to 

know at that level. As I have progressed throughout my mathematical education there has 

never been a stage where it is thought necessary to gain a relational understanding as it is 

not required and is unknown by the majority of people. This lack of relational 

understanding is not due to a lack of disinterest or ability to understand but is purely due 

to the fact that such knowledge has never been required. 

Later in her response to mathtask A, her approach takes a distance from the school 

influence and attributes students’ approaches to their idiosyncratic characteristic as 

“instrumental” and “relational learners”.  
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In the classroom, pupils that understand in an instrumental way exhibit different 

characteristics to those who relationally understand. One of the main differences between 

the two types of pupil is not only how they answer questions they are asked, but also in the 

questions they ask and the answers they expect. A pupil who desires to achieve a relational 

understanding will eventually come up with an answer to a variety of questions even if it 

takes an extended period of time, whereas an instrumental learner can only answer an 

immediate answer to particular questions. […] This leads to the relational learner 

continuing to try until they gain an answer, unlike the instrumental learner who when they 

can no longer make any progress, often give up.  

This characterisation of learners (as instrumental or relational) contradicts 

(consistency) her earlier view of approaches embedded in institutional practices. 

Although subtle, this inconsistency in Emily’s response is a great opportunity for 

discussion around the simplistic lens of individual learning styles versus the actual 

complexity of institutional influences on learning processes. 

Later in her response, she attempts to combine instrumental and relational 

understanding: 

Perhaps instrumental understanding should be viewed as a stage within the relational 

understanding and so students should be taught the skills required for both understanding. 

Merging the two states of understanding could result in being more powerful than either 

one alone thanks to the speed and ease of instrumental understanding alongside the 

profound knowledge gained through relational. Undoubtedly both understandings create a 

foundation on which new knowledge can develop which is key in mathematical education. 

We note that, during class discussions, avoiding the dichotomy between instrumental 

and relational understanding had been repeatedly emphasised (use of mathematics 

education terms and constructs). This discussion has been assimilated in Emily’s 

attempt to describe instrumental understanding as a “stage within” relational 

understanding.   

In her response to mathtask A, Emily solved the problem correctly and spotted the 

mathematical error of the student in the incident (use of terms and processes from 

mathematical theory). In her explanation, she uses the relational/instrumental 

understanding language with precision: 

In the learning incident, it can be argued that the child in focus has an instrumental 

understanding of integration. Upon first reading the incident, this becomes evident due to 

the misunderstanding of where to place the constant of integration, c, as the pupil shows 

that they know they must include a constant when solving an indefinite integral. The 

student has displayed a common mistake of adding the constant once the equation had been 

rearranged to make y the subject.  

However, her response does not explain the purpose of using the constant “c” in the 

integration. She thus misses the opportunity to demonstrate the mathematical 

explanation of why this is the correct integration (specificity, use of terms and processes 

from mathematical theory). 
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Overall, Emily’s response demonstrates high specificity in the examples she provides 

and in her discussion of the incident. Her arguments are clear and coherent, although 

they are not always consistent, especially in relation to her views on institutional vs 

individual factors influencing students’ approaches to learning. The use of mathematics 

education terms and constructs is precise and accurate (use of terms and constructs 

from mathematics education theory), while the use of terms and processes from 

mathematical theory, although without errors, does not demonstrate the precision and 

the mathematical detail we expect in the discussion about integration. 

CONCLUSIONS 

In this paper, we presented examples of mathtasks and their assessment frame used in 

a mathematics education course for mathematics undergraduates. The course activities 

are inspired by studies that have identified the epistemological differences between 

practices in mathematics and mathematics education (Boaler et al. 2003; Nardi, 2015; 

Schoenfeld, 2000) and have addressed these differences in the learning of postgraduate 

students (Nardi, 2015). The outlined set of activities uses task design principles that 

contextualise the use of mathematics education theory and mathematical content in 

specific learning situations (MathTASK design, Biza et al. 2007). Students’ responses 

to these activities are assessed in relation to: clarity; coherence; consistency; 

specificity; use of terms and constructs from mathematics education theory; and, use 

of terms and processes from mathematical theory inspired by the four characteristics 

proposed by Biza et al. (2018). We see the potency of these activities in the introduction 

of mathematics students to mathematics education research as they invite students to 

engage both with mathematics and mathematics education discourses and to 

contextualise learning about mathematics education theories in their own learning 

experiences. Finally, we see these activities as affording opportunities for nuanced and 

concrete formative feedback. 
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This paper bears on teaching practices in lecture courses on analysis in the first year 

of tertiary education. This case-study shows how the knowledge accumulated by the 

didactical community on the challenges in the teaching of a specific notion – the formal 

definition of limits of sequences – allows for a fine-grained analysis of teachers’ 

practices. On the basis of this knowledge, three lecture courses were analysed and 

compared. Post-teaching interviews were used to test our hypotheses as to the 

didactical knowledge, choices and repertoire of the lecturers. This progress reports 

aims to sketch the research rationale and to discuss a small sample of results. 

Keywords:  Teachers’ and students’ practices at university level, teaching and 

learning of analysis and calculus. 

INTRODUCTION 

This paper reports on a research project developed in the framework of activity theory 

(Hache and Robert, 2013). It aims to contribute to its adaptation to the study of the 

teaching practices in lecture-courses (Bridoux, Grenier-Boley, Hache and Robert, 

2016), with a specific emphasis on the challenges of higher education (as in (Grenier-

Boley, Bridoux and Hache, 2016)). In this context, the focus is on “teaching”, regarded 

as a professional activity. We hypothesize that teaching practices can be described, 

analysed, (to some extent) accounted for, and (possibly) altered. 

Within this larger context, this paper is of a methodological nature. We aim to study to 

what extent the analysis of the relief of the mathematical content at stake in a given 

teaching context – i.e. an analysis combining mathematical, epistemological, 

didactical, and institutional aspects (Bridoux et al., 2016) – allows the researcher to 

carry out an analysis of the empirical data based on the identification of observables. 

These observables will be denoted as “control points” in this paper. In particular, this 

approach provides means to overcome two common difficulties in the analysis of 

lecture-courses: The lack of information on actual student activity, on the one hand, 

and the difficulty to objectively identify what is not done, on the other hand. Moreover, 

the list of control points supports the construction of questionnaires which enable to 

researchers to test their hypotheses trough post-lectures interviews with the lecturer.  

Beyond its contribution to this research program on teaching practices in higher 

education (with a focus on lecture-courses), this case studies suggests avenues for the 

professional development of teachers in higher education (Lison, 2013), (Rogalski & 

Robert, 2015). This aspect can only be touched upon in this short progress report. 
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THE RELIEF OF THE FORMAL DEFINITION OF LIMITS IN THE FIRST 

YEAR OF TERTIARY EDUCATION 

The challenges of the transition from an intuitive notion of limit and the associated 

techniques (algebra of limits, connections with inequalities) to a formal definition used 

to prove theorems –  in the larger context of the proof system of analysis – has been a 

continuous focus of didactical investigation since the 1970s (Artigue, 2016). Numerous 

works have identified the epistemological, didactical and cognitive challenges students 

face in this transition. On this basis, several didactical interventions have sought 

– occasionally with some success – to identify and put to the trial teaching paths which 

can prove conducive to the formal definition (see (Chorlay, 2019) for a recent survey). 

Moreover, this vast literature forms a fairly coherent whole, since, in spite of the variety 

of theoretical frameworks, the same key-phenomena are generally identified.  

Consequently, we drew on this solid body of didactical knowledge to devise a large list 

of control points on the basis of which actual teaching practices can be described. The 

fact that we chose to derive our grid of analysis from a part of the didactical literature 

that is subject-specific – i.e. which bears on the formal definition of limits of 

sequences – comes at a price. Indeed, the results could be too subject-specific, thus 

making transfer to other contexts more difficult. Even so, we deemed the price worth 

paying, for two reasons. First, we wanted to see to what extent a body of knowledge 

bearing of mainly on students (their misconceptions, their documented behaviour in 

specific milieus whose didactic variables can be finely-tuned) could provide tools for 

the analysis of “ordinary” teaching practices, i.e. teaching practices which are not based 

on this research literature, by lecturers whose professional identity (de Hosson & al., 

2018) and trajectory are independent from the didactical community. Second, in terms 

of professional development (see (Lison, 2013), (Rogalski & Robert, 2015)), studies 

suggest that professionals are keener to engage in a reflective practice when the focus 

is on very specific issues rather than on fairly general challenges. 

In the two tables below, we list a series of control points which we identified in the 

literature on the teaching of limits. This is only a sample – albeit a significant sample – 

and, for lack of space, each of the points is described only sketchily and without 

systematic references to the literature. A wide-ranging list of references can be found 

in (Chorlay, 2019). The first table lists negative control points, bearing mainly on 

cognitive difficulties and misconceptions. The second table mentions more positive 

control points, since the literature allows for the identification of teaching strategies 

and moves which can prove conducive to the concept of limit, or, more generally, to 

advanced mathematical concepts. 

The concept image of limits usually encompasses “primitive” models which are 

non-congruent with the formal definition. In particular, primitive models are 

usually “x-first”or “covariant”, and resort to temporal, dynamic and causal 

imageries (the values of the variable n goes to infinity, and, as a consequence, 

the corresponding values of the sequence does this or that), whereas the 
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definition is “y-first” or “contravariant” (the condition on the values of the 

function or sequence determines conditions on the values of the variable) and 

string of quantifiers does not reflect or capture any notion of temporal evolution 

or causality.  

The concept image of limits usually encompasses misconceptions, erroneous 

beliefs, or in-act-theorems such as: 

• Every convergent sequence is monotonic (at least as from a certain rank). 

• Every sequence which tends to + is monotonic increasing (at least from 

a certain rank). 

• If a sequence converges, then the distance to the limit is monotonic 

decreasing. 

• If the distance between a sequence and a given number L is monotonic 

decreasing, then the sequence tends to L. 

The nested quantifiers can be interpreted incorrectly in several ways: 

• The order of quantifiers does matter, and a  sentence is not equivalent 

to the corresponding  sentence. 

• In a  sentence, the second variable depends on the first, but this 

dependence is not of a functional nature (more explicitly: in “>0  N 

 ℕ, N can be written N or N(), but N is not actually determined 

uniquely by the value of ). 

• The presence of the third quantifier is typically not regarded as necessary 

by students, who, for instance, tend to regard “A>0  N  ℕ  uN>A” as 

an acceptable definition of the infinite limit. This incomplete definition 

echoes standard informal formulations such as “the values become 

arbitrarily large”. 

• More generally, in the absence of the third quantifier, distinct 

mathematical concepts conflate: finite limit and that of subsequential 

limit; positive infinite limit and non-boundedness. 

The transition between several formulations which are mathematically 

equivalent can prove challenging for students. For instance: 

• For finite limits: 

|𝑢𝑛 − 𝐿| < 𝜀        𝐿 − 𝜀 < 𝑢𝑛 < 𝐿 + 𝜀        𝑢𝑛 ∈ ]𝐿 − 𝜀, 𝐿 + 𝜀[ 
• For infinite limits: 

∀ 𝑀 ∈  ℝ   ∃ 𝑛𝑀 ∈ ℕ    ∀ 𝑛 ∈ ℕ     𝑛 ≥ 𝑛𝑀  ⟹   𝑢𝑛 ≥ 𝑀     

 

∀ 𝑀 ∈  ℝ    𝑢𝑛 ≥ 𝑀    except for (at most) a finite number of terms. 

The definition of a convergent sequence can be used in two different contexts, 

and a non-trivial shift of viewpoints is necessary to use it in a relevant way. 
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• Context 1 (C1): In order to prove that a given sequence tends to a given 

number, any positive  has to be taken into account, and the existence of 

at least one corresponding N value has to be proved. 

• Context 2 (C2): If some property is to be derived for sequences which are  

known to converge, then one is at liberty to select and use one specific 

value for , and the existence of N is warranted. 

Table 1: Challenges in the teaching of the formal definition of limits of sequences 

There are diagrams, such as the -strip diagram, which can be conducive from 

a change of perspective, from an x-first to a y-first perspective.  

Discussing and comparing several correct definitions can have a positive effect 

in terms of conceptual understanding. 

Some non-standard yet correct definitions can more likely be in the ZPD of 

students that the standard definition. This has been documented for the “non-

implicative” form of the definition (here for infinite limits): 

∀ 𝑀 ∈  ℝ   ∃ 𝑛𝑀 ∈ ℕ    ∀ 𝑛 ∈ ℕ       𝑢𝑛𝑀+𝑛 ≥ 𝑀 

Discussing and assessing incorrect definitions can have a positive effect in 

terms of conceptual understanding, in particular to help student distinguish 

between neighbouring concepts (e.g. + limit and non-boundedness). 

Examples can come in several types, and can be used to serve a variety of 

purposes, all of which with a positive effect in terms of conceptual 

understanding: 

• In addition to examples (of a given concept) and counter-examples 

(which invalidate incorrect universal statements), non-examples can help 

students get a better grasp of the scope of a concept. 

• Boundary-examples, i.e. examples of a given concept which are not 

typically part of the students’ concept image, can help students get a 

better grasp of the scope of a concept. Standard instances are: Constant 

sequences are convergent sequences; straight line graphs are curves 

which coincide with their tangents etc. 

• In situations of definition construction, examples can be used in several 

ways, among which: 

o The situation can rest on an example space 

o Examples can be used to put a candidate-definition to the test. In 

these situations, it is made clear from the start that the sought-for 

definition should be such that some objects should be examples, 

while some others should be non-examples. 

Table 2: Affordances for the teaching of the limit concept and other advanced concepts 
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TERRAIN AND METHOD 

Three lectures were video-recorded in the first semester of the 2018-2019 academic 

year at Paris Diderot University. The three lectures were delivered by three experienced 

lecturers (C, F, and B), two research mathematicians, and a secondary-school teacher 

with a university teaching position. The lectures were part of the same, 1rst year, 

introductory course to mathematical analysis, covering, in this order: functions, 

continuity (without proofs), properties of real numbers; a final period was dedicated to 

the formal notion of limits (finite and infinite) for sequences and to proving in analysis. 

All the recorded sessions covered: formal definition of converging sequences, proof of 

the uniqueness of the limit for a converging sequence, proof that converging sequences 

are bounded. Lecturer B also proved that a subsequence of a converging sequence does 

converge to the same limit. Lecturer F also covered infinite limits and a few properties 

(such as: tends to +  not bounded above, while the converse is invalid).  

We hypothesize that the lecture-courses under study are “ordinary”, or “standard”, for 

several reasons: They took place in standard institutional contexts; they were delivered 

by experienced lecturers with stable practices, with no involvement with didactical 

research, and with no claim to pedagogical innovation (as was checked in preliminary 

interviews); they were not designed specifically for this study, and we have no 

indication that they might have been affected by the fact that they would be recorded 

for research purposes. 

The videos were analysed by the researchers. Both the comparison among lecturers and 

the comparison between what was done and what could have been done (as identified 

in the list of control points) provides a wealth of information. Table 3 below shows a 

sketchy sample of results (“X” stands for “Yes”): 

 C F B 

Uses informal formulations before the formal definition X X X 

Comments on the two contexts of use for the definition (C1, C2)    

Mentions alternative correct definitions    

Mentions boundary examples    

Uses an example space to assess a candidate-definition    

Use of x-first, dynamic, informal formulations  X  

Explicitly warns students against common misconceptions  X X 

Mentions non-examples  X X 

Uses diagrams to introduce or illustrate the definition of a 

converging sequence 

X  X 

Uses the -strip diagram for this purpose   X 
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Mentions incorrect definitions   X 

Table 3: Overview of the three lectures (partial) 

As mentioned above, the use of the control points allows us to identify things which 

did not happen, even in cases when the comparison among the three lectures would not 

point to them (lines 2 to 5 of table 3). 

The purpose of this paper is not to analyse these data in detail, but to account for how 

they were used to further the analysis of lecturing practices. The long post-lecture 

interviews (about 50’ each) were not carried out right after the teaching sessions. The 

videos were first analysed by the researchers. On this basis, the list of topics and the 

specific questions for the interviews were chosen to allow the researcher to study to 

what extent the observed practices reflected choices, and on what form of knowledge 

(lato sensu) these choices rested. The topics addressed in the three interviews were the 

same, but the wording of the questions differed. To promote reflective analysis, the 

questions were first based, for each lecturer, on her/his own practice, as in a 

explicitation interview (Vermersch, 1994). Then, alternative elements of practice – 

preferably based on the other two lectures – were mentioned, for the lecturer to discuss 

and assess. 

More precisely: 

• When one of the control points was positive in table 3 (“X”), we attempted to 

investigate to what extent this reflected a choice (for instance, did the lecturer 

mentioned alternative moves?) and, if, so, how it was justified: What item of 

knowledge or what belief did the lecturer but forth – if any – to account for it?  

• When one of the control points was negative in table 3 (“  ”), we also attempted 

to investigate to what extent this reflected a choice (i.e. a choice not to do 

something).  

o If so, how was it justified? What alternatives had been considered and 

rejected? What item of knowledge or what belief did the lecturer but forth 

– if any – to account for this choice? 

o If not, we mentioned alternatives so as to study how lecturers made sense 

of them and assessed them. When their assessment was globally positive, 

we attempted to spot signs indicating that it could be a lever for 

professional development: Was the reaction very positive? Did the 

lecturer readily imagine ways to include this new element of practice in 

her/his own lecture (extension of the repertoire1)? 

 
1 We use “repertoire”  to denote the “stock of skills or types of behaviour that a person habitually uses” (Lexico dictionary, 

https://www.lexico.com/, accessed Jan. 24th, 2020.) 
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SAMPLE OF RESULTS 

Use of x-first and/or dynamical informal formulations 

In the interviews, the lecturers were first asked to comment on their informal 

introduction to the definition. In the lecture courses, F was the only one to use 

contravariant, dynamical formulations; a fact with which he felt completely 

comfortable in the post-lecture interview, arguing that this formulation carries an 

intuitive representation of the concept of limit. He mentioned no possible effects in 

terms of misconceptions: 

Int.:  All three of you made a similar choice, in so far as you introduced the notion 

of limit informally, in everyday language, before diving into the formal 

definition. Let me quote you: “a convergent sequence, a sequence which has 

a limit, is a sequence which, as it grows, has values which come closer to the 

limit value”. What is the role of this sentence for you? How would you 

describe this sentence? 

F:  What matters is for students to retain the meaning [oral emphasis] of this 

definition. (…) It’s a difficult notion, so it seems to me it’s important to 

emphasize the intuitive side of the notion of limit. 

By contrast, C et B used only contravariant rhetorical formulations such as “If (𝑢𝑛) is 

a complex sequence and L a complex number. One says that sequence (𝑢𝑛) converges 

to L when 𝑢𝑛 is “as close to L as one might want provided n is large enough” ” (lecturer 

C, sentence projected). The selection of this formulation reflects a choice for C and B. 

In C’s case, little justification is provided: 

Int.:  Maybe you’ve come across other informal formulations, some which you 

would rather not use? Some which you find less acceptable? 

C:  Yes 

Int.:  Can you think of any one in particular, for which you said to yourself 

“hmmm, I definitely should not say that”? 

C:  No, nothing comes to mind straight away. You should not do too much hand-

waving. If you go “bla, bla, bla comes closer” … it’s meaningless! 

Relevance of the -strip diagram to introduces or illustrate convergence 

Neither C nor F used the -strip diagram, whereas B used an on-line applet which not 

only displayed the diagram but allowed the user to change the -value and visualize the 

effect on the horizontal strip and on the associated value of N() (see figure 1 below). 

B explained that he chose this applet after watching several of them, and accounted for 

his choice by mentioning students’ concept image of the limit in a way which could 

reflect the x-first/y-first distinction: 

Int. : This on-line applet […] did you sometimes use something else, is that 

something you chose from among others ? 
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B : Yes, I chose it, I watched several. What is not intuitive in the definition, 

compared with the students’ representation … students tend to think: there, 

it’s coming closer; while we say that it enters the interval, an interval which 

becomes ever smaller. It’s not exactly the same idea. 

 

Figure 1: The -strip applet used in B’s lecture2 

When commenting on the diagram, B mentioned another didactic variable in the milieu 

provided by the applet to the class: the fact that the distance between the sequence and 

the limit is not decreasing. But the fact that N is not necessarily the rank of the first 

value of u which enters the strip was not mentioned, neither to the class, neither during 

the interview 

It turns out that not using this type of diagrams was not a choice for C or F: They readily 

admitted they had never come across it, nor thought about it. By contrast, both reacted 

very positively, which suggests avenues for professional development. 

Int.:  (…) Some of your colleagues use this diagram to introduce the formal 

definition. Would you find it interesting, or dangerous? 

F:  Yes, yes, I find it … I should do it! I love this kind of diagrams. I’m in favour 

of as many diagrams as possible. 

Int.:  What qualities or advantages do you think this one has? 

F:  If we start with a definition in everyday language, and a hard [i.e. formal] 

definition, with epsilons, this gives a 3rd definition, a visual one. The more 

definitions we have the better. It’s a good training for students, it trains them 

to reflect on drawings. (…) 

In spite of his attempts, the interviewer did not manage to elicit any specific analysis 

of the qualities (or drawbacks) of this diagram. Lecturer C was equally enthusiast, and, 

when pressed to comment on the choice of the displayed sequence, managed to spot 

one of the didactic variables in the milieu provided by the applet: The specific sequence 

on display is not monotonic, “what’s not bad is that is goes above then below, so we 

 
2 Retrieved from http://gilles.dubois10.free.fr/analyse_reelle/suitesconvergentes.html (accessed oct.9, 2019). 
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don’t have the problem I mentioned earlier” (she had mentioned the belief that 

converging sequences are monotonic). Other didactic variables went undetected. 

Scaffolding the shift of viewpoints when switching between C1 and C2 contexts 

As can be seen in the interview below, it took C a little time to identify the issue at 

stake, but she eventually formulated it in the clearest of ways: 

Int.:  Maybe it didn’t happen in your lecture this time, but we prove the 

“convergent  bounded” property, it is not uncommon for students to ask 

questions. The proof typically begins with “The sequence being convergent 

to L, I want to show it is bounded. So let’s take a neighbourhood of size 1, 

let’s say  = 1” [C nods, approvingly]. Students sometime say “I don’t get it, 

 has to be indeterminate, that’s the definition!” Did you ever get such 

questions? How would you respond to “You can’t do that,  has to be 

indeterminate”. 

C:  [Merely rephrases the definition] 

Int:  So, later on, if in exercises students study the convergence of sequences by 

saying: “I say  = 1” … 

C:  [laughs] Oh no! Of course not! 

Int.:  How come? 

C:  No, but, there’s a difference of … of … in one case we know the sequence 

converges (…) but when I want to prove that it does (…). 

The reaction was roughly the same for the other two lecturers. It shows that not 

mentioning this difficulty in their lectures was not a choice. Also, it suggests that this 

question is a lever for professional development, since it triggers the realization of a 

difficulty. However, the reactions of the lecturers were not as enthusiastic as for the -

strip, and none of them spontaneously mentioned taking this issue into account in their 

future teaching. 

DISCUSSION AND PERSPECTIVES 

Our first analyses show that for two of the three teachers, most of the elements 

observed, then discussed in the interviews, can be justified in some way, but do not 

reflect choices insofar as no alternatives are clearly mentioned. This conclusion needs 

to be qualified for the case of B, who mentioned more alternatives and justified choices 

on the basis of his experience of students’ behaviour. The interviews also show a 

potential for teacher training, as all three teachers adopt a reflective position that leads 

them to consider changes in their practices. Further analysis is needed to understand 

why discussing control points and alternatives elicits different reactions. 

The point of this admittedly sketchy progress report was to describe the goal and the 

method of an on-going project. We could not present any results in detail, nor discuss 

the connections with several theoretical frameworks and issues. From a theoretical 

viewpoint, this research aims to contribute to collective work of adaptation to the 
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specificities of tertiary education of all-purpose theoretical tools such as the MKT 

framework or the ergonomic and didactic approach to teaching practices (Hache and 

Robert, 2013). It should also prove instrumental in the adaptation of tools for the 

assessment of the quality of instruction (LMTP, 2011), in a context where the 

correctness of the mathematical content taught is not an issue. 
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We describe how we extended a bridging course for mathematics at the University of 

Paderborn, including the lectures and phases of self-regulated learning outside the 

lectures, with multimedia learning materials. At the example of one lecture day of the 

course, we illustrate how digital learning materials were integrated into the course 

concept. In order to evaluate our interventions, we developed a methodological study 

design with a tight connection to the teaching innovation, supporting high response 

rates from the students at each conducted survey. We provide data on the students’ 

valuation of different types of digital learning materials. Our results suggest that 

students appreciate in particular the integration of interactive exercises, but also of 

more passive didactical elements, in a traditional attendance-based learning 

environment.  

Keywords: Transition to and across university mathematics, digital and other 

resources in university mathematics education, teaching and learning of mathematics 

for engineers, bridging course, evaluation design. 

INTRODUCTION 

During the last two decades at the university of Paderborn, several approaches to 

support the transition from school to university mathematics for our (prospective) 

students have been developed. For several years, free pre-university bridging courses 

of four weeks length have been offered to prospective students, who could choose 

between a traditional, attendance-based and a mainly e-learning-based course concept. 

Since 2014, we also developed an online course called studiVEMINT. The 

studiVEMINT material is designed as an independent online course in mathematics 

that can be used by any person who wishes to prepare themselves for university 

mathematics (see Biehler, Fleischmann, Gold, & Mai, 2016; Colberg, Mai, Wilms, & 

Biehler, 2017; Biehler, Fleischmann, & Gold, 2018 for further description of the 

contents, design and didactical concept of the course; see go.upb.de/studivemint for the 

project homepage). In particular, the material is not originally designed to be used in 

the context of an attendance-based bridging course for mathematics at university, but 

for individual work outside a supervised course. 

After finishing the development of this course material in 2016, we came up with the 

question how the studiVEMINT course material could be used to enrich the didactical 

concept of our attendance-based preparation courses. The starting point for the study 

presented in this paper was our desire to create a scenario of blended learning, where 

our well-tried bridging course concept should be combined with the advantages of 

additional, digital learning materials. The condition for this integration was that the 
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existing course should not be fundamentally changed or shortened with respect to 

mathematical contents, but the materials were supposed to be integrated seamlessly 

into the existent learning environment. The idea was to integrate digital elements into 

the lecturers talk, a passive use from the students’ point of view, as well as into self-

reliant learning phases of the students inside the classroom (active use during self-

instructing phases that were interspersed into the lecturer’s talk) and outside the 

classroom.  

THEORETICAL BACKGROUND 

We follow an approach of design research in this study (Bakker & van Eerde, 2015; 

Nührenbörger, Rösken-Winter, Link, Prediger, & Steinweg, 2019). The integration and 

evaluation of digital learning materials was first implemented in the course in 2017. 

Based on the results of the accompanying study, we recreated several interventions for 

the next implementation in 2018 and repeated this procedure in 2019 (Figure 1). The 

focus of the subsequent studies was changed moderately in each year, with respect to 

the particular needs that were identified in the previous analyses. In this paper, we go 

into details about the implementation and scientific results concerning the study in 

2017 and discuss some local results that led us to the changes we implemented in the 

2018 and 2019 course designs.  

There are many different definitions of blended learning in the literature. Bernard, 

Borokhovski, Abrami, Schmid and Tamim (2014, p. 91) note the following to this 

matter: “The issue of blended learning is a complicated one; there has been 

considerable discussion even of the meaning of the term itself”. We consider our 

interventions within the lectures as a case of blended learning as they are a mix of e-

learning and a face to face situation. Despite the problem of its definition, blended 

learning is of general concern for higher education (Keengwe and Agamba, 2015) and 

is even subject to meta-studies (Bernard et al., 2014). The case of mathematics in higher 

education narrows the field in term of its contents a little bit. Systematic evaluations of 

blended learning approaches usually yield a result that implies its benefits, e.g. as in 

the work of Lin, Tseng, & Chiang (2017), who conducted a study in a seventh grade 

math course, Dai and Huang (2015), who systematically compared e-learning, blended 

learning and traditional instruction, and Kinnari-Korpela (2015), who evaluated the use 

of short video lectures for engineering students. This glimpse at ongoing research hints 

at the broad use of blended learning in terms of methods, contents and audience. 

As blended learning already includes digital technologies, the use of these for 

evaluation purposes seems natural. Audience response systems (ARS) can support 

feedback from learners and provide a means to collect data for research purposes. 

Ebner, Haintz, Pichler, and Schön (2014) suggest a distinction between front-channel 

(direct feedback during lectures) and back-channel (asynchronous feedback during and 

out of the lecture) of those systems. They also distinguish these further into qualitative 

and quantitative forms of feedback. The subject of this article is an evaluation based 

on a research method for teaching scenarios in mathematics with blended learning that 
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utilizes the front channel and is, in contrast to many other rather specialized 

methodological designs, transferable to other teaching contexts in a blended learning 

setting.  

CONTEXT AND RESEARCH INTEREST 

 

Figure 1: Timeline of the development of the course and our accompanying studies 

The course in which we conducted our study was a 4-week-long mathematics bridging 

course at the University of Paderborn. The target audience are freshmen majoring in 

mechanical engineering, electrical engineering, industrial engineering, computer 

engineering and chemistry. The course concept, which was tested multiple times in 

several preceding years, relies primarily on face-to-face teaching consisting of three 

hour lectures followed by two hours of tutor group meetings on Monday, Wednesday 

and Friday of each week. In the tutor groups of up to 25 participants, the students work 

together on mathematical exercises and under the supervision of a tutor. Furthermore, 

the students are required to repeat and deepen their understanding of the mathematical 

contents on the so-called “self-learning days” on each Tuesday and Thursday. The 

course takes place annually in September in preparation for the following winter term. 

Participation is voluntary and neither graded nor specifically rewarded in any way 

regarding the subsequent studies of the students. 

In September 2017, between 100 and 150 students regularly attended the course. The 

interventions which we integrated into the course concept focused on the lecture and 

the self-learning days. Traditionally, the lecture had a classical concept of knowledge 

transfer. In 2016, the lecturer had already included some innovative didactical elements 

in form of short phases during the lecture. These phases included exercises which the 

students had to solve and discuss with their peers, leading to phases of peer instruction 

with feedback by a digital audience-response system into the lectures. This didactical 

innovation was not part of our intervention, but was continued in 2017 during our 

study. The lecturer reported his positive experiences with this element and was 

interested in extending the use of digital elements and interaction during the lectures.  

One goal of our interventions was to find ways in which the digital learning materials 

that we had designed for the studiVEMINT online course could also be used as a 

supplement in general in the context of a “classical” attendance-based bridging course 

and in particular with this course. The material includes 13 learning units covering 
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mathematical school contents, starting with basic knowledge such as fractional 

arithmetics up to contents of the final school years such as integral calculus or vector 

geometry. The course has the particular claim to explain the contents in a way that 

meets the requirements of correctness at university’s standard and rigour, and to 

present it in a way that closes the gap between school and university mathematics 

concerning notations and precision of argumentation. The chapters of the course have 

a consistent structure consisting of several units, starting with an introduction, followed 

by text units (supplemented by figures and interactive applets) containing explanations 

and some proofs of the mathematical contents, up to extensive collections of exercises 

for each contents unit. In most cases, the user can also insert an answer to these 

exercises into an input box and check the answer for correctness. For all exercises, 

detailed solutions are presented on demand. Some chapters contain units with 

additional applications and further complements to the mathematical contents, 

depending on the subject of the chapter. In the explanation as well as in the exercise 

part, interactive applets and videos are included in the material to illustrate 

mathematical contents dynamically. 

INTERVENTION DESIGN 

The integration of digital learning materials in our intervention had two focuses: 

Firstly, we wished to enrich the lecture by the inclusion of dynamic illustration, 

(additional) phases of self-reliant work by the students and other variations of teaching 

methods into the lecturer’s talk. Secondly, we modified the self-learning days by 

providing the students with digital learning materials that support their independent 

repetition of the mathematical contents. Because of limitation of space, the procedure 

and analytical results concerning this second part of our study cannot be considered in 

detail in this paper. We give an overview about the results and consequences for the 

following cycles of the study in the conclusion at the end of the paper. Since the tutor 

group meetings were already well supported by tutors and no need of additional 

materials to stimulate students’ learning in these phases was reported from the previous 

years, this part of the course was not changed in terms of our intervention.  

We developed detailed timetables for the inclusion of digital elements into the lecture 

together with the lecturer. In particular, our interventions included the use of videos 

and dynamic applets to illustrate mathematical contents, and we integrated phases into 

the three hours lectures in which the students were asked to work with parts of the 

online materials independently. A concrete example for the process of such a lecture is 

given in Table 1. All lectures were planned in order to provide a balanced mixture of 

traditional and innovative teaching methods, and to alternate between active and 

passive phases of the audience.   

As mentioned in the description of the context, the ARS had already been used for   

periods of peer instruction in the previous year. The lecturer first posed an exercise to 

the students at the blackboard, then collected their answers using an ARS and presented 

them to the audience. Thereafter, he let the students explain their solutions to each 
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other, followed by a new feedback using the ARS. We distinguish between these 

exercises (analogue, answer via ARS) and the ones that we integrated in 2017 (digital, 

answer self-checked via studiVEMINT-course) in terms of our study. 

 

Table 1: Schedule of lecture 4 (trigonometry) 

RESEARCH QUESTIONS OF THE EVALUATION STUDY 

The focus was on the integration of digital learning elements into a classical, 

attendance-based learning environment in a way that teachers and students accept and 

students appreciate as a valuable part of their learning process. In order to elaborate a 

suitable concept for acceptance and appreciation and its measure, the following 

research questions were in focus of the design of our evaluation study:  

Which elements and ways of integration of the digital learning materials included in 

our online course can be beneficial for the students in an attendance-based learning 

environment? In particular:  

1) Do students appreciate and enjoy the integration of digital learning elements into 

classical lectures, and do they consider these methods as helpful for their learning 

process?  

2) Do students perceive differences between different medial formats of integrated 

digital elements such as videos, interactive applets, digital exercises with 

automatically checked solution entry field or mathematical texts, concerning their 

acceptance and personal resonance? 

DESIGN AND METHOD OF EVALUATION 

To approach our research questions in a differentiated way, we needed to design a 

proper evaluation method that allowed us a detailed scientific analysis of the 

implementation and provided us with a detailed feedback about our interventions into 

the course concept. The results produced by many traditional evaluation methods used 

in attendance-based learning environments do not allow immediate feedback or a fine 
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differentiation between different teaching methods or digital elements used in the same 

session. In our case, we were interested in concrete and detailed feedback exactly 

concerning the acceptance and appreciation of the different types of intervention and 

different digital media formats.  

Since the lecturer already reported positive experiences with the use of an ARS during 

the previous conduction of the course, we came up with the idea to use this channel 

also to collect feedback concerning our interventions. This ARS became a central part 

of the design of our study. The students became used to working with it during the 

lecture and it had proven to be widely accepted by the students in previous year. Hence, 

we decided to ask the students for feedback concerning the digital elements of the 

lectures with this system as well. Since it is easily accessible, students could give 

feedback using their smartphone within a very short period of time. In most lectures, 

the lecturer asked the students to answer a collection of 4-7 of our research-motivated 

feedback questions using the ARS after using the last digital element of the day.  

We asked the students in particular if they considered the use of the specific digital 

elements during the lecture of that day helpful for their personal learning processes and 

whether they enjoyed working (actively or passively) with these digital elements. For 

the scientific analysis of the collected data, we grouped them into three categories: 

- Applets and videos: This category contains all videos and applets that the lecturer 

either presented during his talk or, in some cases, he instructed the students to work 

with themselves before he continued with the lecture (therefore, it was mostly not 

possible to distinguish between active and passive use of these elements in our 

questionnaires).  

- Exercises: Part of the lecture were intervals when the students were asked to work 

on specific mathematical exercises that are part of the online course, solve them 

alone or together with their neighbor and check their answers for correctness.  

- Texts and figures: These elements were used by the lecturer to integrate a methodic 

variation into the lecture. The students were asked to work through a section of the 

explanation part of the online course on their own. This altered the primary teaching 

method for a limited amount of time (usually 10-20 minutes) and was created with 

the intention to activate the students during the lecture, allowing them to work on a 

certain topic at their respective individual learning speed.  

Regarding these three categories of digital elements used in the lectures, each time when 

such an element was used, we asked the students for feedback concerning two aspects:  

- Whether the use of the element supported their learning process: “The use of (…) in 

the lecture was supportive for my understanding”, with possible answers: “fully 

agreed”, “rather agreed”, “rather not agreed”, “fully not agreed”, “I did not 

participate”. 

- Whether they enjoyed working with this element: “I enjoyed the use of element (…)” 

with possible answers: “fully agreed”, “rather agreed”, “rather not agreed”, “fully 

not agreed”, “I did not participate”. 
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The second type of questions concerning enjoyment were included since we considered 

the aspect of motivation of the students to be crucial for their success in a course that 

is, as in our case, completely voluntary and not rewarded in terms of any credits.  

In addition to these digital data collections, there was a pen and paper questionnaire on 

the first and last day of the bridging course, which we used, inter alia, to obtain data 

concerning the students' overall impression of the interventions. An overall schedule 

of the course and the data collections is given in Figure 2. All data collected by the 

ARS and the pen and paper questionnaires was analysed quantitatively. 

 

Figure 2: Schedule of the four weeks course concept and scientific evaluation 

RESULTS AND LOCAL DISCUSSION 

Due to limitations of space, we can report here just a small excerpt of the results that 

we obtained in our study. We concentrate on the feedback concerning the different 

types of digital elements during the lecture, which are described in detail in the previous 

section, the summary of all ARS questionnaires and a general feedback concerning the 

digital learning material.  

Figure 3: Results from ARS-questionnaire in lecture 4 (trigonometry) 
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Figure 3 shows students’ feedback about the lecture described in Table 1, using the 

ARS during the same lecture session. We note that overall, students appreciated the 

integration of digital elements into the lecture, and all elements get comparably similar 

positive feedback. It is noticeable that the aspect of “support of understanding” is in all 

cases rated higher than the aspect of “enjoyment”. It is also remarkable that in particular 

the presentation of dynamic applets and videos as a part of the lecturers’ talk (so in this 

case, a completely passive element) gets very positive feedback concerning its effect 

on students’ understanding.  

Over the four weeks of the course, we collected 677 feedbacks, each concerning both 

aspects (support of learning process, enjoyment) about applets and videos, 812 

feedbacks about exercises and 359 feedbacks about texts and figures. A summary of 

the results is presented in Table 2. Note that this may include several answers from the 

same student to several singular questions concerning different elements of the same 

type. The results from the pen and paper questionnaire in the last lecture, in which we 

collected the answers of 129 students, support the impression that the students 

appreciated the use of digital elements in the lecture overall. The aspect of support for 

their understanding was again overall higher valued by the students (74.4% 

(concerning applets and videos) to 81.4% (exercises) “fully agreed” or “rather agreed”) 

than the aspect of enjoying the use of the elements (where from 68.2% (applets and 

videos) to 72.7% (exercises) reported “fully agreed” or “rather agreed”). In this 

questionnaire, we also asked the students whether they considered the digital elements 

to be a welcomed enrichment of the lectures. About 82% (rather) agreed to this for 

Table 2: Summary of results of all ARS-questionnaires  

Figure 4: General questions concerning the digital studiVEMINT learning material 

(pen and paper questionnaire on the last day) 

430 sciencesconf.org:indrum2020:295761



 

 

 

each of the three types of elements. Overall, it can be stated that the use of the digital 

exercises was rated best in all categories in the pen and paper questionnaires. An 

interesting finding is that students seem to be aware of and able to distinguish between 

the property of an element of being fun and of being supportive for their learning 

processes. The overall feedback for our interventions at the end of the course, 

concerning the support for the learning process by the digital learning material and the 

chances for future use was quite positive, too (see Figure 4). These data together with 

constantly high response rates suggest that the double use of a well-accepted system 

(the ARS) in content- as well as in research-related context is a promising approach.  

CONCLUSIONS  

Our results, in particular concerning the first research question, support the findings of 

Bernard et al. (2014) concerning the general benefits of blended learning in higher 

education for the specific case of mathematical teaching and learning. Ebner et al. 

(2014) formulate the requirement of scientific evaluation of front-channel feedback 

systems used in tertiary education; with our study we can present an example of a well-

accepted implementation providing relevant feedback. Where Lin et al. (2017) could 

show positive effects of blended learning on the learning outcome and the attitude of 

high school students in mathematics, our results on both research questions suggest 

that these findings also hold for tertiary education.  

In the sense of our design research setting, the results of the study were used to further 

develop the bridging course design in the following cycles, accompanied by scientific 

evaluation. Many of the innovations designed for the interventions of this study were 

maintained in the next iterations. We considered this as our first milestone on the way 

to the development of a design for a blended learning scenario, based on an already 

existing traditional course concept. In order to increase students’ benefit from the 

digital learning materials in the subsequent cycles of the study, we decided to 

concentrate on the self-learning days of the course. Students were asked, but sometimes 

struggled, to work on tasks on their own, using the studiVEMINT course material. 

Based on the positive results concerning the digital exercises, we designed and refined 

tasks for the self-learning days. We also decided to put a focus on the aspect of 

motivation in the following conductions of our study. There, we concentrate on 

interventions to increase the motivation of students on the self-learning days and collect 

more detailed data about their engagement on these. 
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Cet article illustre la mise en œuvre d’une technique méthodologique visant 

l’intégration du professeur de mathématiques du lycée dans un processus de 

changement de ses actions en faveur d’une meilleure prise en compte des variables 

didactiques de la transition vers l’université en analyse réelle. La sélection des 

variables que nous avons jugées pertinentes dans cette étude a constitué l’élément 

central dans la structuration de l’entretien qui fait suite à l’analyse des séances de 

classe du professeur qui a participé à l’expérimentation. Les résultats ont montré des 

possibilités d’adaptation des actions du professeur en regard des variables de la 

transition tout en restant vigilant au contexte de l’enseignement secondaire.   

Keywords: transition to and across university, teaching and learning of specific 

topics, teaching and learning of calculus, reflective practices.  

INTRODUCTION 

La question de la transition didactique en mathématiques fait généralement référence 

à deux types de changements en lien avec l’enseignement et l’apprentissage des 

mathématiques : passage d’un ordre d’enseignement à un autre (primaire/collège, 

collège/lycée, etc.), passage d’un ordre d’enseignement à un ordre professionnel 

(université/enseignement, formation professionnelle/métiers de techniciens, etc.). Les 

travaux sur cette question abordent particulièrement ces changements à travers des 

phénomènes épistémologique, cognitif et socio-culturel (Gueudet et al., 2016). Les 

résultats sont majoritairement décrits en termes de difficultés que génèreraient le 

basculement d’un ordre d’enseignement à un autre notamment pour les 

élèves/étudiants, et à un niveau moindre dans la gestion du professeur du niveau 

supérieur (Ghedamsi, 2015 ; Bressoud et al., 2016 ; Gueudet et al., 2016). Par 

exemple, dans le cadre de la transition lycée/université en analyse réelle, Bloch et 

Ghedamsi (2005) identifient et utilisent un modèle de dix variables didactiques pour 

synthétiser l’ensemble des modifications requises dans le travail des élèves devenus 

étudiants. Ces variables, considérées comme des paramètres à plusieurs valeurs, 

traduisent les besoins de flexibilités épistémologique et cognitif qui accompagnent le 

processus d’acculturation didactique en analyse réelle à l’entrée à l’université. Parmi 

ces variables, nous en citons essentiellement celles qui sont partagées, en 

l’occurrence, dans les travaux qui problématisent la transition en analyse réelle : 1) le 

degré de formalisation et tout particulièrement dans les définitions des 

notions (Ghedamsi et Lecorre, 2018 ; Oehrtman, 2009) ; 2) le registre de validation 

notamment fondé, à l’université, sur la preuve de conjecture, la recherche de contre 

exemples, le raisonnement par l’absurde, etc. (Weber, 2015 ; Ghedamsi, 2015); 3) le 

statut de la notion, du processus à l’objet d’une théorie à l’université (Tall et al., 
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1999 ; Sfard, 1991). Dans cette étude, notre questionnement porte sur les possibilités 

du professeur à réduire, à travers ses connaissances mathématiques, l’écart entre les 

valeurs de ces variables à partir du lycée tant au niveau de la planification qu’en 

cours d’enseignement. Nous admettons que les connaissances mathématiques du 

professeur pour l’enseignement (CME), à un moment donné de sa carrière, sont non 

seulement déterminées par sa formation pédagogique et sa pratique mais aussi par ses 

connaissances mathématiques académiques/universitaires (Hill et al., 2004 ; 

Thompson, 2013). Même s’il est reconnu que la relation entre ces divers aspects de la 

CME est complexe, ce que nous mettons en avant concerne les significations que le 

professeur donne à ces connaissances (Thompson, 2015). Dans une situation 

d’enseignement, ces significations deviennent les causes ou les raisons probables des 

actions du professeur en classe et dans la préparation de son cours. Dans cette étude, 

nous mettons en œuvre une technique méthodologique basée sur la collaboration 

entre le professeur du lycée et le chercheur afin de l’amener à prendre conscience de 

ces significations et à y intégrer celles qui renvoient aux mathématiques de 

l’université pour les connecter aux mathématiques du lycée. Contrairement à l’enjeu 

soulevé par la deuxième discontinuité de Klein (de l’université à l’enseignement) 

dans la formation des futurs enseignants de mathématiques, nous abordons ici le défi 

d’alimenter les mathématiques de fin du lycée par un discours universitaire à travers 

des actions spécifiques du professeur et sous son contrôle. Les difficultés soulevées 

par la deuxième discontinuité de Klein (Winsløw et al., 2014) pourraient également 

être associées à des opportunités quand il est question de donner un rôle au professeur 

dans l’assouplissement des changements conceptuels et la construction d’un pont, en 

analyse réelle, entre le lycée et l’université.   

CADRAGE THEORIQUE ET METHODOLOGIQUE 

Les travaux en lien avec le développement professionnel du métier d’enseignant 

soutiennent généralement l’idée selon laquelle le professeur est un acteur efficace et 

durable du changement en matière d'éducation (Schön, 1983 ; Sellars, 2012). La 

qualité du changement est explicitement rattachée à la capacité du professeur en 

matière de pratique réflexive et plus simplement à la mise en évidence des 

significations qu’il donne aux connaissances disciplinaires d’enseignement (soit aux 

CME dans cette étude). Pour Dewey (1933) et  Schön (1983), pionniers du paradigme 

réflexif, cette capacité de réflexion, en cours ou après son action, permet au 

professeur de faire face à des situations, en l’occurrence de classe, qu’il a jugé 

problématique d’une manière autonome ou avec l’aide d’un tiers. 

L’opérationnalisation du changement est à son tour tributaire de la réflexion 

consciente du professeur sur les causes et les conséquences de ses actions. La 

planification d‘une dialectique action/réflexion, avec pour objectif final la 

modification de l’action future afin de la rendre plus efficace, requiert l’usage 

délibéré, régulier et méthodique de dispositifs qui permettraient de modéliser le 

processus de réflexion (Larrivee, 2000). Plusieurs travaux en éducation se sont 

intéressés à la modélisation de la démarche réflexive chez le professeur 
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conformément au processus de réflexion sur l’action (De Cock et al., 2006). Dans 

tous les cas, ces modèles comportent quatre phases qui renvoient successivement à : 

1) la prise de conscience d’une situation problématique dans son action ; 2) l’analyse 

des causes et des conséquences de l’action spécifiée sur les apprentissages ; 3) la 

structuration de la nouvelle action sur la base de nouvelles CME ; 4) 

l’expérimentation de la nouvelle action qui amorce à son tour un nouveau cycle de la 

démarche réflexive. Le processus décrit par ces quatre phases requiert la prise en 

compte de deux éléments fondamentaux : le mécanisme visant le déclenchement de la 

réflexivité en écartant toute réduction de ce processus à un ajustement inconscient et 

continu du professeur au réel  (Comment créer le doute dans l’action et en expliciter 

les implicites -i.e. les significations données aux CME en jeu, donc ce qu’il veut en 

dire, et leurs aboutissants ?) et la hiérarchisation des niveaux de réflexion (A quoi 

renvoient ces significations ? Quels sont leurs déterminants ?).    

Dans le cadre de notre recherche, nous nous intéressons au processus de réflexion sur 

l’action, où le professeur opère un retour réflexif a postériori de son action. Notre 

objectif n’est pas d’analyser le développement professionnel du métier d’enseignant 

de mathématiques, ni de porter le professeur intervenant dans cette recherche à 

adopter ce processus de réflexion et d’en étudier les effets. Notre intérêt est 

fondamentalement méthodologique : comment cadrer théoriquement une discussion 

entre chercheur et professeur du lycée qui engagerait ce dernier dans la 

problématique de la transition vers l’université, et l’amènerait de ce fait à opérer un 

changement dans ses propres actions. Parmi les mécanismes visant la réflexivité du 

professeur, la réflexion guidée s’inscrit particulièrement dans le contexte de notre 

recherche et consiste en une interaction entre le professeur et un tiers (donc le 

chercheur ici) sous forme d’entretien structuré sur la base des résultats de séances de 

classes assurées par ce praticien et transcrites en verbatim (Husu et al., 2008). 

L’entrée dans les phases du processus requiert de la part du professeur de la réflexion, 

notion que nous entendons dans l’acception des travaux sur la pratique réflexive en 

éducation, c'est-à-dire un processus mental conscient et volontaire qui intervient dans 

l’étude d’une situation en engageant une prise de distance par rapport à cette situation 

et l’action qui la génère, débouchant sur la production de nouvelles connaissances et 

la modification de l’action. L’existence d’une certaine hiérarchisation de la réflexion 

dans cette littérature, traduite en termes de catégories ou niveaux de réflexion, montre 

l’impact du contenu de la réflexion sur le processus mental que cette dernière 

engendre. Bien que les travaux de recherche n’associent pas explicitement les divers 

niveaux de réflexion avec une ou des phases particulières de la démarche réflexive, 

ils s’accordent sur l’existence d’au moins trois niveaux globaux (Hatton et Smith, 

1995) : 1) Technique, en lien avec le contexte de l’enseignement, ses divers aspects et 

moyens ; 2) Pratique, lié à l’expérience du professeur de la discipline en tant 

qu’enseignant, étudiant ou autre ; et 3) Critique ou théorique, qui porte sur les règles 

reconnues et les éléments théoriques manifestes. Pour ce qui est du professeur de 

mathématiques, si l’on admet que les questionnements épistémologiques impliquant 

l’étude des conditions d’adéquation des connaissances mathématiques n’écartent pas 
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les CME de cette étude, alors ces questionnements se retrouvent à tous les niveaux de 

réflexion. Dans cette recherche, nous avons mis en œuvre le dispositif de réflexion 

guidée utilisée sous forme de rappel stimulé où le professeur de mathématiques 

répond aux questions, d’un entretien, posées par le chercheur. L’entretien a été 

structuré conformément aux trois premières phases de la pratique réflexive et ses 

questions ont été élaborées sur la base des résultats de séances de classe que ce 

professeur a préalablement assurées pour introduire les notions de suite et de 

convergence en fin du lycée. Ces résultats avaient permis de mettre en évidence des 

situations problématiques dans les actions du professeur en lien avec les trois 

variables de la transition mentionnées ci-dessus. A travers cet entretien, la 

collaboration chercheur/professeur a pour objectif de porter l’attention du professeur 

sur les attentes de la transition et les intégrer dans ses CME pour ne pas les négliger 

dans ses prises de décisions.    

EXPERIMENTATION  

Contexte de l’étude 

Le professeur, qui a accepté de contribuer à notre recherche en participant à cet 

entretien, possède une maitrise en mathématiques et quinze années d’expérience dans 

l’enseignement de fin du lycée. Notre collaboration date de cinq années, et a été 

initiée par l’enregistrement de trois séances d’une même classe de 35 élèves de fin du 

lycée, qu’il a assuré et qui ont porté sur les notions de suites et de convergence. Les 

transcriptions et les résultats de l’analyse de ces séances ont constitué le support de 

cet entretien et un accompagnement du processus de réflexion sur l’action (pour plus 

de détails sur cette analyse voir Ghedamsi et Fattoum, 2018). Dans le cadre de la 

problématique de la transition en analyse réelle, nous avons mis l’accent sur les 

actions du professeur en lien avec la gestion du formalisme, la gestion de la 

validation et la gestion du statut de la notion en jeu (expérimentation et 

objectivation), nous nous limitons ici à la notion de suite sans aborder la question des 

limites et de convergence. La mise en évidence des CME du professeur qui sous-

tendent ces actions et les négociations de leur adaptation en fonction de la 

problématique de la transition, une problématique d’abord à la charge du chercheur et 

progressivement partagée par le professeur, constituent l’enjeu majeur de l’entretien.  

Analyse a priori des termes de l’entretien 

L’entretien a été construit de sorte à confronter le professeur à certaines de ces prises 

de décision par le biais d’interrogations portant sur les trois formes de gestion 

indiquées ci-dessus. L’analyse qui suit est organisée suivant ces trois rubriques et sera 

alimentée, dans la mesure du possible (pour des raisons d’espace), par des séquences 

illustrant certaines des actions du professeur sur lesquelles porte l’entretien.  

- Actions en lien avec la gestion du statut de la notion :  

AS1 - Donnée d’exemples, de non exemples, de contre-exemples (Expérimentation) : 

Les premières interrogations concernent le rôle des exemples et leur diversification 

pour décrire les différentes facettes de la notion de suite et reconnaître les éléments 
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indispensables pour la caractériser. Fournir aux élèves des exemples typiques et 

unilatéraux de suites, comme en témoigne les choix du professeur, peut être l’une des 

raisons pour lesquelles les futurs étudiants peineront à développer des conceptions 

alignées à sa définition. La production de contre-exemple, quasiment absente aussi 

bien dans la planification du cours que dans le déroulement des séances de classe, 

permet à son tour de cerner la nécessité des hypothèses de cette définition.  

AS2- Distinction entre suite et fonction (Objectivation) : Dans le cadre des choix du 

professeur d’introduire les suites comme cas particulier de fonction (et d’exploiter, 

plus tard conformément au programme officiel, les techniques sur les fonctions afin 

d’étudier les variations des suites, les minorants/majorants éventuels, et les limites), 

le processus d’objectivation de la notion de suite est tributaire d’une focalisation sur 

la distinction entre ces deux notions, ce qui permettrait aussi d’amorcer un 

raisonnement sur le lien entre le discret et le continu en analyse réelle. Des 

interventions du professeur telles que "écris x à la place de n" en réponse à l’élève 

qui devait identifier la fonction associée à une suite ou alors  "Non…pourquoi les 

joindre ? On va juste les placer" en réponse à l’élève qui confondait la représentation 

graphique d’une suite et celle de la fonction associée, constituent la base des 

interrogations sur le sujet : dans quelles mesures est-il possible 1) d’intégrer des 

exemples de suites, non standards, définies à partir de fonctions qui ne sont pas du 

programme ? 2) de définir une suite par la liste de ses termes (exemple  (1, -1, 1, -1, 

…)) ? 3) de différencier les propriétés liés aux fonctions, impliquant la topologie de 

  et qui n’ont pas de sens pour les suites (graphe, limite en un point, dérivabilité, 

etc.) et les propriétés des fonctions liées à l’ordre total établi dans        et qui 

peuvent être étendues aux suites (monotonie, bornée, etc.).   

- Actions en lien avec la gestion du formalisme :  

 AF1 - Illustration des énoncés quantifiés : Rappelons que la transition vers 

l’université implique l’usage assez systématique d’énoncés quantifiés. Nous ne 

rentrons pas dans la manière avec laquelle les futurs étudiants construiraient une 

signification de ces écritures quantifiées. La réaction en chœur des élèves, "Quelle est 

la différence ?",  à propos de l’inversion de l’ordre des quantifications dans la 

définition d’une suite majorée, sans que le professeur n’en donne une suite, ainsi que 

le non respect de la nature du quantificateur montrent la nécessité de le sensibiliser à 

l’intérêt de discuter les règles d’organisation des quantificateurs dans un énoncé 

mathématique. 

AF2 - Enonciation d’expressions informelles : Nous nous centrons en particulier sur 

l’usage, par le professeur, de formes langagières particulières pour aborder de notions 

clés de l’analyse réelle : l’infini et le continu. Comme soulignés par Alcock et 

Simpson (2017) : "The difference between mathematical and natural categories is 

commonly understood to cause students errors".(p.6). Or, le professeur n’hésite pas à 

employer des formulations portant à plusieurs interprétations sur la base d’exemples 

de suites prototypés représentées par leurs graphes : "ils sont proches", "On considère 

des intervalles infiniment petits centrés en 3", "ça augmente indéfiniment", "le 
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nombre d’insectes semble croitre sans dépasser 200", sans s’attarder sur des 

interventions de futurs étudiants du type "C’est grand comme intervalle non ?". 

- Actions en lien avec la gestion de la validation - AV1 - Identification de modes de 

raisonnements mathématiques : Il est reconnu qu’à l’université différents modes de 

raisonnement sont utilisés pour prouver la validité des résultats mathématiques, il est 

important qu’une initiation progressive se mette en place à travers l’enseignement des 

notions de l’analyse réelle. L’appui sur la donnée de contre-exemples offre 

l’opportunité aux futurs étudiants de pratiquer la négation d’un énoncé universel en 

illustrant par exemple l’absence d’une propriété telle que la monotonie d’une suite (il 

suffit de trouver trois termes consécutifs de la suite donc réalisant les conditions 

imposées dans l’hypothèse sans que soit vérifiée la conclusion). De même pour les 

raisonnements de types condition nécessaire et condition suffisante qui est au cœur de 

la question de la réciproque de cette propriété : "si la fonction est croissante 

(décroissante, constante, minorée ou majorée), alors il en est de même de la suite qui 

lui est associée". L’automatisme qui accompagne l’usage de cette propriété, à travers 

ce qu’appelle le professeur "la fonction naturelle" empêche les élèves de voir qu’à 

une suite donnée on peut associer plusieurs fonctions et mettre à défaut sa réciproque. 

ANALYSE DES RESULTATS DE L’ENTRETIEN 

L’entretien s’est déroulé en deux séances, de deux heures chacune, qui ont eu lieu à 

un jour d’intervalle. Nous avons enregistré un total de 272 interventions lors de cet 

entretien quasi équilibrées entre le chercheur et le professeur : 144 interventions du 

chercheur et 128 interventions du professeur. Le tableau 1, suivant décrit la 

répartition de ces interventions en fonction des trois rubriques d’étude adoptées.  

 Gestion du statut  Gestion  du formalisme Gestion  de validation 

Chercheur 23 (9%) 44 (16%) 77 (27%) 

Professeur 20 (9%) 38 (14%) 70 (25%) 

Tableau 1: Répartition des interventions par rubrique 

Une première étude globale de notre transcription a montré que les trois niveaux de 

réflexion : technique, pratique et théorique, ont accompagné le contenu du discours 

du professeur au cours des trois phases de la démarche réflexive. Plus précisément, 

l’acheminement de la phase de prise de conscience vers la phase de distanciation et 

d’objectivation des causes et des conséquences de son action, préalablement mise en 

évidence par le chercheur, passe par une étape où le professeur essaye de la légitimer 

par une argumentation basée sur le contexte de l’enseignement des mathématiques, et 

ses exigences, ou sur une pratique qui a fait ses preuves. Durant la phase trois de 

modification de l’action, le niveau de réflexion du professeur est fondamentalement 

critique en lien avec les règles mathématiques savantes. Pour chaque rubrique, notre 

analyse va porter notamment sur les niveaux de réflexion c'est-à-dire sur les CME du 

professeur qui ont fondé ses actions, et sur le processus de leur régulation à travers 
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les trois phases de la démarche réflexive. Dans toute la suite, l’intervention précédée 

par P est celle du professeur.  

- Actions liées au statut de la notion : La  prise de conscience du professeur du rôle 

des exemples dans la conceptualisation de la notion de suite a été très lente. La 

remise en question de AS1 a progressivement émergé à travers son expérience des 

suites non standards de fin du lycée P : "Comme pour le reste de la division 

euclidienne de 20 par n+1", mais aussi de suites plus complexes et qui P : "… ne 

sont pas décrites par des fonctions d’une manière simple". En acceptant de ne pas 

limiter la cause de son action aux contraintes du programme, le professeur met 

l’accent sur ses conséquences possibles au-delà du lycée en déclarant simplement 

qu’il va P : "… diversifier les exemples. En outre, la donnée de non exemples de 

suites où les fonctions ne remplissent pas l’une des conditions de la définition ne fait 

pas partie de ses CMEs et pour cause, ne pas perturber la construction des 

connaissances des élèves en prenant le risque de s’écarter des termes du 

programme P : "C’est drôle, on leur apprend une chose et juste après on doit leur 

donner des contre-exemples (à entendre aussi en termes de non exemples) où ça ne 

fonctionne pas !". Il a tendance à vouloir "protéger" les élèves contre le doute que 

peuvent créer les non exemples et les contre-exemples, y compris quand il s’agit de 

solliciter des suites ne vérifiant pas une propriété donnée (monotonie, bornée)  P : "Et 

quel est l’intérêt ? Pourquoi on fait ça maintenant ?". En confrontant le professeur 

aux interventions de ses élèves lors des séances de classe "… une suite est soit 

croissante, soit décroissante" ou encore "… est ce que toutes les suites sont 

bornées ?", le professeur finit par se convaincre de l’importance des non exemples 

pour mettre en relief les différentes hypothèses d’une définition ou d’une propriété. 

Conscient des possibilités d’utiliser des graphiques pour donner des non exemples ou 

des contre-exemples (par exemple de conjectures du type si la suite est croissante et 

définie par une fonction f, alors la fonction f est croissante), et soucieux des limites 

de la visualisation pour les besoins de l’abstraction, le professeur demeure sceptique à 

la donnée d’exemple où le graphique de la suite  montre qu’elle P :"… dépasse toute 

valeur fixée à l’avance". En même temps qu’il semble conscient de l’importance de 

pouvoir traiter les suites sans un passage obligatoire par les fonctions et des manques 

au niveau de AS2, le professeur trouve des difficultés à se décharger des termes du 

programme officiel en gardant la cohérence d’une construction mathématique adaptée 

à l’aval du lycée. Tout en étant favorable à l’introduction des suites à partir de leurs 

listes de termes, le professeur semble encore hésitant sur le scénario à adopter dans sa 

planification future P : "Ce genre d’exemples, où est-ce qu’on va l’introduire ?". De 

la définition de suite, les élèves retiennent essentiellement qu’il s’agit d’une fonction 

et omettent le reste des conditions. Ils n’hésitent pas à dériver les suites et étudier la 

monotonie sur plusieurs intervalles. Au début, le professeur semble désarmer devant 

cette situation P : "Je ne vais quand même pas parler des intervalles discrets aux 

élèves … je ne vais pas faire de la topologie ??". Pour le professeur, la distinction 

entre le discret/continu est en règle générale très abstraite à ce niveau du cursus et 

opte pour l’usage des potentialités du graphique pour remédier à la question P : "Je 
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vais insister sur le fait que les points sont discrets et constituent la trace de la 

fonction sur IN. La trace est la même quelque soit la fonction. Parce que la trace 

c’est la suite. La suite est la même quelque soit la fonction." ou alors P : " ils (les 

élèves) prennent différentes valeurs de n en commençant par le premier ordre, 

calculent leurs images et représentent uniquement ces points.". 

- Actions liées au formalisme : Le professeur est d’emblée conscient de sa prise en 

charge minimaliste des situations problématiques d’inversions des quantificateurs 

dans les propriétés de suites monotones et de suites bornées. Progressivement, il 

alimente les échanges par des raisons pour expliquer son action (AF1). D’abord : 1) 

en déclarant que les futurs étudiants  P : "… ne connaissent pas les règles de la 

quantification, y compris la  négation" tout en insistant sur le caractère déterminant 

de l’ordre des quantificateurs dans la signification des énoncés quantifiés ; puis 2) en 

évoquant la difficulté de trouver un exemple générique pour illustrer les différentes 

règles. Sur la base d’un débat sur la mise en application d’un énoncé quantifié 

permettant d’en saisir les différentes composantes, le professeur finit par soumettre 

les différents exemples à des régulations instantanées afin d’en garder ceux qui sont 

les mieux adaptés au contexte d’enseignement et aux attentes de futurs étudiants. 

Contrairement aux énoncés quantifiés, l’usage des expressions informelles en lien 

avec l’infini et le continu n’apparait pas problématique pour le professeur P : "il est 

où le problème ?". Il justifie son action (AF2) par les exigences des exercices qu’il 

déclare ne plus pouvoir faire ! La suite des interactions avec le chercheur a amené 

méthodiquement le professeur à renverser la situation en faveur de l’usage 

d’expressions  plus neutres telles que  P : "[…] Quand n augmente, quand n devient 

plus grand. Mais on évite d’utiliser « approche »". En outre, il propose d’utiliser le 

graphique d’une suite particulière pour initier un travail sur les valeurs approchées en 

prenant différentes valeurs de la précision et en cherchant les rangs n correspondants. 

L’exemple peut de ce fait être choisi de sorte que P : "L’approximation se fait de 

manière alternée par valeurs supérieures et par valeurs inférieures". 

- Action liée à la validation : Convaincu de l’importance de distinguer une 

implication de sa réciproque en soulignant que les futurs étudiants ont intérêt à 

comprendre que la véracité de l’une ne permet pas de confirmer l’autre, le professeur 

préfère quand même mettre l’accent sur la possibilité de P : "… de ne pas utiliser les 

techniques par les fonctions (pour étudier la monotonie ou la majoration/minoration 

d’une suite)) quand l’occasion se présente". En insistant sur les séquences de classe 

en lien avec les exemples de suites monotones ou bornées, propriétés non partagées 

par des fonctions qui leur sont associées, le professeur  préfère mettre l’accent sur les 

limites des techniques par les fonctions plutôt d’exploiter ces éventualités pour 

aborder les questions de condition nécessaire et condition suffisante P : "C’est pour 

dire que ces techniques ont des limites". Cette dernière intervention, même si elle 

dénote une certaine distanciation du professeur par rapport au rôle des fonctions dans 

un travail avec les suites, elle montre qu’il n’est pas prêt à aborder la question des 

fonctions non "naturellement » associées aux suites au risque de se trouver confronter 

à des choix qui supplantent le programme et biaisent la rigueur mathématique.   
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A l’issue de cette analyse trois éléments importants peuvent être dégagés : 1) en 

aucun cas nous ne pouvons affirmer que nous avons pu déterminer les significations 

des CME du professeur même si l’entretien a été conçu pour les susciter, le mieux 

qu’on puisse dire est que nous avons pu en cerner certains aspects nécessaires à 

l’étude des adaptations potentielles des CME ; 2) quoique les CM du professeur sont 

suffisamment solides pour lui permettre d’opérer des changements au niveau des 

CME (l’usage des exemples de suites, la donnée de contre-exemples, l’usage de 

graphiques, l’expression informelle d’aspects topologiques discrets et continus, 

l’instanciation des énoncés quantifiés, la modélisation des raisonnements 

mathématiques) impliquées dans ces actions, l’adoption de nouvelles CME reste 

tributaire du contexte de l’enseignement et de son expérience d’enseignant ; 3) le 

niveau critique de la réflexion du professeur renvoie généralement aux normes des 

mathématiques savantes et fonde son engagement vers la modification de ses actions 

pour une meilleure prise en compte de la problématique de la transition.   

CONCLUSION 

La méthode que nous avons mise en place, pour dévoluer au professeur de fin du 

lycée la question de la transition vers l’université en analyse réelle, est 

fondamentalement centrée sur ce que peut apporter la démarche réflexive comme 

changement dans les actions du professeur. La structuration de l’entretien qui a servi 

de mécanisme pour déclencher la réflexivité du professeur est fondée : 1) du point de 

vue du découpage et du contenu, sur les aspects spécifiques de la problématique de la 

transition ; 2) du point de vue plus transversal, sur des interactions actives et 

constructives axées sur les questionnements et les problématisations pour dénouer les 

implicites, leurs déterminants et aboutissants. Cette technique est loin d’être finalisée, 

moins encore facile à réaliser, en raison de la multitude de dimensions qu’elle porte 

en considération (la didactique du phénomène étudié, la cognition du professeur, la 

complexité de l’outil entretien, etc.). Elle nous a, en outre, permis d’effectuer des 

analyses significatives des possibilités d’entrée du professeur de mathématiques du 

lycée dans le jeu de la transition vers l’université et de commencer à penser, sur une 

échelle plus large que cette étude, son implication dans la construction d’une 

passerelle entre le lycée et l’université en analyse réelle. Plusieurs études, en lien 

avec les connaissances du professeur et sa formation professionnelle, sont nécessaires 

pour espérer donner de la généricité à cette méthode.        
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In this paper we discuss how the instrumental approach can contribute to our 

understanding of the activity of university students using programming in the context 

of an authentic mathematical investigation. We claim that they develop an instrument 

from programming considered as an artefact, incorporating a complex structure of 

schemes. We distinguish between m-schemes, p-schemes and p+m-schemes, for a 

goal concerning respectively only mathematics, only programming, or both. We 

illustrate this theoretical construct by studying the case of a student enrolled in a 

course encompassing programming-based mathematics investigation projects. 

Keywords: Teachers’ and students’ practices at university level, Digital and other 

resources in university mathematics education, Programming, Instrumental 

approach, Authentic Mathematical Investigations. 

INTRODUCTION AND CONTEXT 

In the field of mathematics education, the use of programming for learning has a 

legacy of half a century that started with the designing of the LOGO programming 

language for learning (Papert 1972). Studies working in this area have been framed 

with different perspectives (e.g., see Hoyles & Noss 1992). We present here a study 

concerning the theoretical contribution of the instrumental approach (Guin, Ruthven 

& Trouche 2005) –that articulates the mutual shaping of learners and artefacts (e.g., 

programming) in the learning process–, to analyse the activity of university students 

using programming in the context of an authentic mathematical investigation.  

The instrumental approach has already been used in previous research about 

university students’ use of various technological tools: for example Sketchpad 

(Ndlovu, Wessels & De Villiers 2011) or CAS (Zeynivandnezhad & Bates 2018). 

This theoretical framework has also been used in a study about programming by 

Misfeldt and Ejsing-Duun (2015), but their work concerns the primary and lower 

secondary levels. As far as we know, the instrumental approach has never been used 

in a research about programming at university level; we hypothesize that it can 

enlighten interesting phenomena, specific from this level and from programming.  

Our study is part of a five-year naturalistic (i.e., not design-based) research that takes 

place in the context of a sequence of three university mathematics courses, called 

Mathematics Integrated with Computers and Applications (MICA) I-II-III taught at 

Brock University since 2001. In these project-based courses, mathematics majors and 

future mathematics teachers learn to design, program, and use interactive 
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environments to investigate mathematics concepts, theorems, and applications 

(Buteau & Muller 2010). The research aims at understanding how students learn to 

use programming for authentic mathematical investigations, if and how their use is 

sustained over time, and how instructors support that learning. 

The research question that we will investigate here can be presented as follows: What 

do we learn about the activity of students using programming in an authentic 

mathematical investigation by using the theoretical frame of the instrumental 

approach, considering programming as an artefact? 

In the next section we present the instrumental approach, and how we propose to use 

it when the artefact is a programming language. Referring to the Theory of 

Conceptual Fields (Vergnaud 1998), we introduce in particular three different kinds 

of schemes. Then we briefly present our methods, and illustrate the use of the 

instrumental approach by analysing the case of a student, Jim, and of his work in a 

project concerning number theory. Finally we discuss the insights gained from the 

use of this approach.  

INSTRUMENTAL APPROACH, PROGRAMMING AND SCHEMES  

The instrumental approach (Rabardel 1995) introduces a distinction between an 

artefact, which is produced by humans, for a goal-directed human activity, and an 

instrument, developed by a subject along his/her activity with this artefact for a given 

goal. The instrument is composed by a part of the artefact and a scheme of use of this 

artefact (Vergnaud 1998). In mathematics education, the instrumental approach has 

been used firstly to study learning processes of secondary school students using 

calculators (Guin et al. 2005). These studies used a detailed definition of schemes, 

following the work of Vergnaud. A scheme has four components: 

- The goal of the activity, subgoals and expectations; 

- Rules of action, generating the behaviour according to the features of the 

situation; 

- Operational invariants: concepts-in-action, which are concepts considered as 

relevant, and theorems-in-action, which are propositions considered as true; 

- Possibilities of inferences.  

In a given situation, a subject mobilizes a scheme corresponding to the goal of his/her 

activity. The inferences permit the adaptation of the scheme to the precise features of 

the situation. Sometimes this adaptation can lead to the emergence of new operational 

invariants, new rules of action, of even to the emergence of a new scheme. The 

schemes of use as defined in the instrumental approach come in fact from a more 

general theory elaborated by Vergnaud in the context of mathematics education: the 

Theory of Conceptual Fields (TCF). The couple (scheme, situation) is central in this 

theory to analyse conceptualization processes. We refer also to this more general 

theory, considering not only schemes of use of “programming”, considered as an 

artefact, but also mathematical schemes.  
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In the context of our study, the general goal of the students’ activity is to “investigate 

a complex situation (mathematical or not), combining mathematical knowledge and 

programming”. We claim that, by using programming for this general goal, the 

students develop an instrument, associating some aspects of programming and 

schemes of use for specific subgoals (Buteau, Gueudet, Muller, Mgombelo & 

Sacristán 2019). We also claim that for this general goal, students mobilize different 

kinds of schemes. Mathematical schemes (noted m-schemes) intervene when the goal 

(or sub-goal) is the search for a mathematical formulation of the situation, and their 

interpretation of solutions. Programming schemes (noted p-schemes) intervene when 

the goal concerns only programming, and could also appear when programming 

outside of any mathematical context. Combined programming and mathematics 

schemes (noted p+m-schemes) intervene when the goal concerns both. Along their 

investigation activity, students develop a complex network of m-schemes, p-schemes, 

and p+m-schemes. We will illustrate this below by studying the case of Jim.  

METHODS  

Concerning Jim, we collected and analysed the following data:  

Jim was one voluntary student participant (among 6) enrolled in MICA I course (46 

students) in the first year of our research. The MICA I course consists of 4 

programming-based mathematical investigation projects (which count for 71 % of 

students’ final grades): 3 assigned individual ones, and a fourth one where students 

select the topic. The course format includes a two-hour weekly lab, where students 

progressively learn to program in Visual Basic.net (vb.net) in a mathematical context, 

and two-hour weekly lectures that introduces students to the mathematics needed for 

their investigation project assignments (Buteau, Muller, & Ralph 2015). 

Jim’s data included his 4 project assignments (that include each, a computer program 

and accompanying report) and individual semi-structured interviews after completion 

of each of his projects. The interview guiding questions were informed by a 

development process model (referred onwards as ‘dp-model’), established in previous 

works (e.g., Buteau & Muller 2010; Buteau et al. 2019), which describes an 

individual student’s activity in the context of an authentic programming-based 

mathematical investigation (Figure 1). Jim’s data also included weekly post-

laboratory session online reflections (with guiding questions) and an initial baseline 

online questionnaire, followed by an interview, before the beginning of MICA I. We 

also collected all course material, including lab session and assignment guidelines. 

For this study, we focused on Jim’s baseline questionnaire interview, his first 4 lab 

reflections, and his first assignment project and interview. 

We analysed Jim’s interviews by trying to observe in his declarations elements of 

schemes: goal of the activity; description of how he acted in the situation; reasons for 

acting this way; and inferences. How he acted can be interpreted as rules of action, if 

it is described by Jim as a regular practice. If it is described as something new, an 

original attempt, it can be interpreted as the emergence of something that can later 
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become a rule of action. The reasons for acting regularly in a certain way are 

interpreted as operational invariants: theorems-in-action, and associated concepts-in-

action. We present examples in the next section.  

 

Figure 1: Development process model of a student engaging in programming for an 

authentic mathematical investigation or application (Buteau et al. 2019).  

In this exploratory study, we did not have the possibility to directly observe Jim’s 

work, in order to confront his declarations and his actual activity. Only a part of this 

activity was accessible through the assignment he produced. This is certainly a 

limitation of our ongoing naturalistic study, but on the other hand it incorporates all 

institutional constraints of Jim’s activity. We mitigate this limitation by triangulating 

all the data available on Jim (listed above), and as such, we suggest that our analysis 

provides significant evidence of Jim’s instrumental genesis.  

THE CASE OF JIM 

The first four weeks of the MICA I course prepare students for their first project 

assignment. In lectures, students are mainly exposed to prime numbers and hailstone 

sequences, and to conjecturing about those concepts. In lab sessions, students start 

learning about basics of programming in vb.net: variables, loops, conditional 

statements, and create, read from, and print in a graphical user interface (GUI). 

Starting in lab 3, students are progressively guided to code mathematics; e.g. in lab 3, 

the code for checking the primality of an integer is given to them for reproducing 

(and fixing a minor issue) whereas lab 5 guidelines gives a partial pseudo-code for 

powers in Zn. The first project directly builds on lab 3 and asks students to state or to 

select a conjecture about primes, and create a program in vb.net to investigate it. 

In this section we present examples of schemes identified in the case of Jim for his 

first project assignment, chosen to illustrate the three kinds (m-schemes, p-schemes 

and p+m-schemes). The schemes are presented with general aims: indeed they apply 

in the context of this assignment, but they are an invariant organization of the activity 

for all the situations corresponding to this aim. We attempt to give for each scheme 
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its general description, and elements about its application in context, involving 

precise mathematical and programming contents. The different elements of the 

schemes are inferred from the description Jim gave of his activity. For each scheme, 

we firstly present its main elements in a table, and then comment and discuss this 

table by drawing on excerpts of Jim’s interview. There is no inference mentioned in 

the tables since none were identified for these examples of scheme.  

Formulate a conjecture: example of a m-scheme 

Rules of action Investigate the math concept (search on the Internet, take 

notes); Search for a representation; Search for a pattern 

Concepts-in-action Representation; Pattern 

Theorems-in-

action 

Understanding related concepts helps to formulate a 

conjecture; An appropriate representation is helpful to 

find a pattern; I can learn mathematics by exploration 

Table 1: Jim’s scheme of formulating a conjecture. 

The scheme presented in table 1 is a mathematical scheme, since it corresponds to the 

goal “Formulate a conjecture”. According to Jim, he started by trying to understand 

better the concept of primes. 

Jim:  At first I was trying to kind of think of trying to understand more about the nature 

of primes before I would really do my conjecture (#2) 

We interpret this as a rule of action, governed by a theorem-in-action: “to formulate a 

conjecture, a good understanding of the concepts involved is needed”. It is possible to 

consider the goal: “investigate a mathematical concept” as a sub-goal, for Jim, of the 

goal “to formulate a conjecture”.  

After this first step, Jim tried to represent the prime numbers and to observe a pattern. 

Jim:  me trying to figure out this conjecture basically where I would plot out the primes 

and look for any patterns of how they worked (#3) 

We interpret this again as a rule of action, probably developed along many problems 

in mathematics. The concepts of “representation”, “pattern” are relevant for Jim in 

this situation and guide his activity: they can be considered as concepts-in-action 

(which are explicit here). In the specific case of prime numbers, he started by 

representing them on a line (we interpret this as a rule-of-action for the sub-aim 

“formulate a conjecture about primes). He observed that it did not work, and that a 

two-dimensional representation was more relevant.  

Articulate in a programming language a nested process: example of a p-scheme 

Rule of action Code nested loops articulating the nested process; Code 

them incrementally 

Concepts-in-action Nested system; Nested loops; Loop 
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Theorem-in-action A nested system can be processed by programming 

technology as nested loops; Incremental coding helps to 

properly structure the nested loops  

Table 2: Jim’s scheme of articulating in vb.net a nested process. 

The scheme presented in table 2 is a p-scheme, since it corresponds to the goal 

“Articulate in vb.net a nested process”. Jim seems to suggest that the MICA course 

facilitates students to develop a scheme of “articulating, in vb.net, a process involving 

repetitions”—with a main rule-of-action: “to code loops”—and that through this 

assignment project, he (and his fellow students) had to then further elaborate it by 

developing a more general scheme of “articulating, in vb.net, a nested process”. 

Jim: We actually went over how to build this kind of system [involving repetitions] in 

class. So the only thing new about the project was kind of learning how to nest 

them, properly structure them, to make this running program. (#18) 

According to him, Jim codes nested loops to articulate the nested process. We 

interpret this as a rule of action, governed by: “a nested system can be processed by 

vb.net programming technology as nested loops”. In addition, Jim seems to indicate 

coding such nested loops incrementally— a rule of action that we could associate to a 

theorem-in-action: “Incremental coding helps to properly structure the nested loops”. 

Jim: to understand this idea of nested kind of system and how to build upon a single 

system into multiple ones …Like one system inside another and I think that’s pretty 

key but you kind of just have to work with it and hope it works out... It [is] one of 

those inherent things. (#27) 

In this situation, we identify “nested system”, “nested loops”, and “loops” as explicit 

concepts-in-action in Jim’s activity. Furthermore, this scheme seems to be, for Jim, at 

the core of programming. As such, this suggests Jim’s awareness of mobilizing or 

developing it further in his future programming-based mathematical investigations. 

Articulating a mathematical process in programming: example of a p+m scheme 

Rules of 

action 

Organize the math process as a nested system; Decompose the nested 

system in individual processes before programming; Code individual 

processes; Start by ‘translating’ in vb.net what I would do by hand  

Concepts-

in-action 

Mathematics & programming as a nested system; Solving-by-hand 

method; Decomposition of a system; Individual process  

Theorems-

in-action 

A mathematical process can be seen as a nested system, i.e., made of 

many parts; To program a nested mathematics process, one can break 

it down and individually code the smaller parts; A programming 

language can work in a similar manner as one works by hand; 

Programming and mathematics as systems have embedded layers 

Table 3: Scheme of articulating a mathematical process in the programming language. 
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Table 3 presents an example of a p+m-scheme: articulating a mathematical process in 

programming. It is a p+m-scheme because its goal involves both programming and 

mathematics. In describing how he approached the assignment Jim noted, 

Jim: I basically tried to organize and sort out what needed to be programmed but I kind of 

realized as I was going, I kind of knew everything that needed to be done. It just 

required a set of system nested within each other so once I know that I had to figure 

out how to program each individual system. This one check for prime. This one is a 

loop … that sort of thing. (#8) 

We interpret this description by Jim as indicating many rules of action, such as 

“Organize the mathematics process as a nested system”, which is supported by a 

concept-in-action, “mathematics and programming as a nested system” and a 

theorem-in-action, “a mathematical process can be seen as a nested system”, i.e., 

made of many parts. Two other rules-of-action are: “Decompose the nested system in 

individual processes before programming” and “Code individual processes”; they are 

supported by two concepts-in-action, “decomposition of a system” and “individual 

process”, and theorems-in-action, “to program a nested mathematics process, one can 

break it down and individually code the smaller parts” and “Programming and 

mathematics as systems have embedded layers”. For example in this case he 

identified a part of the program checking primality. 

Jim also described his coding by enumerating different processes that seem to align 

with a by-hand method. We interpreted it as indicating Jim’s rule-of-action “Start by 

‘translating’ in vb.net what I would do by hand”, governed by a theorem-in-action “A 

programming language can work in a similar manner as one works by hand”, 

identified in lab3 as potential components since they were not yet put into action. 

Jim:  [I] do believe that… I would have…been able to make something resembling it … 

as the logic of how it searches for primes has already been ... in class. (Lab3) 

DISCUSSION AND CONCLUDING REMARKS 

The research question studied in this paper was: “What do we learn about the activity 

of students using programming in an authentic mathematical investigation by using 

the theoretical frame of the instrumental approach, considering programming as an 

artefact?”. Drawing on the example studied above, we discuss here elements of 

answer to this question, and indicate directions for future research. 

Firstly, we claim that this example of the activity of students using programming in 

an authentic mathematical investigation illustrated the relevance of the different kinds 

of schemes: m-schemes, p-schemes, p+m-schemes. Gerianou and Janqvist (2019) 

argue that the theory of instrumental genesis, and schemes in particular, allow to 

bridge mathematical competencies and digital competencies. Our study illustrates and 

confirms this, in the specific case of programming technology. The p+m-schemes can 

be considered as bridging mathematical and digital competencies; the identification 
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of p+m operational invariants in particular deepens our understanding of how 

mathematics and programming relate to each other.  

This statement could apply to any context of learning programming in a mathematics 

course. Our second claim concerns specifically the university context, and the type of 

activity proposed in the MICA course: using programming for an authentic 

mathematical investigation. The different schemes developed by students along this 

course are inter-related; they constitute a complex structure. We mentioned above the 

dp-model describing students’ activity in the context of an authentic programming-

based mathematical investigation (Figure 1). We claim that the schemes developed 

by a student are related to the different steps of this model (Buteau et al. 2019). In the 

example presented above, the m-scheme: “to formulate a conjecture” corresponds to 

step 1; while the p-scheme: “articulate in a programming language a nested process” 

and the p+m-scheme: “articulate a mathematical process in the programming 

language” correspond to step 3 (see Figure 1). In our analysis of the case of Jim, we 

identified schemes corresponding to all the steps of the model (which cannot be 

presented here, for the sake of brevity). The steps of the dp-model can be considered 

as general goals of the students’ activity; they correspond to what Rabardel (2005) 

calls “activity families”, gathering situations with a similar aim of the activity. 

Another direction for investigating how different schemes are linked concerns the 

level of generality of the goals. We could consider, for example, that “Designing and 

programming an object” is a goal (step 3 of the dp-model), and thus associated with a 

single scheme (a p+m-scheme, in this case). The schemes: “articulate in a 

programming language a nested process” and “articulate a mathematical process in 

the programming language” would then appear as sub-schemes (associated with sub-

goals). In our study we have made a different choice, since we were interested in 

looking for precise operational invariants in particular. A study in terms of schemes 

always needs to choose a “favoured” level of generality; it is then possible to 

consider more precise goals, and obtain sub-schemes. For example in the case of Jim, 

we also identified a scheme labelled: “To formulate a conjecture about primes”, 

which is a sub-scheme of the m-scheme presented above.  

An important issue requiring further work concerns the complex dialectics between 

stability and evolution of the schemes developed by the students and of their 

components. The data that we analyzed for this paper did not include a long-term 

observation of Jim’s activity. This had several consequences on our analyses in terms 

of schemes. Firstly in most cases (in particular in the examples above) we were not 

able to describe the “inference” part of the scheme. Indeed the inferences are linked 

with particular features of the situation, not always described in an interview. Second, 

some of the rules of action and operational invariants described above can be 

considered as stable while others are only “potential”, since more evidence would be 

needed to acknowledge their stability; we provide below some examples.  

We consider that the students in the MICA course (and Jim in particular) already had 

stable m-schemes: for example they might have met before situations in mathematics 
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classes where they would have needed to formulate a conjecture. These m-schemes 

will be adapted to the features of the new situation involving programming, but the 

organization of the activity will remain stable. In contrast, programming was for them 

a new activity; the p- and p+m-schemes we identified have most likely been 

developed during the MICA course. 

Nevertheless we claim that some of the rules of action and operational invariants in 

p- and p+m-schemes are already stable at the end of the MICA course. Indeed the 

intervention of some of them has been observed on several occasions, and we 

consider that this acknowledges their stability. For example, we found evidence that, 

in his second and third MICA projects, Jim seems to utilize his rules of action of the 

p+m-scheme described above, while also developing additional rules-of-action (e.g. 

“I ignore coding special cases of the mathematics process that are not needed for the 

mathematical investigation”) and theorems-in-action (e.g. “Special cases in the 

mathematics code potentially leading to bugs but that don't affect the mathematical 

investigation, can be ignored”).  

Some authors have researched the development and evolution of schemes (e.g. Coulet 

2011), and consider that along his/her activity, the subject receives feedback which 

can lead to three kinds of evolutions. Productive loops lead to changes in the rules of 

action; constructive loops lead to changes in the operational invariants; changes 

scheme loops can even lead to a new scheme. Studying the stability of potential rules 

of action and operational invariant requires the study of these loops; this is a 

perspective for future research. 

Finally, another issue requiring further work concerns the nature of the operational 

invariants. As mentioned earlier, the general goal of the students’ activity in the 

MICA course is to “investigate a complex situation, combining mathematical 

knowledge and programming”. Some of these students, Jim in particular, developed 

an instrument for this goal from the programming artefact. We hypothesize that these 

students have developed a theorem-in-action like: “Using programming, I can be 

creative in mathematics” (and some indices of such a theorem-in-action appear in 

Jim’s interview). This kind of proposition is strongly linked with students’ self-

confidence and affects. We wonder if such components are involved in schemes.  

The links between mathematical and programming competencies are complex and 

increasingly important at university in several strands: for mathematics majors, but 

also for future engineers etc. The approach we propose here with the instrumental 

approach can enlighten these links. Thus we consider important to investigate the 

future directions evoked above: in particular observe students’ activity on a long 

term, in different contexts, to deepen our knowledge of the schemes they can 

develop, of their evolutions, and of the complex structure of scheme systems.  
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Exploring the affordances of Numbas for mathematical learning: A 

case study 
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The computer-based assessment system Numbas offers new learning possibilities in 

mathematics education by means of formative feedback. The paper proposes a 

theoretical framework that captures the affordances emerging from students’ 

interactions with Numbas at the technological, mathematical, and assessment level. 

The aim of the paper is to explore the affordances that arise from these levels using the 

theoretical framework as a lens. Based on the results, preliminary conclusions and 

recommendations for future work are proposed.   

Keywords: Affordance, feedback, interaction, mathematics learning, Numbas, teacher 

education. 

INTRODUCTION 

Although several research studies provide compelling examples of computer-based 

assessment systems in mathematics education, there has yet to be systematic 

investigations into how affordances of the systems might support mathematical 

learning. Numbas is a computer-based assessment system that provides formative 

feedback to students on whether their answer to a task is correct and reveals solutions 

to the students’ submitted mathematical formulas (Perfect, 2015). Formative 

feedback allows students to see their own progress and change their mathematical 

thinking. Students’ interactions with Numbas by means of formative feedback create 

affordances for learning at the technological, mathematical, and assessment level. This 

article uses Gibson’s affordance theory to analyze the affordances that arise at these 

levels in a course on digital tools in mathematics teaching. 

THE COMPUTER-BASED ASSESSMENT SYSTEM NUMBAS 

Numbas is a computer-based assessment system with an emphasis on formative 

feedback. It is developed at the university of Newcastle (UK), and it is used at over 30 

institutions around the word (Perfect, 2015). Formative feedback in mathematics 

education is normally given by a teacher, but it could be viewed as being the result of 

the student’s interaction with any digital or non-digital learning milieu. If the student’s 

action changes the milieu that provides feedback, this very change may cause the 

student to reconsider her action (Brousseau, 1997). Shute (2008) identified two main 

functions of formative feedback. Verification of whether an answer is correct, and 

elaboration to provide relevant cues to guide the learner towards the correct answer. 

Grounded on the idea of formative feedback, the primary design goal of Numbas is to 

enable a student to enter a mathematical answer in the form of an algebraic expression 

and submit the answer. Numbas provides feedback to the student on whether the 
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submitted answer is correct or incorrect and generates information according to the 

students’ submitted expressions. Numbas user interface offers several options: Enter 

an expression in the input field, “Submit all part” of the answer or “Submit part” of 

the answer, “Show steps” of the solution, “Try another question like this one”, and 

“Reveal answers”, which gives the solution to the question. Numbas has also a marking 

scheme for the answer, e.g., “1 mark” for submitting part of the answer, and “2 marks” 

all parts (Figure 1 and 2). 

 

Figure 1: Numbas user interface showing a task at grade 8-13 

Like many other computer-based assessment systems with automated feedback, 

Numbas involves a set of tasks or questions similar to paper-based tests (Van der Kleij 

et al., 2015). Numbas supports several question types, e.g., number entry, multiple 

choice/multiple response, and text entry. Questions are randomized according to a set 

of variables, defined by mathematical expressions (Perfect, 2015). A question consists 

of a statement, one or more parts, and an advice section, which contains a fully worked 

solution to the question and is revealed once the student has finished the question.  

While many other mathematics assessment systems have a dependency on server-side 

computer algebra systems, Numbas runs entirely on the client-side, which means that 

the feedback is either immediate and very fast or with a small delay (Perfect, 2015). 

Numbas contains a computer algebra system written in JavaScript so that expressions 

can be interpreted and evaluated entirely on the client-side. Numbas uses a simple 

syntax similar to the one used on a calculator. Moreover, the student’s expression is 

rendered in a mathematical notation beside the input field and updated immediately as 

the student types to make sure that Numbas has interpreted her expression as she 

intended (Figure 2). 

 

Figure 2: The student’s answer is rendered immediately next to the input field 
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AFFORDANCE THEORY: A FRAMEWORK FOR ANALYSING STUDENTS’ 

INTERACTIONS WITH NUMBAS 

Affordance theory, originally proposed by Gibson (1977), refers to the relationship 

between an object’s physical properties and the characteristics of a user that enables 

particular interactions between user and object. Affordance theory states that the world 

is perceived not only in terms of object properties but also in terms of object action 

possibilities offered to an animal by the environment with reference to the animal’s 

action capabilities. A typical example is a tall tree that has the affordance of food for a 

giraffe because it has a long neck, or a chair that affords a human a possibility of sitting. 

Hence, affordances are not a set of characteristics that are inherent to the object and 

independent of the user. Rather, an affordance is ontologically neither an objective nor 

a subjective property, or in other words, affordances are relational emergent properties 

of the user-object interaction. Likewise, De Landa (2002) emphasizes that affordances 

are not intrinsic properties of the object or subject. Rather affordances emerge from the 

interaction between the subject and object and become actualized in a specific context.   

Norman (1988) adapted the concept of affordance in the computer world. Accordingly, 

an affordance is the design aspect of an object which suggests how the object should 

be used and a visual clue to its function and use. Examples of affordances are user 

interface elements that directly suggest suitable actions such as clickable geometrical 

figures, draggable sliders, pressable buttons, selectable menus for figures, etc. Several 

research studies used the concept of affordance in various educational settings. For 

example, Turner and Turner (2002) specified a three-layer articulation of affordances: 

Perceived affordances, ergonomic affordances, and cultural affordances.  Likewise, 

Kirchner et al. (2014) described a three-layer definition of affordances:  Technological 

affordances that cover usability issues, educational affordances to facilitate teaching 

and learning, and, social affordances to foster social interactions. In mathematics 

education, Chiappini (2013) applied the notion of perceived, ergonomic, and cultural 

affordances to Alnuset, a digital tool for high school algebra. Finally, Hadjerrouit 

(2017) presented a model of affordances in teacher education.     

Based on the literature on affordances and the features of Numbas described in the 

previous section, this work uses Gibson’s affordance theory and proposes a set of 

affordances that may emerge from students’ interactions with Numbas at the 

technological, mathematical, and assessment level. Considering affordances as 

emergent properties means that Numbas does not have any affordances, except in 

interaction with students.  

Given this background, several technological affordances could emerge as students 

interact with Numbas. These are: a) Numbas is user-friendly and accessible at any time 

and place. b) Numbas facilitates accurate and quick completion of mathematical 

activities. c) Numbas helps to draw graphs and functions, solve equations, construct 

diagrams, figures and shapes.  

Likewise, several affordances could potentially emerge from the mathematical level.  
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a) Numbas presents the mathematical content in several ways using text, graphs, 

symbols, interactive diagrams, and dynamic visualizations. b) Numbas facilitates the 

transformation of mathematical expressions that support conceptual understanding. c) 

Numbas supports various mathematical activities such as problem solving, multiple 

choice, and quizzes. d) Numbas mathematics is congruent with textbook mathematics. 

e) Numbas provides high quality of mathematical content and useful questions that 

foster higher-level mathematical thinking. f) Numbas displays formulas, functions, 

graphs, numbers, algebraic expressions, and geometrical figures correctly. g) Numbas 

simplifies mathematical expressions so they look as they are on paper.  

Finally, several affordances could potentially emerge from the assessment level. These 

are: a) Numbas provides several assessment tests. b) The order and wording of the 

assessment questions are appropriate. c) Numbas questions are useful and relevant to 

test mathematical knowledge. d) Numbas gives immediate feedback. e) Numbas 

provides several types of feedback, e.g. expected answers and advices to the solution. 

f) Numbas feedback contains useful information to understand the tasks and answer 

the questions. g) Numbas gives hints in form to problem solving. h) Numbas is flexible 

to handle a wide range of assessment questions, answer to a question, and whether it is 

correct or not. i) Numbas provides a summary of the test, statistics on students’ 

answers, what they have done wrong or right, their performances and grading.   

THE STUDY 

Context, participants and research questions 

This study was conducted in a course on digital tools in mathematics teaching at the 

University of Agder in Kristiansand, Norway. The participants (N=15) were three 

categories of teacher students following teacher education programmes for grade 1-7, 

5-10, and 8-13. None of the students had any prior experience with Numbas.  The study 

addresses two main research questions:  

• Which affordances emerge from students’ interactions with Numbas at the 

technological, mathematical, and assessment level? 

• How do students value the formative feedback provided by Numbas? 

Methods 

Both quantitative and qualitative methods were used to analyze the affordances that 

emerge from the students’ interactions with Numbas: 

• A survey questionnaire with a five-point Likert scale from 1 to 5, where 1 was 

coded as the highest and 5 as the lowest (1 = “Strongly Agree”; 2 = “Agree”; 3 = 

“Neither Agree nor Disagree”; 4 = “Disagree”; 5= “Strongly Disagree”). The 

average score (MEAN) and the standard deviation (Std. Dev) were calculated 

• Students’ comments in their own words on each of the survey items, and 

qualitative analysis of the comments 

The survey questionnaire was guided by the theoretical framework and the set of 

potential affordances described in the previous section. The qualitative analysis was 
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based on indicators of affordances from students’ comments on the survey items in 

interaction with the affordances of the theoretical framework and search for meaningful 

interpretation of the results in the context of the course, the participants and the teacher. 

Numbas mathematical tasks 

Mathematics tasks at grade 1-7, 5-10, and 8-13 for a period of two weeks were given 

to the students using Numbas. These are some examples of tasks at grade 1-7:  

Answer these mathematical expressions: 

a) 3 − 6 b) 3 − 9  c)  3 + 6 − 9 

These are some examples of tasks at grade 5-10:  

You may write your expression in the text box. Remember to write for example a^3 to 

get 𝑎3 and 2a-3b to get  2𝑎 − 3𝑏. Next to the text box, you will get an image of how 

Numbas reads your input. Make sure this is what you intended to answer! 

a) Simplify 

−2𝑎 − 3𝑏 + 4𝑎 + 7𝑏 
b) Simplify   2𝑎2 + 6𝑎 + 2 + 7𝑎2 − 5𝑎 − 3            

c) Dissolve the parenthesis and simplify  (6𝑎 + 4𝑏) − (5𝑎 − 5𝑏) 

These are some examples of tasks at grade 8-13 (See also figure 1 and 2):  

Calculate and give your answer as a fraction or an algebra expression. Use / as the 

fraction line, 
x−2

3
 is written as (x-2)/3 and 

x+1

x−4
  as (x+1)/(x-4) 

a) Calculate  
𝑥

2
+

1

4
3𝑥

8
+

1

2

  b) Calculate 
𝑥+3

5𝑥
−

2𝑥−4

4𝑥
  

RESULTS 

Technological affordances 

The results (Table 1) show that most students indicated that Numbas has a user-friendly 

interface and that it is easy to use (Item 1, 2). It has also a ready-made mathematical 

content, and it is accessible anytime and anyplace (Item 3, 4). This is reflected in many 

students’ comments such as: “easy and fine design”; “easy to find and navigate through 

the information”; “very positive that we get immediate feedback”. 

 Mean Std. Dev 

1.Numbas is user friendly 1.80 0.561 

2.Numbas is easy to use 1.73 0.704 

3.Numbas is accessible anytime and anyplace 1.67 0.724 

4.Numbas has a readily available content 1.80 0.775 

Table 1: Technological affordances 

Mathematical affordances  

In terms of mathematical affordances (Table 2), most students agreed that Numbas 

provides a high quality of mathematical content, and that the questions are well-
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designed and formulated (Item 1, 2). Likewise, more than the majority of the students 

found that Numbas displays mathematical notations correctly, and that it simplifies 

mathematical expressions (Item 7, 8). Many students also think that Numbas provides 

opportunities to foster mathematical thinking through various entry points, such as 

“Submit answer”, “Try another question like this one” or “Reveal answers” and 

choosing different questions (Item 6). Furthermore, less than the majority of the 

students answered positively item 3, 4, and 5, but there is a relatively big variation in 

their responses (Std. Dev=1.014 and 1.033).  

A qualitative analysis of the students’ comments reveals two main themes, which are 

important to deepen some students’ responses to the survey (See Table 2, item 1, 3, 5, 

7, 8). These are: congruence of Numbas with paper-pencil techniques and textbooks 

mathematics, and Numbas mathematical tasks and questions. Some relevant comments 

on congruence are: 

“It was very good that one could enter the formulas in the fields and calculate the answer 

here” 

“Very good that Numbas writes my answer as you see it on paper even though I write it 

differently” 

“I use paper to figure out the answer in different steps and enter, not just the answer” 

In terms of the questions and tasks provided by Numbas, students think that this issue 

is to a great degree dependent on the teacher and her knowledge and the way she 

designed the tasks and questions. Errors in Numbas may also foster reflections. Some 

selected students’ comments are:  

“Depends on how the questions are asked”  

“Again, it really depends on whether the teacher has designed and programmed the 

questions correctly. On the other hand, errors in the program can also help to stimulate 

reflection if they try to understand what has gone wrong”  

“The degree to which Numbas responds to the questions above, is entirely dependent on 

the teacher who creates the questions, (…) the program is very flexible in terms of how to 

create these, as it has advanced features, (…)”  

“(…) I think what is very positive is the given response to answers, the possibility of hints 

and of showing the solution. This information can help students to reinforce their 

understanding. The teacher has a lot of power to control how Numbas will affect the 

student.” 

It appears from the students’ responses that mathematical affordances depend mostly 

on how the teacher has formulated the tasks, even though an intuitive user interface 

and the way feedback is designed are pre-requisites for mathematical affordances. The 

congruence of Numbas with paper-pencil techniques may also facilitate mathematical 

understanding as mentioned above. Moreover, errors in Numbas mathematics do not 

automatically hinder student learning if they are able to exploit the limitations of the 

system to provoke their mathematical thinking. 
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Mathematical affordances Mean Std. Dev 

1.Numbas questions are well-designed and formulated 1.87 0.516 

2.Numbas has a high quality of mathematical content 2.20 0.775 

3.Numbas exercises and questions are useful to foster reflections, 

metacognition, and higher-level mathematical thinking 
2.80 1.014 

4.Numbas provides opportunities to exploit the constraints and 

limitations of the tool to provoke students’ mathematical thinking 
2.60 0.737 

5.Numbas provides opportunities to focus on conceptual 

understanding of mathematics rather than procedural skills 
2.93 1.033 

6.Numbas provides opportunities to foster mathematical thinking 

through various entry points, different questions and exercises 
2.27 0.799 

7.Numbas is mathematically correct. It displays formulas, graphs, 

functions, numbers, expressions, and geometric figures correctly 
2.07 0.884 

8.Numbas simplifies mathematical expressions so they look as if 

we wrote them on paper 
2.29 1.069 

Table 2: Mathematical affordances 

Affordances emerging from the assessment level 

In terms of affordances emerging from the assessment level (Table 3), most students 

think that the order of the questions is appropriate when trying another one (Item 1). 

Likewise, the language and wording of the questions are understandable (Item 2), 

indicating overall satisfaction with the teacher who creates the questions. Most students 

also think that Numbas gives immediate feedback to the students, and it provides 

several types of feedback such as expected answers and advices to the solution (Item 

4, 5). Likewise, for most students, Numbas provides a summary of the test, students’ 

answers to questions, and what they have done wrong or right (Item 8), and in a lesser 

degree whether the answer is correct (Item 9), but there is an important variation in 

their answers (Std. Dev=1.033). Likewise, some students did not find that Numbas 

feedback contain useful information that helps them understand the tasks and answer 

the questions (Item 6). Hints in form of videos to problem solving were not always 

useful (Item 7), but there is a huge variation in their answers (Std. Dev=1.351). 

Moreover, most students think that Numbas provides a summary of the test (Item 10), 

and statistics on students’ answers to questions and their performances and grading 

(Item 11). Finally, it should be noted that Numbas does not take the profile and 

knowledge level of the student into account or serve up appropriate questions (Item 8). 

The most important themes that emerged from the qualitative analysis are the quality 

of the feedback of Numbas and the role of the teacher in formulating the questions and 

designing the feedback. The following comments show that some students were not 

satisfied with the quality of the feedback and the way it is implemented to support 

mathematical understanding. 
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“That said, the forms of feedback both to the students and to the teachers, as far as I can 

see, are not very good, and therefore should not be based on such tests alone” 

“The fact that the students receive feedback right away is positive, which means that they 

can make self-assessments, but if the test is difficult, the result will not come from Numbas”  

“To some extent, it might have been better that Numbas gives more concrete feedback if I 

had made an obvious mistake as for example, a wrong sign” 

“Numbas measures right / wrong, and has little focus on process of conceptual 

understanding, even though one can object that if a student gave the correct answer, he 

might have understood the mathematical concept” 

Beyond the feedback, some students emphasized the role of the teacher in providing 

meaningful mathematical tasks and questions, in line with students’ comments on 

mathematical affordances. 
“In Numbas, I feel that the students get a little more control over their own test result as 

they can choose how much help and support they want themselves. Again, I think this 

depends much on the design of individual tests that determine the degree to which feedback 

satisfies the needs of individual students” 

“Item 1 and 2 depend on the teacher who creates the questions, but it can be added that 

Numbas offers the possibility of letting the order of questions be random”  

Affordances at the assessment level Mean Std. Dev 

1.The order of the questions is appropriate 1.80 0.775 

2.The language and wording of the questions are understandable 1.60 0.632 

3.The questions are useful and relevant to test my own knowledge 2.20 1.014 

4.Numbas gives immediate feedback to students’ answers 1.53 0.915 

5.Numbas provides several types of feedback such as expected 

answers and advices to the solution 
1.93 0.884 

6.Numbas feedback contains useful information that helps me 

understand the exercises and answer the questions 
2.47 0.915 

7.If get stuck I can ask Numbas to give a hint in form of videos to 

problem solving step by step 
2.14 1.351 

8.Numbas takes the profile and knowledge level of the student into 

account and serves up appropriate questions 
3.13 0.915 

9.Numbas shows the answer to a question, and whether it is correct  1.93 1.033 

10.Numbas provides a summary of the test, students’ answers to 

questions, and what they have done wrong or right 
1.47 0.743 

11.Numbas provides statistics on students’ answers to questions 

and their performances and grading 
1.77 0.832 

Table 3: Affordances at the assessment level 

DISCUSSION AND PRELIMINARY CONCLUSIONS 

It is acknowledged that this study cannot be generalized due to the limited number of 

participating students. However, some answers to the research questions and 
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preliminary conclusions can be drawn. First, affordance theory revealed to be a useful 

framework to analyse affordances that arise from students’ interactions with Numbas. 

Second, several affordances have emerged from the technological, mathematical, and 

assessment level, but not all potential affordances were actualized. Another educational 

context might also open the possibility for the emergence of new affordances. 

Technological affordances are pre-requisites for a trouble-free interaction with 

Numbas for mathematical learning and assessment purposes. An intuitive and user-

friendly interface is thus an important feature of Numbas in line with the primary 

design goal of the system. In terms of mathematical affordances, the study shows that 

Numbas has a high level of mathematical content that is correct, sound and congruent 

with textbook mathematics. It helps to test a great variety of knowledge from primary 

to secondary mathematics. At the assessment level, Numbas provides several types of 

feedback to test students’ mathematical knowledge, e.g. immediate feedback on 

correctness of the answer, advice to the solution, summary of the test, and grading.  

Third, the paper shows that the immediate feedback of Numbas provides help and hint 

to test a broad spectrum of mathematical knowledge. As a result, the participating 

students benefited from Numbas feedback and associated tasks with varied levels of 

difficulty across grade 1-7, 5-10, and 8-13. The results are in line with the research 

literature that shows that Numbas improved student experience, increased student 

engagement and enjoyment (Caroll et. al, 2017; Perfect, 2015). Through the feedback 

it gave to students, Numbas proved to be a useful formative assessment tool. 

Fourth, Numbas in its current form is suited for use as a large question bank to practice 

basic mathematical skills. Moreover, Numbas is most suitable in a formative mode 

rather than summative, which occurs at the end of an activity without the possibility 

for students to change their actions. In a formative mode, students can receive 

immediate feedback to their answers with additional and useful information, and each 

question has a “Try another question like this one” button, which generates a new 

question of the same type. Clearly, formative feedback is an essential component of 

assessment, and it can take many forms, e.g., immediate feedback to students’ actions, 

advices to solutions that combine various information, and solution step by step.  

Some students felt nevertheless that Numbas is limited to wrong/right answers, and it 

should provide more information that fosters conceptual understanding. Highlighting 

where a student has gone wrong, and not only right or wrong, giving a fully and detailed 

working solution to a task with additional information on appropriate strategies would 

provide more powerful feedback that can make students more confident in their 

mathematical learning (Clark, 2012; Hattie and Timerley, 2007). However, more 

creative problem-solving tasks and more powerful feedback are much harder to 

automate. Hence, work remains to be done to provide tasks that foster metacognition, 

conceptual understanding, and high-order mathematical thinking.   

Finally, the role of the teacher cannot be underestimated for an effective use of 

Numbas. The teacher is a key stakeholder in formulating meaningful tasks and 

461 sciencesconf.org:indrum2020:295807



 

 

 

questions to ensure that students acquire basic skills in mathematics. Clearly, the 

quality of Numbas feedback depends on the preparatory work and improvements done 

by the teacher to design, implement and refine purposeful mathematical tasks.  

Future work will produce a more elaborated and detailed analysis of the study to ensure 

more reliability and validity of the results and conclusions in accordance with the 

theoretical framework. The analysis will include students’ responses and comments to 

open-ended questions to provide a richer empirical basis. 
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In this paper, we present a theoretical instrument based on the interactive-

constructive-active-passive framework to gauge the interactivity of dyads’ 

communication processes in collaborative face-to-face learning scenarios. 

Subsequently, we show the applicability of the instrument to time-sampled video 

recordings of 63 pairs of students from different fields of study who learn descriptive 

statistics at tertiary level with different digital instructional media (e.g. video tutorials).  

By relating the students’ interactivity of their communication processes to their 

performance in pre- and post-tests we can show that a significant link between their 

communicational behaviour and the learning benefit exists across different kinds of 

digital learning materials and different fields of study. 

Keywords: (Teachers’ and) students’ practices at university level, digital and other 

resources in university mathematics education, communication, collaborative 

learning, digital instructional media. 

THE MAMDIM-PROJECT 

During the last years, an increasing number of digital instructional media like video 

tutorials or commented presentations are used in university level mathematics courses 

across different fields of study (engineering, psychology, economics, …). At the same 

time, a lack of research regarding the pedagogical design of digital learning resources 

and their collaborative aspects is stated (Borba, Askar, Engelbrecht, Gadanidis, 

Llinares, & Aguilar, 2016). To address this situation, the mamdim-project (learning 

mathematics with digital media during the transition from secondary to tertiary 

education) explores the usage and benefit of different digital instructional media. In 

cooperation with four German universities (University of Applied Sciences Pforzheim, 

Offenburg University of Applied Sciences, Bielefeld University and Brandenburg 

University of Technology) a total of almost 300 students of different fields of study 

learned with different instructional media dealing with descriptive statistics in different 

social forms (in dyads or as single learners). The data used in this research report is 

taken from the main study which took place in 2016 and 2017. Its design (pre-test | 

intervention | post-test) had been improved after a pilot study in 2015.  

THEORETICAL BACKGROUND AND RESEARCH QUESTIONS 

Spoken language and the associated communication processes play an important role 

in mathematics education research; an overview of the contemporary research can be 
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found in Morgan, Craig, Schuette & Wagner (2014). Steinbring (2015) explains that 

students’ learning and understanding of mathematics is driven by interaction, which 

especially depends on the use of language and communication processes. Thus, it is 

not surprising that one of the main benefits of collaborative learning situations is the 

possibility to share ideas verbally with a learning partner. On the one hand, this 

advantage has been mentioned and the benefits of collaborative learning situations 

have been shown in many publications throughout the years (Dillenbourg, Baker, 

Blaye & O’Malley, 1996; Slavin, 1995). 

On the other hand, a non-negligible number of studies show that collaborative learning 

in small groups does not lead to greater learning outcomes automatically (Barron, 

2003). Indeed, our own study finds no significant differences between single learners 

and dyads in their post-test scores (for details, see Salle, Schumacher & Hattermann, 

2019). Even a meta study by Lou, Abrami, Spence, Poulsen, Chambers, & d’Apollonia 

(1996) finds that in 28 % of published studies on that subject collaborative learning 

situations have zero or even a negative effect. 

While these results might seem contradictory, they can be explained by use of the 

ICAP-framework by Chi and Wylie (2014) described in the following paragraph. For 

the origins of the framework, see Menekse, Stump, Krause & Chi (2013). Our 

instrument to assess communication within dyads is based on this framework. 

Engagement activities, the CAP-hypothesis and the ICAP-framework 

The ICAP-framework is designed to explain which types of interactions between 

learners are most effective in small group learning scenarios. To use this framework 

on a given situation, the overt learning activities of the students must be identified. 

Those observable interactions between learners or between a learner and the learning 

material are called engagement activities (Chi and Menekse, 2015). These are 

categorised and rank ordered with respect to their benefit to the students’ learning 

outcome into passive, active and constructive activities (ibid). To give an example in 

terms of verbal communication, passive engagement describes a student who only 

listens to his learning partner or gives one-syllable responses (like “hm” or “okay”). A 

student communicating actively would be characterised by reading out loud from the 

given instruction material or repeating what has already been said by her/his learning 

partner. Constructive use of verbal communication will occur if the student elaborates 

on the learning material, tries to explain what is being said on her/his own or if she or 

he poses a question (Chi and Wylie, 2014). The CAP-hypothesis claims that with 

respect to the learning outcome, constructive behaviour is superior to active behaviour 

which in turn is more beneficial for learning than passive behaviour of learners. For an 

overview of theoretical considerations and empirical studies that support this 

hypothesis, see Chi and Wylie (2014). By means of this framework the seemingly 

contradictory positions in research can be explained. To give an example, a 

constructively behaving student will not be able to profit from a collaborative situation 

if the learning partner behaves only passively.  
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While these categories can be used in single learner scenarios, only within collaborative 

situations a fourth category, namely interactive engagement, is introduced. In this 

category, both partners need to behave and communicate constructively in the sense 

explained above and a sufficient degree of back-and-forth utterances between the 

students must occur (Chi and Wylie, 2014). For example, if a student raises a question 

on a specific topic and the other student responds to this question, the dyad behaves 

interactively. The two constructively learning students will then, in theory, profit from 

their collaboration because of their interactivity. 

This background and the long-term aim to foster students` learning outcome in digital 

media learning scenarios at tertiary level leads to the following research questions: Can 

the interactivity of a dyad’s face-to-face communication while learning mathematics 

with a digital instructional medium be linked to their learning outcome in a pre-post-

test-scenario? Is this relation applicable for students of different fields of study and 

across different types of digital instructional media? 

STUDY DESIGN AND TEST INSTRUMENT 

To answer this question, video recordings of 63 pairs of first year students from 

different universities and fields of studies have been analysed: 

• 42 engineering and economics students, University of Applied Sciences 

Pforzheim 

• 40 psychology students, Bielefeld University 

• 44 students becoming primary school teachers, Bielefeld University 

During the intervention phase of our study, which lasted at most 70 minutes, each of 

the three groups used a different instructional medium to learn descriptive statistics (i. 

e. measures of central tendency and spread). In Pforzheim, a digital script in a moodle-

environment containing definitions, formulas, examples, explanations but no further 

multimedia elements (like audio commentary or video clips) were present (cf. Figure 

1). As an interactive element, short multiple-choice questions were incorporated into 

the material. As an example, following the slides dealing with the harmonic mean of a 

data set (cf. Figure 1) the following multiple-choice question is stated: 

A garden centre creates a substrate by blending same masses of four different soils. These 

soils are known to have the following densities: Soil A: 710 kg/m³; Soil B: 920 kg/m³; Soil 

C: 830 kg/m³ and Soil D: 1000 kg/m³. Calculate the average density of the substrate. 

Possible answers were 851 kg/m³, 865 kg/m³ and 857 kg/m³ with the first one being 

the correct answer (calculated using the harmonic mean). The second (wrong) answer 

is calculated using the arithmetic mean of the four values and acts as a distractor. After 

answering the question, students got a direct feedback whether their calculation was 

correct or not. At Bielefeld University, the psychology students worked with a 

PowerPoint presentation. Each slide contains formulas and explanations of the topic at 

hand. Further details are given to the students through an audio narration that can be 

stopped and rewound at any time. The teacher students at Bielefeld University used a 
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series of animated video tutorials with audio narration to learn descriptive statistics. 

Each topic is addressed in its own segment. After each segment, the videos are paused 

automatically giving students time for discussion of the topic at hand before continuing 

to the next topic. For example, the video explaining the harmonic mean has a running 

time of three minutes and thirteen seconds (cf. Figure 2). 

Especially the latter two instructional media include acoustic multimedia elements 

(audio narration) which could influence dyads’ dialoguing behaviour compared to 

classical pen-and-paper scenarios. In this regard the moodle-environment used at 

Pforzheim University can be seen as a benchmark of our methodology because its 

design is very similar to a classic textbook and lacks audio elements. 

Figure 1: Slide from the instructional material used in Pforzheim dealing with the 

harmonic mean (translation by the authors). 

Figure 2: Frame from Bielefeld University (Teacher Students) instructional material 

dealing with the harmonic mean (translation by the authors). 
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The media intervention phases of all students have been videotaped and their computer 

screens were captured. Before and after each media intervention all students had to 

take the same pre- and post-tests consisting of both multiple-choice items and open 

questions regarding descriptive statistics. A detailed overview of the test items used 

can be found in Salle, Schumacher & Hattermann (2019). 

Methodology 

Based on the ICAP-framework described above and on methods derived from Chi and 

Menekse (2015), we developed a theoretical instrument to measure a dyad’s 

interactivity based on video recordings, which is explained in the following; see also 

Hattermann, Heinrich, Salle & Schumacher (2018).  

Measuring interactivity: the dialogue pattern score 

To analyse the video recordings, the time-sampling method by Bakeman and Gottman 

(1997) was used. Each video has been organised into intervals of 10 seconds each and 

those intervals in which students communicate (verbally) for more than 5 seconds 

about the mathematical topic at hand were identified. This task was carried out by four 

qualified persons. To establish intercoder reliability, 13 % of the data set was coded by 

all four persons leading to a Krippendorff’s alpha of 0.77 which represents a satisfying 

value (cf. Lombard, Snyder-Duch & Bracken, 2002). 

Based on the ICAP-framework, the interactivity between the learners in each 10-

second-segment is then rated on an ordinal scale ranging from 1 to 3 according to the 

coding scheme illustrated in Table 1 (see Chi and Menekse, 2015; Hattermann et al., 

2018). 

score description 

Student communication in this 10 second segment … 

1 … is dominated by one student. 

 (active-passive or constructive-passive) 

2 … is performed by both partners, but not interactively. 

 (active-active, constructive-active, constructive-constructive) 

3 … has two constructive partners contributing interactively to it. 

(constructive-constructive and interactive) 

Table 1: Coding scheme of communication interactivity. 

As an example, the following dialogue is taken from a pair of psychology students 

working on the slide dealing with the harmonic mean (cf. Figure 2). 

S1: One would need … The arithmetic mean would be 200 characters because 

one would add 100 + 100 + 400 and then one would divide by 3. That would 

be 200. That’s the result of 600 divided by 3. 

S2: Mhm. 
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S1: That’s 200. This would be the arithmetic mean. But this is wrong because in 

that case he would have had to type faster. 

S2: Mhm. 

Student 1 tries to understand the given example of the harmonic mean and elaborates 

on the material given and thus behaves constructively. His partner, however, responds 

in one syllable mumblings, which is a passive activity. In terms of their interactivity, 

the corresponding segments in the video recording have to be coded with score 1. 

This analysis has been carried out on all 63 recordings by two coders. To establish 

intercoder reliability, 7 % of the data set has been coded by both of them yielding a 

satisfying Krippendorff’s alpha value of 0.81. 

The interactivity of each dyad is then quantified by the dialogue pattern score (dps, 

Chi and Menekse, 2015; Hattermann et al., 2018) calculated as follows: The number 

of times each score (1, 2 or 3) occurs is counted for every dyad and the dialogue pattern 

score is calculated by taking the weighted average of the occurrences: For example, 

suppose the communication of a dyad consists of 19 coded segments in total. 7 of those 

segments were score 1 segments, 8 of them reached score 2 and the remaining 4 of 

them got a score of 3. From this, we can calculate the dialogue pattern score (dps) as 

7 ⋅ 1 + 8 ⋅ 2 + 4 ⋅ 3

19
≈ 1.84. 

Therefore, the communication of dyads with a dialogue pattern score close to 1 is 

dominated by single student contributions without interaction between the partners 

while scores closer to 3 represent a higher level of verbal interaction. 

Measuring learning benefit: the normalised gain score 

To link interactivity of dyads’ communications with their learning outcome, we use the 

normalised gain score g (Hake, 1998) as a measure of learning benefit. This measure 

relates the pre- (𝑥𝑝𝑟𝑒) and post-test (𝑥𝑝𝑜𝑠𝑡) results (as percentages) for each dyad by 

using the following formula: 

𝑔 ∶= 
𝑥𝑝𝑜𝑠𝑡 − 𝑥𝑝𝑟𝑒

1 − 𝑥𝑝𝑟𝑒
 

The post- and pre-test results are averages of both partners’ results as percentage 

figures. This number relates the percentage points a learner actually gained between 

pre- and post-test to the percentage points he/she could have gained. For example, a 

student scoring 25 % in the pre-test and 50 % in the post-test achieved a normalised 

gain score of g = 0.33 (he/she gained 25 percentage points out of 75 percentage points 

he/she could have gained). 

RESULTS 

From the complete data set of 63 dyads, seven had to be excluded from further analysis 

since a lack of communication between the students made it impossible to calculate a 
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reliable dialogue pattern score. For the remaining 56 dyads, we gained information on 

the interactivity of the particular dyad (as measured by the dps) and the learning 

outcome (as measured by the normalised gain score g). To investigate whether dyads 

with a higher interactivity score on average show better learning outcomes than less 

interactive dyads, they are split into two categories: dyads with a high dps and dyads 

with a low dps. This is done by calculating the median dialogue pattern score for each 

of the three cohorts (Pforzheim, Bielefeld (Psychology) and Bielefeld (Teacher 

Students)) - dyads scoring not more than the median are considered “low dps” and 

dyads with a dialogue pattern score above the median are considered “high dps”. This 

analysis has been done for each group of students individually because the cohorts do 

not form a homogenous group as a whole: For example, they differ in their respective 

fields of study and the digital instructional media used during intervention and so the 

distribution of their dialogue pattern scores might vary. 

Having constructed groups of high dps and low dps dyads within all three cohorts, the 

average normalised gain score for each group is calculated. All results are present 

within the following chart (Figure 3): 

Figure 3: Average normalised gain scores with standard deviation for each group. 

Independent t-tests carried out for each cohort show that the difference in means is 

highly significant for Pforzheim (t = - 3.981, p = 0.001) and Bielefeld (Psychology, 

t = - 3.507, p = 0.004) and significant for Bielefeld (Teacher Students, t = - 2.886, 

p = 0.013). This confirms a link between the dialogue pattern and the normalised gain 

score across different kinds of digital instructional media as well as students of 

different fields of study. 

 Pforzheim Bielefeld 

(Psychology) 

Bielefeld 

(Teacher Students) 

Correlation 0.595** 0.675** 0.754** 

Table 2: Spearman Ranked Correlation coefficients between normalised gain and 

dialogue pattern score. ** indicates a highly significant correlation of p < 0.01 
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In order to confirm these findings, we test the two variables dialogue pattern score 

(dps) and normalised gain score (g) for correlation using Spearman’s ranked 

correlation coefficient (Spearman’s rho) as a non-parametric test. Pearson’s correlation 

coefficient is not applicable here since we cannot assume linearity between the two 

variables. The correlation coefficients (cf. Table 2) confirm a highly significant 

correlation (p < 0.01) between the two constructs across all three cohorts. 

Previous knowledge as a possible factor of influence 

It cannot be ruled out that the significant increase in learning benefit between low- and 

high-interaction dyads can in part be explained by the influence of other variables. One 

possible factor of influence that is often linked with high achievement is given by the 

previous knowledge of the students in question. Although the normalized gain score 

takes the pre-tests results into account when measuring learning benefit, it is possible 

that students who are high achievers in mathematics can communicate about 

mathematics more easily and in greater detail – which can lead to deeper interactions 

with their learning partners. In that scenario a better pre-test score could explain both 

a high dialogue pattern score and a high learning benefit. 

Figure 4: Comparison of mean pre-test results of high- and low-interaction dyads and 

single learners for each group. 

To investigate this effect, we consider the groups of high- and low-interaction dyads 

as introduced in figure 3 above. For each of these groups we calculate and compare the 

mean pre-test scores – these can be found in figure 4. Regarding students in Pforzheim 

and the psychology students in Bielefeld, the mean pre-test scores between low- and 

high-interaction dyads are (nearly) identical (Pforzheim: Mlow = 0.23, Mhigh = 0.23; 

Bielefeld (Psychology) Mlow = 0.28, Mhigh = 0.29) while in the setting of the teacher 

students in Bielefeld a non-significant difference in means between those groups is 

present (Mlow = 0.17, Mhigh = 0.22, p = 0.338).  

As the previous knowledge of low- and high-interacting dyads in the domain of 

statistics is comparable in our study, it can be excluded as a main factor for explaining 

the higher learning benefit of high-interaction groups. 
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CONCLUSION AND PERSPECTIVES 

Regarding our research questions, a significant link between the interactivity of the 

dyads’ interaction, measured with the dialogue pattern score, and the learning outcome, 

measured by the normalised gain score, could be found using video recordings of 112 

students in total. These results are in line with other research that has been done on this 

topic in different (non-digital) settings (Chi and Menekse, 2015). Furthermore, by 

using our framework to analyse students’ communicational behaviour while learning 

with different types of digital instructional media, we were able to show that this link 

is not dependent on one specific type of media or a particular set of students. It remains 

an open question for future research whether the strength of this link is influenced by 

the type of digital instructional media used or the particular cohort of students 

considered. Indeed, the teacher students in Bielefeld show a higher overall learning 

benefit compared to other cohorts, but a slightly less significant result when comparing 

high dps and low dps dyads and more variance of the normalised gain score within 

these two subgroups. Furthermore, future research should take into account the 

possibility that the link between communication and learning benefit is dependent on 

the chosen mathematical content. To address this, future studies should focus on 

applying the ICAP framework on leaning materials dealing with domains outside of 

descriptive statistics. 

Additionally, we are in the process to extend our analysis of possible factors of 

influence on both, the communicational behaviour and the learning outcome beyond 

the previous knowledge. For example, it is plausible that affective variables like 

students’ interest or their domain specific self-efficacy could influence both, their 

interest to communicate with their learning partners and their learning benefit. 

Using our method of analysing interactivity of dyads, we now aim to identify features 

of the digital instructional media which promote interaction between learners. This 

information could then be used to develop instructional material that fosters students’ 

interactivity when learning collaboratively. 
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In this paper, we study the teaching of proof in an introductory mathematical analysis 

course taught by a lecturer who brought experience from not only the fields of teaching 

at the university and research in mathematics but also from research in mathematics 

education. The analysis showed that his experiences appeared to affect his teaching as 

he became aware of students’ needs and difficulties, they probably face, making a 

lesson potentially meaningful for them. In particular, regarding the proving process 

the lecturer developed a lesson where he filled the gap between informal and formal 

proving attempting to expand the students’ proof image around the theorem, using the 

semantic approach in proof teaching.  

Keywords: Teaching and learning of analysis and calculus; teaching and learning of 

logic, reasoning and proof; lecture; semantic approach; proof image. 

INTRODUCTION  

The central role of proof in mathematics is widely accepted and lecturers’ attempts to 

teach proofs to students who study mathematics is an issue that concerns the research 

(e.g., Pinto & Karsenty, 2018; Weber, 2012). This paper explores proof teaching in an 

introductory mathematical analysis course taught in a mathematics department. 

Introductory courses are of significant importance for students’ learning as it is the first 

time the typical proving processes are introduced (Alcock, 2010).  

Many studies that tried to shed light in proof teaching were based mainly on interviews 

with the lecturer(s) of the course (e.g., Alcock, 2010; Lai & Weber, 2014; Weber, 

2012). Very few studies combined the lecturers’ underlying thoughts on proof and their 

teaching actions in a lecture with data from both observations and interviews (e.g., 

Pinto, 2019; Pinto & Karsenty, 2018; Weber, 2004). This study characterizes the 

teaching of proof in a lecture but goes in depth presenting a pattern that came up from 

lecture observations and systematic engagement with the data, and connects this pattern 

with the lecturer’s experiences. This pattern is an expression of the semantic style 

(Weber, 2004) and gives details of the way the lecturer understands the semantic style 

and develops it in his courses. Also, it connects semantic teaching style with proof 

image (Kidron and Dreyfus, 2014) in a way potentially meaningful for the students. 

At this level the advanced university mathematical courses are usually taught by 

researcher mathematicians with main experience “on writing proofs for disciplinary, 

rather than pedagogical purposes” (Lai & Weber, 2014, p. 93). This fact leads them to 

give more emphasis on the formal aspects of proof (Alcock, 2010) even though they 

know that the ideas behind the proof are often provided in an informal way (Lai & 
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Weber, 2014). In their own research, lecturers themselves consider the use of informal 

ways for proving but pay less attention to these ways during the teaching in university 

courses. The study we report here is a part of a wider study on university teaching and 

examines the teaching of proof in an introductory course of mathematical analysis by 

a lecturer who brings experience from research in mathematics, research in 

mathematics education but also has many years of teaching experience. With this 

specific case, we try to understand how these different types of experience blend while 

he is teaching proofs. In particular, here we ask: 

1. Which are the characteristics of proof teaching in an introductory mathematical 

analysis lecture?  

2. What is the lecturer’s rationale underlying this teaching in relation to the 

different sources of experiences? 

THEORETICAL BACKGROUND 

In this paper, adopting a sociocultural perspective, teaching is considered an activity 

where the constructive actions and goals of the lecturer are socially and culturally 

framed and developed. The lecture in this context is an instructional activity, while the 

activity of teaching concerns the thoughts, decisions and judgments of a lecturer in 

planning, teaching and reflecting on the lesson (e.g., Petropoulou, et al., 2011).  

Regarding mathematical proof teaching in university, Weber (2004) investigated the 

traditional instruction “definition – theorem – proof”, showing that there is not a single 

paradigm of teaching in the specific instruction. Weber described in detail the teaching 

styles of the lecturer and offered insights into the reasons he used these specific styles, 

through lesson observations and interviews with him. Three different styles of proof 

teaching were identified: the logico – structural, the procedural, and the semantic. The 

first had to do with the typical mathematical argument. The second was about the 

emphasis given on the techniques and the general structure of the proof. The last 

concerned the idea behind the proof while informal representations, such as diagrams, 

metaphors, generic examples, everyday language, took part during the teaching 

process. The researcher mentioned that the semantic approach was a style a lecturer 

followed in order to help students gain rich images of the mathematical concepts. 

Within this style, the lecturer usually worked with intuitive descriptions of the concepts 

and focused on the links among them. In contrast, in the first two styles (logico – 

structural and procedural) informal representations of the mathematical concepts were 

rarely used.  Relevant to the semantic proof production was the concept of proof image 

described by Kidron and Dreyfus (2014). As they described “if an individual has 

attempted to understand why a given claim is true, this individual may have a proof 

image” (Kidron & Dreyfus, 2014, p. 309). During the process of creating a proof, a 

collection was made of previous constructs, ideas, knowledge and examples that 

seemed to be useful and fitted to a specific problem. This collection could lead to the 

proof image and was not necessarily communicable but was complete and provided 

explanation with certainty. Thus, the individual could use the proof image to move to 
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the formal proof with logical links. The difference between proof image and semantic 

reasoning was “the entity characteristic of a proof image” which “implies a complete 

image of the proof rather than specific instantiations of the mathematical object being 

explored” (Kidron & Dreyfus, 2014, p. 304). 

Studies on the teaching of advanced mathematical concepts indicated that lecturers’ 

teaching was affected by multiple factors (Weber, 2004). A combination of knowledge 

about mathematics and pedagogical concepts, skills and experience, goals for the 

course and understandings about how students learn and what they have to learn affect 

teaching decisions and actions in a lecture (Weber, 2004). In order to understand why 

a lecturer chooses these specific actions we have to get an insight into all these aspects. 

The aim of this study is to investigate the teaching of proof at the university when the 

lecturer, a mathematician with research experience in mathematics and with long 

teaching experience at university mathematics teaching is also aware of pedagogical 

issues coming from his research on mathematics education. This paper attempts to shed 

light on an expression of the semantic style. In particular, the emphasis is on the pattern 

of proof teaching that is based on lecturer’s understanding of students’ needs and 

difficulties. 

METHODOLOGY: DATA COLLECTION AND ANALYSIS 

The study was based on an introductory, proof-oriented, mathematical analysis course, 

taught in the mathematics department of a central Greek University, for a period of a 

semester. The content of the course included limits of sequences and functions, 

theorems about continuous functions, the definition of derivative, and applications of 

the previous concepts. The course was compulsory and taught in two parallel classes 

of approximately 100 students in each class. We conducted a case study, focusing on 

one of the lecturers of the course. The lecturer has a 20 – year experience in teaching 

this course and he is an exemplary case of a lecturer. Except of teaching experience, 

he is a researcher both in mathematics and mathematics education and his research 

concerns the area of mathematical analysis and its teaching. More specific, his research 

in mathematics is on functional analysis while in mathematics education is on students’ 

learning of advanced mathematical concepts, the role of counter examples in teaching 

and learning of mathematics, as well as on teaching in undergraduate level and 

teachers’ professional development. 

In total, 17 lectures (34 academic hours) were observed during a semester. The lectures 

were audio – recorded and transcribed while field notes were kept. There were three 

meetings/ semi-structured interviews with the lecturer. The first meeting took place 

during the observations of the lectures, the second at the end of the semester, and the 

third after an initial analysis of the data. The meetings were also audio-recorded and 

transcribed.  

The analysis of the data was done in three stages. In the first stage, we divided each 

lecture into episodes according to the accomplishment of teaching a theorem. We came 

up with 52 episodes. Grounded approaches were used for the analysis of the episodes. 
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Firstly, in each episode were mentioned codes for the informal representations that the 

lecturer presented and for his teaching actions. The codes were merged or refined after 

the continuous engagement with the data and comparison with the current literature 

(e.g., Petropoulou et al., 2011; Fukawa – Connelly et al., 2017). In the second stage of 

the analysis, the interaction between teaching actions and informal representations led 

to the identification of the process of proving the lecturer followed and of emerging 

patterns. In the last part of the analysis the data from the lectures were connected with 

the data from the interviews. After the transcription of the discussion meetings, we 

tried to gain deeper insight into one identified pattern. We explored the reasons why 

the lecturer followed this pattern while he was teaching proof and we investigated the 

underlying rationale of each phase of the pattern. We tried make relations with the 

academic fields he participated (research in mathematics, prior teaching experiences, 

research in mathematics education). In this stage of the analysis the lecturer played an 

important role in confirming the interpretations. 

RESULTS 

Through the analysis of the data we identified a pattern that the lecturer followed during 

the teaching of a theorem. This pattern consists of four phases: posing the problem, 

formulation of the conjecture and informal proving, formal proving and reflecting. The 

phases will be illustrated using an episode referring to the theorem of the uniqueness 

of the limit of a sequence. In this episode, the identified teaching actions are typical of 

the way the lecturer dealt with proof teaching. In the end of the section we give a first 

insight into the lecturer’s rationale of his teaching actions through the analysis of the 

interviews, highlighting the sources of the different experiences. 

This theorem was taught at the 9th lecture of the course. The definition of the limit of 

the sequence was introduced in the previous lectures and was explained through the 

use of different representations (e.g., verbal, graphical).  

Episode Teaching actions 

[1] Let’s see something. If we have a convergent sequence, 

can this sequence converge to more than one numbers? 

Posing the 

problem/ rhetoric 

question 

[2] Do you know a sequence that converges, for example, 

to both 1 and ½? What do you think?  

 [a student responds that the limit is unique] 

Making the 

problem more 

specific/ posing  

question to the 

students 

[3] We have already discussed the definition of the limit of 

a sequence. We have not proved that there is only one limit. 

I want you to think intuitively. 

Pointing out the 

need for facing 

the problem/ 
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inviting students 

to think intuitively 

[a student gives a general description of the idea of proof] 

[4] Exactly, so you conjecture that the limit is unique. 

Conjecturing  

 

[5] Let’s see. We have a sequence that converges to both 

numbers, 𝛼 and  𝛽. Because these numbers are different we 

can find an interval around 𝛼, an 𝜀 here [showing in the area 

around limit 𝛼] and an 𝜀 there [showing the area around the 

second limit 𝛽], so these two intervals will be disjoined. 

 

Explaining the 

key idea using a 

diagram  

[6] This is an important property of real numbers. We have 

already used it to prove that (−1)𝑛 is not convergent. For 

every two different numbers, we can find an 𝜀 so these two 

intervals will be disjoined.  

Pointing out the 

importance of the 

key idea 

[7] If the sequence converges to both numbers then from a 

point onwards all the terms will be there [showing the area 

around the first limit 𝛼] and from this point onwards all the 

terms will be there [showing the area around the second 

limit 𝛽 ], that is a contradiction. 

Informal proving/ 

using a diagram 

and informal 

language  

[8] Or if you want, if we have these two intervals, outside 

these intervals we would have finite numbers, so here 

[showing the area around the second limit 𝛽] we would 

have finite numbers. That is contradiction. 

Informal proving 

using an 

alternative 

definition of limit  

[9] Let’s prove it.  

Theorem: if the sequence 𝑎𝑛 converges to both 𝛼 and 𝛽, 

then 𝛼 = 𝛽.*  

Writing the 

statement of the 

theorem 

[10] The proof is what we described previously. Typical 

now. We will prove by contradiction. We will assume that 

a 𝛼 ≠ 𝛽.  

Stating the 

method of proving 

[11] Let’s assume that 𝛼 ≠ 𝛽. Let’s 𝛼 < 𝛽. If 𝛽 < 𝛼 we 

would do the same.  

Starting the 

formal proving 

[12] [Making a new diagram – as in [5]] which 𝜀 we should 

take to have contradiction? We want an 𝜀 so these two 

intervals would be disjointed.  

Posing rhetoric 

questions related 

to a specific 

proving step/ 
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linking to the 

informal proof 

[13] [Updating the diagram] 

The distance between 𝛼, 𝛽 is 𝛽 − 𝛼. Thus the distance of 

𝛼, 𝛽 from their mid-point 
𝛽+𝛼

2
  is  

𝛽−𝛼

2
.  

 

We can take an 𝜀 less than or even than 
𝛽−𝛼

2
. [Updating the 

diagram] 

  

Explaining the 

idea behind the 

choice of 𝜀 

informally, using 

a diagram 

[14] Let’s say 𝜀 =
𝛽−𝛼

3
. This is positive and 𝛼 + 𝜀 < 𝛽 − 𝜀.  Formal proving  

[15] What does it mean that 𝛼𝑛 converges to 𝛼? 

There is 𝑛1 > 0, I will write it this way, 𝛼 − 𝜀 < 𝛼𝑛 < 𝛼 +
𝜀 ∀ 𝑛 ≥ 𝑛1.  

Similarly, because 𝛼𝑛 converge to 𝛽, there is a 𝑛2 > 0, not 

necessarily similar with the previous one, 𝛽 − 𝜀 < 𝛼𝑛 <
𝛽 + 𝜀 ∀ 𝑛 ≥ 𝑛2. 

Formal proving/ 

rhetoric question 

and comments  

[16] This means that if I find a natural number greater than 

𝑛1 and 𝑛2 then for this index the corresponded term will be 

here [adding 𝛼𝑛 at the diagram second at 13].  

So, for 𝑛 > 𝑚𝑎𝑥{𝑛1, 𝑛2} we have 𝛼𝑛 < 𝛼 + 𝜀 < 𝛽 − 𝜀 <
𝛼𝑛 which is a contradiction. 

Formal proving/ 

using the diagram 

[17] There is a property that is crucial in this proof. The key 

idea of this proof is that we can separate two different real 

numbers with disjoined intervals. I say this because it will 

be useful in future courses. 

Reflecting on the 

key idea  

Table: teaching episode and analysis (translated from Greek - *written also on the 

blackboard) 
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In the episode, the lecturer follows the pattern of posing the problem, formulation of 

the conjecture and informal proving, formal proving and reflecting phases. During the 

phase posing the problem ([1]-[3]) the lecturer sets the problem by asking the students 

whether a sequence can converge in more than one numbers [1]. He specifies the 

question [2] and points out the necessity of facing the problem [3]. The purpose of this 

phase is to show to the students that any mathematical result originates from a problem. 

Τhe formulation of the conjecture and informal proving phase follows ([4]-[8]). The 

lecturer in this phase is trying to develop an inquiry that will lead to the conjecture and 

to the informal proof of this conjecture. The lecturer uses informal representations like 

diagrams to support the proving process. Also, the language that he uses seems to be 

both formal and informal. In the episode, the lecturer uses the student’s answer for the 

formulation of the conjecture [4], draws a diagram and uses  informal language and 

diagrams to explain the key idea [5], [6], [7], [8]. At the end of this phase a proof image 

has been presented to the students creating a certainty that the conjecture is true.  

Then, in the phase of formal proving ([9] – [16]) the lecturer translates the informal 

arguments of the proof to formal ones by using mathematical language. The lecturer in 

that phase writes on the board the statement of the theorem and the typical proof. 

During the typical proof, he makes references to the informal proof, translating it step 

by step, combining different representations, so as to create links between the previous 

phases of the proving process. In the episode at the beginning, he writes the statement 

of the theorem [9]. The lecturer makes a new diagram to support his teaching actions. 

The difference is that this diagram is gradually updated through the proving process. 

The diagram keeps the structure of the process compact and links the previous phase 

of the informal proving with the phase of formal proving. There is an interplay between 

formal and informal proving as the lecturer explains the steps first informally using the 

diagram or questions [12, [13] and then translates them in a formal way [14], [15].  

After the completion of the proof the lecturer takes a few minutes (reflecting phase) to 

reflect on the key idea that arises from the proving process and seems to be useful for 

the students [17]. Therefore, in the last phase, the lecturer sums up what happened in 

the previous phase. He focuses on the key ideas of the proof as well as he investigates 

the necessity of the theorem conditions and its reverse when is needed. 

In general, in the phase of formulation of the conjecture and informal proving the 

teaching has characteristics from the semantic style. The lecturer tries to make students 

understand what the theorem is about and help them construct meaning of the proving 

processusing several informal representations. At the end of this phase he has also 

developed the proof image of the theorem. The steps he makes are explicit and came 

from what he thinks will be useful for the students in order to be ready for the typical 

proof. The transition from the developed proof image to the formal proof happens with 

the identification of the logical links, which in our case is the translation of the previous 

phase step by step. In the last part of the proving process the lecturer seems to focus on 

the key ideas of the proof, a characteristic of the semantic teaching style, but also, he 
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separates constructs, ideas etc. that can be used as a proof image for the proof of another 

theorem.  

Lecturer’s rationale underlying proof teaching 

During the first interview, the lecturer stated that the main goal of his teaching was to 

show to the students how mathematics are produced and how they should study and 

understand mathematics. In his words, “The biggest problem of the students, I realized 

it latter was that they don’t know how to study mathematics… They study mathematics 

in the same way as they did in school. This way doesn’t help them now”. He 

emphasized that he attempts to “gradually introduce the students to the new learning 

culture that is different from that of school and to the mathematical production that is 

based on proofs”.  

Regarding the emerged pattern, in the second interview the lecturer said that “this is a 

lesson addressed to future mathematicians, so I try not only to show what the theorem 

says and solve exercises but to present how our thoughts develop and lead to a 

conclusion”.  Then, when the problem leads to a conjecture, he said that “we don’t 

know if it is right or not, so we start to think informally to understand what is going on. 

In the end of this process we have a strong belief that the conjecture is true”. He added 

that “we sum up what we proved (…) because this is meaningful for the students in 

order to understand the theorem and get a holistic view of the proof”. The third phase, 

he stated that “Here I repeat the previous phase, step by step, translating every step in 

a formal way in order to make links”. In the last phase, he restated the key ideas because 

“the key ideas will probably help the students in similar situations or in other courses”.  

Research in mathematics helped the lecturer adopt this particular teaching approach. 

Nevertheless, it was the research in mathematics education that gave shape to his 

teaching by following a specific pattern while he presents proofs. In the last interview, 

the lecturer made explicit the sources of his teaching decisions and actions: 

The reason to teach a theorem following this pattern came both from my research in 

mathematics and research in mathematics education. In the research in mathematics the 

starting point is a problem. By the use of informal and formal tools, a conjecture about the 

answer of this problem is formulated and then usually informally the researcher develops 

a general process of the proof of the conjecture. The last phase is to write the formal proof, 

and then they are sure that the theorem has been proved. I try to follow a similar process 

in my teaching in order to make explicit to the students how we think when we do 

mathematics. If I taught only the theorem and the formal proof I would teach the 

mathematical product and not the thinking that led to this. 

The research in mathematics education made him more conscious of the teaching goals 

he should try to achieve during the lecture:  

My involvement with research in mathematics education helps me to see that common 

practices in mathematics research, as the use of different representations and the 

connections between them, are very important in learning and teaching of mathematics. 
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So, I try to adapt my teaching with the way that mathematicians work, using ideas and 

results from the research in mathematics education. I used to emphasize this process in the 

past, but now I am aware of the importance of this in my teaching. Also the research results 

from mathematics education on students’ difficulties helps me to focus on these 

difficulties.  

DISCUSSION  

The present study brings into account the teaching of the proof during a lecture. We 

studied a case of a lecturer who brings experience from both research in mathematics 

and mathematics education, and also, has many years of teaching experience at the 

university level. All the above seemed to affect the lecturer’s teaching as he became 

aware of students’ needs and difficulties they probably face. What makes this case 

particular is that the lecturer is not only a mathematician who teaches at the university 

level (e.g., Paterson et al., 2011). He also draws in research in mathematics education 

to make the proving process potential meaningful for the students. A previous research 

of Petropoulou, Potari and Zachariades (2011) had shown that these experiences of a 

lecturer affected the way he taught. For instance, in that study, in many incidents 

sensitivity to students’ needs seemed to balance with a challenging mathematical 

content. In this study, the lecturer focuses on the process of mathematical proof 

production taking into account students’ possible learning needs. In the course, the 

lecturer tried to develop students’ proof image as it is not expected that students would 

have their own during the first year. This case of a lecturer brings closer the distance 

between mathematical teaching and mathematical production. The inquiry the lecturer 

promotes during the proving process is an expression of semantic style and supports 

the development of students’ proof image. 

This study highlights the importance of proof and proving at the university level and 

especially in the teaching of an introductory analysis course for the students of a 

mathematical department in a lecture format. Although there are studies at the 

university level focusing on teaching practices and specific teaching actions (Viirman, 

2015), our research goes beyond the identification of teaching actions. It offers a global 

characterization of proof teaching indicating interrelations among different teaching 

actions. The phases of the pattern appear as a characterization of the semantic style of 

proof teaching and seems to have potential in developing students’ proof image around 

the proof. The pattern is not linear. For instance, as we described in the episode, in the 

phase of formal proof, the lecturer used also informal explanation. The process is 

nested and the pattern appears again in a way similar to the mathematical production. 

Further research is needed to study the impact of this kind of proof teaching in students’ 

learning. This would enrich our understanding of the multifaceted process that is the 

act of proving at the university level.  
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One of the ways in which university mathematics departments across the United States 
are making efforts to improve their introductory mathematics courses is by 
implementing or increasing the level of course coordination. This not only entails 
creating uniform course elements across different sections but also includes efforts to 
build a community among the instructors of the course. While many coordinators have 
the common goal of improving student success, we explore what guides their actions 
to see this accomplished, what we refer to as their orientation toward coordination. In 
this paper we introduce and elaborate on two orientations toward coordination that 
arose from interviews with course coordinators from a variety of institutions across 
the country. We also discuss the importance of both orientations as they relate to 
drivers of change. 
Keywords: Course coordinators, leadership, teachers’ and students’ practices at 
university level, preparation and training of university mathematics teachers 
INTRODUCTION  
Course coordination for multi-section introductory mathematics courses such as 
precalculus and calculus is one way in which universities across the country are 
attempting to improve instruction and the consistency and quality of students’ learning 
experiences (and hence improve student learning outcomes). Because multi-section 
introductory mathematics courses are often taught by a range of instructors (including 
graduate students, career line faculty, and ladder rank faculty), course coordination can 
help mitigate against uneven student experiences that can disadvantage students in 
different sections of the same course. Such uneven experiences include different 
content emphasis or coverage, different grading schemes, and different quality 
enactments of active learning. Active learning as it is used here refers to a wide range 
of instructional approaches that invite students to engage in challenging mathematics 
and to share their reasoning with their peers. These differences in learning experiences 
are potentially problematic because they offer different opportunities for students to 
learn the intended content, and hence be adequately prepared for subsequent courses. 
As such, course coordination can be an important contributor to student success. 
One of the first studies of course coordination in mathematics departments investigated 
the coordination system at five mathematics departments identified as having relatively 
more successful Calculus 1 programs (Rasmussen & Ellis, 2015). The phrase 
coordination system is used to evoke the image of coordination that goes beyond 
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surface features of uniform course components (e.g. syllabus, textbook, homework, 
exams) to include efforts to build a community of instructors working together to create 
rigorous courses and high-quality learning experiences for students. In this study the 
authors identified concrete actions that the course coordinators took to provide both 
logistical support that promotes greater course uniformity and hence more equitable 
student experiences as well as just-in-time professional development support for 
teaching difficult topics, implementing active learning, pacing, etc. Rasmussen and 
Ellis (2015) liken the role of course coordinator to that of a choice architect, which 
comes from the work of Thaler and Sunstein’s (2008) work in behavioral economics. 
A choice architect is someone who is able to structure choices for others in ways that 
can “nudge” them to make particular choices while still maintaining the feeling of 
independence. For example, one of the things that course coordinators at the five 
mathematics departments, studied by Rasmussen and Ellis, did was to make 
instructors’ lives easier by providing a range of default options, including homework 
sets, class activities that actively engage students, pacing guides, etc. Instructors had 
leeway in how they made use of these options and thus maintained pedagogical 
autonomy. They further argue that this framing of a coordination system is consistent 
with effective change strategies identified by Henderson, Beach, and Finkelstein 
(2011).  
In ongoing work at a different set of mathematics departments, Rasmussen et al. (2019) 
conducted five case studies of mathematics departments that have successfully initiated 
and sustained active learning in their Precalculus to Calculus 2 (P2C2) curricula. These 
researchers highlight the different ways that coordinators across the five sites make 
instructors’ lives easier and build community among instructors. Williams et al. (2019) 
further analyzed these five sites to highlight the ways that coordinators can function as 
change agents by leveraging the following three key drivers for change: providing 
materials and tools, encouraging collaboration and communication, and encouraging 
(and providing) professional development. An important contribution of the work by 
Williams and colleagues is the strong connection between ongoing mathematics 
department change efforts and the substantive and growing literature focused on 
change in higher education (e.g., Shadle, Marker, & Earl, 2017).  
One thing that is common (and abundantly clear) from this prior work is the critical 
role of the course coordinator in a coordination system. Hence, a better understanding 
of what values, beliefs, dispositions, etc. coordinators take toward their toward their      
role is needed. In conceptualizing these aspects of coordinators, we are inspired by the 
work of Thompson, Philipp, Thompson, and Boyd (1994), who examined the influence 
that teachers’ conceptions have on their implementation of innovative curricula. In 
particular, they identified two contrasting orientations toward mathematics teaching: 
calculational orientation and a conceptual orientation. They illustrated how these 
different orientations have significant consequences for how teachers interact with 
students and content and hence offer different opportunities for learning. Similarly, we 
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were curious to better understand coordinators’ conceptions toward coordination 
because such beliefs and understandings profoundly influence how they interact with 
their colleagues and the consequent opportunities for professional growth. Thus, the 
research question that drives the analysis presented here is: What orientations do 
course coordinators take toward their work? 
The potential contribution of this analysis is both pragmatic and theoretical. 
Pragmatically, a deeper understanding of the orientations of course coordinators offers 
mathematics departments a language for thinking about what their goals of 
coordination are and who, either in their department or new hires, would have the 
perspective on coordination that is likely to be able to enact their goals. Theoretically, 
this work contributes to conceptualizing the role of coordinators and coordination 
systems more generally.  
THEORETICAL BACKGROUND  
To frame course coordinator orientations we draw on Philipp’s (2007) comprehensive 
review of mathematics teachers’ beliefs and affect, where beliefs are described as the 
“lenses through which one looks when interpreting the world,” and affect is thought of 
as “a disposition or tendency one takes toward some aspect of his or her world” (p. 
258). Our use of the term “orientation” encompasses both beliefs and affect as 
described by Philipp. In his chapter, Philipp attends to the differences and similarities 
between a teacher’s affect, beliefs, belief systems, conceptions, identity, knowledge 
and values as these terms are inconsistently used in the literature. Each has a unique 
impact on the way a teacher interacts with their classroom and can provide researchers 
with new perspectives on how to measure teacher development. While these terms 
require a localized focus, Philipp also steps back to discuss the existence of a teacher’s 
orientation as it encapsulates a variety of the localized terminology and requires a 
broader focus from a researcher’s perspective to better understand teacher impact in 
the classroom. 
As described in Thompson et al.’s (1994) paper, varying teacher orientations can 
produce markedly different discussions in the classroom due to what the teacher 
considers valuable information. For example, a teacher with a calculational orientation 
will consider a procedural answer to the question, “How did you get that answer?” as 
all that is needed, whereas a teacher with a conceptual orientation is more interested in 
how the student is thinking about the quantities that are used and the relationships 
between them (Philipp, 2007; Thompson et al., 1994). The orientation of a teacher 
emphasizes the goals and intentions of the teacher as enacted through their actions and 
discourse in the classroom. We draw a parallel between the orientations of a teacher 
and the orientations that a coordinator may have, as their goals and intentions for how 
the course should be run are enacted through their actions and influenced by their 
beliefs, knowledge and values. 
METHODS 

485 sciencesconf.org:indrum2020:295061



 
 
This study is part of a larger national study investigating Precalculus through Calculus 
2 (P2C2) programs and student supports at the post-secondary level. As part of this 
larger study a census survey was conducted of all mathematics departments that offer 
a graduate degree in mathematics (Rasmussen, et al., 2019) and twelve institutions 
were selected as case study sites based on what the research team viewed as noteworthy 
or otherwise interesting features of their P2C2 programs. These features included ones 
previously identified as being associated with successful Calculus 1 programs, one of 
which being course coordination (Hagman, 2019; Rasmussen, Ellis & Zazkis, 2014). 
After the project team’s initial site visits and data collection, seven sites were identified 
as leveraging a coordination system that went beyond simply implementing uniform 
course elements (e.g., syllabus, textbook) to also include intentional efforts to build a 
community among instructors. In order to answer our research question, we conducted 
13 interviews (2018-2019 academic year) with 19 P2C2 coordinators across the seven 
sites. We conducted 10 individual interviews and three group interviews that included 
two or more coordinators. Interview questions included probes such as what one likes 
most (and least) about being part of a coordinated course, level of autonomy, and 
characteristics of what makes for a “good” coordinator.   
Interviews were audio-recorded and transcribed for analysis. We conducted a thematic 
analysis (Braun & Clark, 2006) to identify orientations coordinators take towards their 
work. Each researcher open coded the transcripts for three sites, with at least two 
researchers coding the same site and comparing codes to reach consensus. The research 
team met to discuss and revise codes and group them by theme, reaching consensus on 
the grouping and descriptions of the categories. This phase of analysis resulted in 11 
categories (henceforth referred to as themes) that shed light on these coordinators’ 
approach to their role. Each theme consists of three or more codes from the first round 
of coding. The research team then engaged in further axial coding and identified two 
orientations towards coordination that encapsulated 10 of our 11 themes (with the 
theme of Personal Qualities not fitting into either orientation). 
FINDINGS AND RESULTS 
Our analysis of the coordinator interviews resulted in identification of two distinct 
orientations to coordination. We refer to these two orientations as a Humanistic-
Growth Orientation and a Knowledge-Managerial Orientation. We next illustrate each 
of these orientations, using interview excerpts that were selected to be representative 
of each respective theme within the orientation.  
Humanistic-Growth Orientation  
Five themes were identified during analysis that we later grouped to define the broader 
category that we call Humanistic-Growth Orientation toward coordination. These five 
themes are: a) intentional instructor support, b) interested in relationships, c) 
community builder, d) attends to student experience, and e) flexible. Together, these 
themes describe the orientation of a coordinator that incorporates humanistic values 
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and a belief in the potential for professional growth of the instructors under their 
purview. For the purposes of this proposal we highlight three of these themes: 
intentional instructor support, community builder, and flexible. 
Intentional instructor support. This theme goes beyond providing resources and 
materials for the instructors of the course to make their lives easier (which aligns more 
with a Knowledge-Managerial Orientation). All of the actions categorized under this 
theme are deliberately made by the coordinator to support instructors’ improvement of 
their teaching. One example of this is exhibited by a coordinator describing their goals 
and intentions for coordination: 
The coordination is to try to get them [instructors] up to speed for thinking about how 
students learn math, how to help students be successful, how to help students connect 
to the ideas that are being taught in this specific class, but also for them to think a little 
bit more carefully about how they present things. 
This coordinator is not only attending to student experiences from a content 
perspective, but is addressing the ways in which they can intentionally help instructors 
think about how to provide a more thoughtful and enriching experience for the students 
in the classroom. The following quote describes the level of intentionality of a 
coordinator that provides this type of support: 

But to the extent that I have been effective as a coordinator... I think it’s been as a result of 
my intentions to influence instruction and influence the instructors’ confidence with 
respect to teaching. I don't think that that view of coordinating is shared amongst others 
necessarily. I think the others really do view their role as being not only including, but 
limited to the managerial aspects. And that is very much secondary in my view. 

While these quotes describe just two aspects of intentional instructor support, we 
noticed other actions of the coordinators that reflect this theme such as providing 
professional development opportunities, observing instructors’ classes and giving 
feedback, supporting instructors to be reflective practitioners, as well as willing to be 
the “scapegoat” (as opposed to letting the instructor take the heat) when students are 
upset with how the course is being run.  
Community builder.  There was evidence of various community building efforts in 
all 13 interviews. Some of the actions that we identified to build community were: 
valuing contributions and feedback, getting people to work as a team, getting 
instructors excited about the course, and generating buy-in for the philosophy of the 
course. Some of these efforts are characterized well by a coordinator that had the 
following to say about coordination, “Coordination is not autonomy. It's about a team 
effort and setting up best practices that everyone follows.” Many of the coordinators 
from our interviews reflected similar beliefs and viewed the coordination practices as 
a collective effort. A related aspect of community building was an intentional effort by 
the coordinator to distribute power amongst the instructors of the course. For example, 
a coordinator at a large research university reflected on their own work as coordinator: 
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I do my best to structure those meetings to give the impression, not entirely artificial, that 
we're kind of engaged in a collective enterprise to improve all of our students' learning. So, 
I truly try to position myself as a co-participant in that process. Not somebody who's 
necessarily dictating to everyone else, you know, what to do or how to teach, but, you 
know, I'll pose particular questions or issues and invite people to offer their own 
perspectives and that sort of thing. And again, I'm sort of trying to nudge things along in 
particular directions and buy things in particular ways. But, I want individual instructors 
to feel like they have some agency over the direction of the course for everybody. And I 
think that this would result in kind of a sense of, at the very least, sort of codependence 
amongst the instructors where they are all like, we'll have lunch together, that sort of thing. 

The efforts to build community vary from coordinator to coordinator, but the goal to 
establish a community is central to this theme. 
Flexible. Most coordinators lead nonhomogeneous groups of instructors. In many 
circumstances, the heterogeneity of the instructors exists in the experience that they 
have teaching the course or teaching in general. As a means to provide the necessary 
support for the instructors as a collective, we saw that some coordinators would adhere 
to varying levels of coordination practices as described by a coordinator when asked 
about instructor autonomy: 

The degree of autonomy that instructors want when they're teaching the course is directly 
related to how many times they've taught the course or their experience with the course. 
The [graduate] student that's teaching Calc 2 for the very first time doesn't want any 
autonomy. They want to come in and they want to talk to me about here's what I'm doing 
next. ‘How do you do this? What are the things that you emphasize?’… so, usually the 
greener the teacher, the less autonomy they want. Whereas the person that's taught the 
course over and over again has got- they have a good handle on it and they tend to not 
[need extensive advice],they just have it down.  

By incorporating a flexible approach to coordinating, the coordinator is able to provide 
a tailored experience for each instructor that has the potential to generate more buy-in 
from the instructors and foster a collaborative team environment. 
Knowledge-Managerial Orientation 
The themes from this analysis that shed light on a Knowledge-Managerial Orientation 
to coordination include the following aspects of coordination: a) course content and 
curriculum, b) organizing and attending to the details of the course, c) communication, 
d) knowledge of the course history (including department and university structure), and 
e) knowledge of teaching the course. While every coordinator described performing 
actions of one form or another from this orientation, in this proposal we only detail the 
themes of course historians and communication. 
Course historian. Coordinators who discussed their role as a course historian 
demonstrated a rich knowledge of both the coordination structure and history as well 
as knowledge of the larger departmental and university system in which coordination 
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is embedded. Notably, coordinators leveraged this knowledge to work towards 
sustaining and facilitating change because they knew what worked well and what has 
been met with resistance. For example, one coordinator said: 

We don't give ... a common exam. And I was sort of toying with the idea of maybe we 
should give a common exam, and I was told ... that would require a departmental vote. 
Only because it's calculus and people care about what calculus is… Because I will have 
tenured faculty teaching, often there is … a limit that's been made, not explicit, but 
implicitly clear to me about like you can't just take total control of this course. … It's not 
like it [a common exam] would never happen, but it would not be as simple thing that I 
could just decree that that's going to happen. So, it would take a lot of work. 

This excerpt highlights an understanding of some of the departmental barriers to 
change and includes an understanding of ways to work within the system to facilitate 
changes for a course. Being a course historian also requires a continuous involvement 
within the coordination structures so that one’s understanding and knowledge remains 
current and relevant. A participant highlighted this when they said a coordinator must 
be embedded within the department and ask, “‘Hey, how are you? How are things 
going? Do you want to teach again?’ or like, ‘What are you doing now?’ Like you have 
to be able to be part of the social network of the department in a way.” The 
coordinator’s involvement within the department is integral to their effectiveness. In 
addition to the importance of having this knowledge of the course history to make 
content or policy changes, coordinators that demonstrate a Knowledge-Managerial 
Orientation to coordination also draw on this knowledge when communicating 
department and university policies to instructors who are likely less familiar with this 
information.   
Communication. The communication aspect of the Knowledge-Managerial 
Orientation to coordination includes both communicating important content and 
logistics about the course to instructors and being responsive to student and instructor 
emails. Some coordinators created a document or a set of examples to communicate 
important content, saying things like: 

We have these 62-page documents that are the expected learning outcomes for our calculus 
course that I developed. And it was so I can just be like, ‘Hey grad student, this is the 
course, and it's a lot of high-level things. Students should be able to do blank... all organized 
in some hierarchical way. And that took a lot of experience to write that thing and now it, 
it's a lot of detail and it's all organized, and then it's communicated and disseminated. 

Other coordinators communicated key content by drawing attention to it during formal 
or informal meetings/discussions with instructors. One coordinator acknowledged that 
he likes to allow room for instructors to have agency in the course in addition to clearly 
communicating important content, saying:  

If there's a certain thing that I really, really want to test students on ... I might, like say to 
them, ‘Hey, try to implement something in your class, try to do something like problem 
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number 25 on page 381.’ Yeah, I might say something like that, but I try not to, I try not to 
overstep that with other people.  

All of the themes encapsulated by the Knowledge-Managerial Orientation to 
coordination illuminate an approach that allows for the coordination structure to be 
implemented in an organized way, clearly communicating the coordinated elements 
and expectations to instructors. Coordinators who embrace this orientation leverage 
their knowledge of the students and their experience teaching the course to create 
appropriate resources and coordinated elements. Additionally, this approach allows for 
a coordination system that is well-informed by the course history, and departmental 
culture/policy surrounding it.  
DISCUSSION 
All of the coordinators in our study demonstrated aspects of Knowledge-Managerial 
Orientation to coordination, highlighting the importance of being familiar with the 
course they are coordinating as well as creating and sharing resources with instructors 
teaching the course. This is not surprising since uniform course elements are a key 
component of coordination. Approximately half of the coordinators also demonstrated 
a Humanistic-Growth orientation. Moreover, when this subset of coordinators 
discussed managerial or resource aspects of their work, they tended to frame their 
actions from a Humanistic-Growth Orientation. For example, providing instructional 
materials was done in the spirit of supporting instructors to excel in their teaching. It is 
important to note that while not every coordinator demonstrated a Humanistic-Growth 
Orientation toward their coordination work, those that did were deliberate and 
prioritized personal and professional growth to improve the quality and effectiveness 
of their P2C2 courses.  
We see a similar level of intention from the coordinators in the study by Williams et 
al. (2019) as various coordinators deliberately take action to improve student success 
by acting on three drivers of change to implement and sustain more active learning in 
their P2C2 sequences. These drivers, providing materials and tools, encouraging 
collaboration and communication, and encouraging (and providing) professional 
development nicely align with the two orientations presented in this proposal. 
Providing materials and tools is an action taken by coordinators with a Knowledge-
Managerial Orientation while encouraging collaboration and professional development 
are two actions taken by coordinators that approach their work with a Humanistic-
Growth Orientation. Thus, by encouraging coordinators to initiate change through an 
approach to coordination that incorporates both the Humanistic-Growth and 
Knowledge-Managerial Orientations, mathematics departments across the country 
could reap the potential benefits of increased active learning in P2C2 classes. 
By attending to these drivers and orientations, mathematics departments now have the 
language and research evidence to support their goals of improving or implementing 
active learning and coordination. Drawing on the data from a census survey sent to all 
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Ph.D. and master’s granting institutions across the country, we know that there is a 
need for the improvement of professional development support as well active learning 
practices in the classroom (Rasmussen, et al., 2019). Math departments reported 
valuing active learning and professional development, but also reported not being very 
successful at each. In fact, 44% of mathematics departments saw active learning as 
very important, 47% saw it as somewhat important and 9% did not see it being 
important. However, when asked about how successful they were at implementing 
active learning, only 15% of the 199 mathematics departments reported that their 
program was very successful. Similarly, with graduate teaching assistant (GTA) 
professional development, 50% and 32% of the mathematics departments saw it as very 
and somewhat important (respectively), while only 29% of the respondents reported 
being very successful at it. Clearly, mathematics departments across the country are 
looking for ways to improve their active learning and professional development efforts, 
and effective course coordination is one opportunity to achieve this goal.  
Our hope is that by bringing awareness to coordinators’ orientation(s) we are not only 
supporting mathematics departments in search of coordinators but are also encouraging 
coordinators themselves to reflect on how they approach their role and how they can 
act on the available drivers for change at their institutions. By providing this 
perspective towards coordination, we also hope that this empowers mathematics 
departments across the country to improve their active learning and professional 
development efforts. The next step in our work surrounding P2C2 coordinators’ 
orientations will be to analyze the instructor and GTA interviews to compare and 
contrast what is valued in terms of effective coordination. A future study might also 
analyze the work of coordinators in science and engineering departments and then 
compare this to the orientations identified here. Such research may lead to even greater 
significance of our findings as it might identify related or expanded efforts to improve 
instruction in a range of introductory courses typically required for mathematics, 
science, and engineering students.  
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Whereas there is a widely accepted epistemological model of mathematics in the 
community of mathematicians, there is no such a thing for the teachers of 
mathematics in secondary education. This makes problematic the transition from 
tertiary (as students) to secondary education (as teachers). In this work we analyse 
this didactic phenomenon. 
Keywords: teachers’ and students’ practices at university level; transition to and 
across university mathematics; epistemological model of mathematics; teaching 
ends; mathematical praxeology to be taught. 

INTRODUCTION 
Didactic phenomena concerning the step from secondary education to university level 
have drawn the interest of researchers for many years. Some thematic working 
groups of the conferences INDRUM, CERME and ICME, and even some plenary 
talks, have addressed it in different editions. However, the transition from tertiary to 
secondary education has been much disregarded. But, first of all, does such a 
transition exist? Indeed, it is the one experienced by those students at university when 
they become teachers at secondary education. A possible explanation is that one 
might naively believe that didactic obstacles only exist when you move forwards in 
mathematics to meet ‘more sophisticated’ mathematics, but not when you move 
backwards, revisiting ‘more elementary’ mathematics. Another explanation for this 
lack of attention is that, perhaps, transitions are implicitly assumed not to entail a 
change of position within the institution, but only a change of institution. It is true 
that the institutional position changes: they go from the position of students at 
university to the position of teachers at secondary education. But still, this change of 
position does not make the transition less problematic and not deserving attention.  
Concerning possible obstacles for the transition from the tertiary to the secondary 
level, there are many differences in the mathematical activity. For instance, in the 
tertiary level the students typically learn the strongest technique for a given type of 
task (e.g. Lagrange multipliers for optimisation problems), and this technique cannot 
be directly translated to the secondary level. In this work we do not try to give a 
thorough account of all those obstacles. Instead, our goal is to present an analysis of 
one of the major problems of this transition: the lack of a ‘solid’ epistemological 
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model of mathematics to support the mathematics to be taught at secondary level. As 
we will explain below, the epistemological model of mathematics accepted among 
the community of mathematicians cannot be directly transfered to secondary 
education. Hence, future teachers at secondary level need an alternative 
epistemological model of mathematics, which is not provided in a standard way by 
our society. 
THE ANTHROPOLOGICAL THEORY OF THE DIDACTICS 
The theoretical framework of this contribution is the anthropological theory of the 
didactics (ATD). In this first section we will introduce some basic notions to be used 
later on. For more information about ATD, the reader is invited to read (Chevallard, 
1999, 2007) and (Gascón & Nicolás, 2019). 
Praxeologies 
According to the ATD, didactics of mathematics is devoted to the analysis of the 
genesis and diffusion of mathematical knowledge, regarded as an output of 
intentional actions. ATD has the notion of praxeology for the simultaneous analysis 
of the intentional actions and the resulting pieces of knowledge. Notice that, 
whenever there is an intentional action, there is, by definition, an agent, that is to say, 
someone trying to carry out this action. A praxeology is made of  two interrelated 
components: the praxis and the logos. In turn, the praxis is made of:  
- a certain set of types of tasks the agent wants to deal with,  
- a certain set of techniques, which are the ways the agent has in order to deal with 

those types of tasks.  
The logos is made of:  
- the technology, which is devoted to describe the techniques, to show their 

usefulness, to delimit the scope of validity, and to study their economy (how much 
effort it takes to use those techniques) and reliability,  

- the theory, which includes an ontological description of the region of the world 
involved in the types of tasks, the techniques and the technology (that is, which are 
the objects or beings under consideration, and which are the relationships between 
them), but also a normative vision (which should be the goals of my intentional 
actions, which should be the kind of techniques employed, etc.).  

Personal and institutional praxeologies 
As we said before, the notion of praxeology helps to describe individual intentional 
actions. But it is also used to deal with institutional intentional actions. Within ATD, 
the concept of institution is understood as a set of constitutive rules that: 
- define and determine positions and relationships in a social scheme fixed in a 

conventional way,  
- determine rights and duties, permissions and prohibitions, rewards and penalties.  
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Some examples of institutions: any regulated game (for instance, chess), matrimony, 
nationality, procedural law, languages, scientific theories, the teaching of 
mathematics in a faculty of mathematics, the teaching of mathematics at Secondary 
Education. 
Typically, the members of an institution, due to the fact that they are members of this 
institution, are the agents of individual intentional actions which share relevant 
features, and so we can speak of ‘intentional actions’ of the institution. These 
institutional intentional actions give rise to the so-called institutional praxeologies, as 
opposed to individual or personal praxeologies. Due to its generality, it is easier to 
describe institutional praxeologies than personal ones.  
Mathematical praxeologies and the epistemological model of mathematics 
Mathematical praxeologies are those praxeologies which describe, at once, both the 
mathematical activity and the output of this activity (the corresponding mathematical 
works). Since every mathematical praxeology is based on a theory, every 
mathematical praxeology entails (perhaps implicitly) a certain ontological description 
and a certain normative vision of mathematics. Therefore, we could say that every 
mathematical praxeology assumes a certain epistemological model of mathematics. 
This terminology is reasonable because, among other things, the theory of a 
mathematical praxeology determines which are the basics objects on which 
mathematics are built, and which are the kind of accepted arguments to verify 
propositions. In other words, the theory of a mathematical praxeology provides an 
account (a logos) of how knowledge (episteme) is achieved in mathematics. 
Mathematical praxeologies to be taught and mathematical praxeologies for 
teaching 
Cirade made in (2006) a distinction between mathematical praxeologies to be taught 
(MPTBT) and mathematical praxeologies for teaching (MPFT). Given an 
educational institution, ℑ, the mathematical praxeologies to be taught in ℑ are those 
mathematical praxeologies that teachers in ℑ plan to teach. Of course, those MPTBT 
are chosen after considering certain questions, getting certain conclusions, etc. This 
activity devoted to decide what are going to be the MPTBT constitute by itself a 
different kind of praxeologies, the so-called mathematical praxeologies for teaching. 
Let now ℑ be a faculty of mathematics. Let us consider a possible MPTBT: 

- Type of task: given a certain function, , and given a real 
number , check whether there exists  such that . 

- Technique: If  or , then we can take  or , 
respectively. Otherwise, we can use Bolzano’s theorem. It says that, in the situation 
above, if  is continuous in  and  is between  and , then there exists 
such an . 

f : [a, b] ⊆ ℝ ⟶ ℝ
y0 ∈ ℝ x0 ∈ [a, b] f (x0) = y0

y0 = f (a) y0 = f (b) x0 = a x0 = b

f [a, b] y0 f (a) f (b)
x0

495 sciencesconf.org:indrum2020:295431



- Technology: Among other things, technology is responsible for proving the 
vailidity of the techniques employed. Now we prove Bolzano’s theorem, underlying 
the beginning of the main parts of the proof. First notice that we can assume 

 without loss of generality. Now, we are choosing the candidate for our 
required . For this, consider the set . It is not empty, 
because . Also, it has an upper bound, for instance . Then, due to the least 
upper bound property satisfied by the real numbers, there exists a least upper bound 

 of . Notice that if we prove that  we are done. Indeed, if  then, by 
definition of , we have that . In this case, equality is guaranteed. Notice 
that, if , then there exists a neighbourhood =  of 

 such that . By continuity of  in , there exists a 
neighbourhood =  of  which is mapped inside  by , which, in 
turn, implies that  is not an upper bound of , because there are numbers greater 
t h a n  ( f o r i n s t a n c e ) w h i c h s t i l l a r e i n  ( b e c a u s e 

). Therefore, it only remains to prove that . For 
this, we will use a reductio ad absurdum argument. If  then . Then 
there exists a neighbourhood  of  ‘above’ . By continuity of  in , there 
exists a neighbourhood  of  which is mapped to  by , which, in turn, implies 
that there exists a neighbourhood  of  such that, for every , . 
Therefore . But it is not difficult to prove that the fact that  is a least 
upper bound implies that every neighbourhood of  has no empty intersection with 

. Whence the absurdum. 
- Theory: there are a lot of theoretical elements supporting the previous technology. 

For instance, there are some properties taken for granted, for example the least 
upper bound property of real numbers, which says that a non-empty set of real 
numbers with an upper bound always has a least upper bound. There are also 
definitions (that of upper bound, least upper bound, neighbourhood, function, 
continuity). Notice that, in the definitions, there must be always a clear separation 
between the logical terms (“for every”, “there exists”, “if … then …”, “and”, “or”) 
and the non-logical terms (“real number”, “function”, “less than or equal”). And, 
still, the non-logical terms can always be analyse in terms of logical terms and, 
eventually, only three non-logical terms (i.e., ∈, = and ∅). But there is a another 
deep feature, which is closely related to the aforementioned logical analysis of 
definitions. Namely, the arguments used in the technology have to be deductive. 

Later we will take a closer look at the feature of deductive arguments. But first let us 
sketch some elements of possible mathematical praxeologies for teaching underlying 
the previous mathematical praxeology to be taught. 
- Tasks: Which proof should we choose for Bolzano’s theorem?  
- Technique: One possible way is the one chosen above, which uses the least upper 

bound property of real numbers. Another possible technique is to make a different 

f (a) < f (b)
x0 X = {x ∈ [a, b] ∣ f (x) ≤ y0}
a ∈ X b

x0 X x0 ∈ X x0 ∈ X
X f (x0) ≤ y0

f (x0) < y0 𝒱 ( f (x0) − ε, f (x0) + ε)
f (x0) f (x0) + ε < y0 f x0

𝒰 (x0 − δ, x0 + δ ) x0 𝒱 f
x0 X

x0 x0 + δ /2 X
f (x0 + δ /2) < f (x0) + ε < y0 x0 ∈ X

x0 ∉ X y0 < f (x0)
𝒱 f (x0) y0 f x0

𝒰 x0 𝒱 f
𝒰 x0 x ∈ 𝒰 f (x) > y0

𝒰 ∩ X = ∅ x0
x0

X
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proof by using a different property of real numbers, for instance Cantor nested 
intervals, or Dedekind cuts, or the convergence of Cauchy sequences. The choice of  
one option depends on how the teacher wants to deal with the completeness of real 
numbers. Concerning the definition of continuity of functions, we have chosen the 
𝜀-𝛿 approach. But we could have chosen a different one, based on sequences of real 
numbers and limits of functions, which would have required a different proof. 

- Technology: We may have reasons to prefer one formulation of the completeness of 
real numbers rather than another one. For example, we might prefer to introduce 
real numbers axiomatically, and so we would prefer the least upper bound property 
because it is typically included in the standard axiomatic definition of real numbers. 
But maybe we prefer to construct the real numbers as an enlargement of the set of 
rational numbers. This can be done, for instance, by using equivalence classes of 
Cauchy sequences, and in this case it seems appropriate to define completeness in 
terms of convergence of Cauchy sequences. But we can also enlarge the set of 
rational numbers by adding Dedekind cuts, and in this case completeness would be 
regarded from a different perspective.  

- Theory: The theory in this mathematical praxeology for teaching is larger than that 
of the mathematical praxeology to be taught. For instance, here we consider new 
properties of real numbers such as the convergence of Cauchy sequences, the 
property about Cantor nested intervals, Dedekind cuts. But there is an important 
feature we should remark: this theory is larger but of the same nature because, even 
if it includes more objects, it embraces the same epistemological model of 
mathematics. This model says that: first, definitions must be expressed, eventually, 
in logical terms (“for all”, “there exists”, “no”, “and”, “or”, “implies”, etc.) and 
three non-logical terms (∈, = and ∅); and second, arguments must be deductive. 

THE EFFECT OF TEACHING ENDS ON THE EPISTEMOLOGICAL 
MODEL OF MATHEMATICS 
We agree with (Postman, 1996) in pointing out the importance of clarifying and 
analysing the teaching ends embraced by the different educational institutions. We 
defended in (Gascón & Nicolás, 2017) that all the scientific activity in didactics of 
mathematics relies on (typically implicit) assumed teaching, and that only by making 
those ends explicit rational discusion in didactics of mathematics would be possible.  
Here we would like to show that the analysis of teaching ends of educational 
institutions contributes to explain interesting didactic phenomena. In particular, we 
would like to explain how the reasons for teaching mathematics assumed by that 
institution determine to a great extent the epistemological model of mathematics used 
in that institution. This model, has an influence over the mathematical praxeologies 
for teaching, which, in turn, shape the mathematical praxeologies to be taught. 
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Teaching ends of the faculty of mathematics 
Let us inspect this idea in more detail with the example of the institution ℑ  of the 
teaching of mathematics in a faculty of mathematics. The institution ℑ  typically 
embraces, among others (perhaps less taken for granted), the aim of raising future 
mathematicians. Therefore, faculties of mathematics are typically used to explain to 
virtual future mathematicians how mathematics is made today, which can be perfectly 
understandable, and perhaps even desirable. Graduates in mathematics are thus 
expected to be aware of how propositional knowledge is officially achieved in 
mathematics nowadays. In particular, graduates should be familiar with the role 
played by sets (which are typically regarded as the basic objects) and deductive 
arguments (which are the only accepted arguments in official documents) in 
contemporary mathematics. In other words, graduates should be familiar with the 
current epistemological model of mathematics prevailing in the community of 
mathematicians. 
Some features of the current epistemological model of mathematics of 
‘professional’ mathematicians 
Here we do not aim to give a thorough account of what is this model. We will rather 
emphasise one key feature concerning the current standards of achievement of 
knowledge. This feature is about the kind of arguments allowed nowadays in the 
community of mathematicians. At the end of the nineteenth century and the 
beginning of the twentieth century, the existence of alarming contradictions and 
paradoxes led many mathematicians to look for sound foundations for mathematical 
knowledge (Kline, 1972). Finally, Hilbert’s proposal was gradually adopted and it is 
today a standard commonly accepted (Hintikka, 1996). At the center of this proposal 
one finds the notion of deductive argument.  
First of all, let us see what an argument is. It is a speech act with which the speaker 
attempts to make someone else (or perhaps to herself) agree that a certain statement, 
the conclusion, is supported by a certain set of statements, the premises. An argument 
is correct if it really shows that the conclusion does receive support from the 
premises. Notice that, so far, we have not referred to the idea of truth.  Now it is the 
right moment. An argument is successful if it is correct and the truth-value of the 
premises is justified. In this case, the truth-value of the conclusion would also be 
justified.  
One of the characteristic properties of mathematical arguments is that they are 
intended to be not only successful, but also deductive. An argument is deductive if the 
speaker claims that nobody could believe that the premises are true without believing 
that the conclusion is also true. A classical example of deductive argument is the 
following: 
- Premises: {All men are mortal, Socrates is a man}.  
- Conclusion: Socrates is mortal. 
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The discipline which studies deductive arguments is deductive logic. To get a better 
understanding of what deductive arguments are, let us review some basic notions of  
a part of deductive logic called first order logic, strongly related to mathematics. All 
the known mathematics nowadays is virtually expressable in a first order-language, 
that is to say, in a language made of:  
- logical symbols: variables, parenthesis, connectives (∨ for the disjunction, ∧ for the 

conjunction, ￢ for the negation, → for the implication), quantifiers (the existential 
∃ and the universal ∀). 

- non-logical symbols: constants, n-ary predicates (with n ≥ 1). 
For different purposes we use different first-order languages, distinguished one from 
the other by the non-logical symbols. For instance, in the deductive argument above, 
we use the constant s for Socrates, the 1-ary predicate H for the property “being a 
man”, and the predicate M for the property “being mortal”. In this first-order 
language, the argument would be as follows: 
- Premises:{∀x (Hx → Mx), Hs} 

- Conclusion: Ms 

To provide the sentences in a first-order logic with a meaning, we need a model, 
which is a way to link the non-logical symbols with parts of the world. In the model 
underlying the previous argument, the constant s maps to the man Socrates, the 
predicate H maps to the set of all men, and the predicate M maps to the set of all 
mortal things.  

When a sentence 𝜑, written in a first-order language, is true in a model ℳ of such a  

language we write ℳ ⊨ 𝜑. We say that a sentence 𝜑 is a logical consequence of a set 

𝛤 of sentences, written 𝛤 ⊨ 𝜑, if we have ℳ ⊨ 𝜑 for every model ℳ which satisfies 

ℳ ⊨ 𝛤. Now we can give a more precise definition of deductive argument: it is an 
argument in which the speaker claims that the conclusion is a logical consequence of 
the premises. 
Notice that, not being the idea of deductive argument relative to a precise fixed 
model, the property of being deductive is independent of any model. In other words, 
the fact of being deductive relies uniquely in the logical form of the argument,  (the 
syntax), not in the interpretation of the non-logical terma (the semantic).  
Apparently, by the very definition, in order to present a deductive argument, we 
would need to consider all the possible models for our language and to check that 
they do not make the premises true without making the conclusion true. Fortunately, 
this is not the case. Instead, we can use a certain collection of deductive rules which 
allow us to derive the conclusion from the premises. One of these rules used in the 
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proof of Bolzano’s theorem is the reductio ad absurdum: if from a set of premises 𝛤 
∪{𝛼} one can deduce both 𝛽 and ￢𝛽, then from 𝛤 we can deduce ￢𝛼. Another rule, 
also used in the proof above is: if from a set of premises 𝛤 one can deduce both 𝛼 and 
𝛽, then one can deduce 𝛼∧𝛽. In our proof we have also implicitly used a rule which 
tells you when it is allowed to deduce a statement involving the universal quantifier. 
The interested reader can fin more information about first order logic in (Smullyan, 
1968). 

When we can derive a sentence 𝜑 from a set 𝛤 of sentences by using those deductive 
rules, we write 𝛤 ⊢ 𝜑 and we say that 𝜑 is deducible from 𝛤. We do not only have 

that 𝛤 ⊢ 𝜑 implies 𝛤 ⊨ 𝜑 (which means that the relationship of deducibility is right: 
that is, if you use the deductive rules you produce a correct deductive argument), but 
also that 𝛤 ⊨ 𝜑 implies 𝛤 ⊢ 𝜑 (which means that the relationship of deducibility is 
complete: every correct deductive argument can be expressed by using the deductive 
rules). 
Of course, we do not claim that the only kind of arguments mathematicians take 
under consideration in their everyday activity are the deductive ones. Concerning this 
(Thurston, 1994) and (Brousseau, 1995) are interesting reading. Neither do we say 
that mathematicians point out explicitly all the used deductive rules when they deal 
with deductive arguments. But it would be too naïve not to admit that deductive 
arguments are essential in the contemporary epistemological model of mathematics. 
According to this model, the only institutional knowledge is the one produced by 
deductive arguments. Indeed, if someone shows that a theorem has not been proved 
with a deductive argument, then this theorem will be immediately removed from the 
realm of the official knowledge. In other words, the community of mathematicians 
accepts in practice arguments which do not present explicitly the deductive rules 
used, but only because: first, those arguments are believed to be theoretically 
expressable in terms of deductive rules, and second, it would be extremely tedious to 
write down all the deductive rules used.  
Evidence of the key role played by deductive arguments is that, for them to be 
theoretically possible, one needs to use definitions expressed in the first order 
language. This entails a deep logical analysis of intuitive notions to make them ready 
to play a role in deductive games. For instance, the notion of continuity of a function, 
or the very notion of function, in the eighteenth century was used according to an 
intuitive meaning, rooted in pragmatic considerations related to whether a function 
could be written down by using a single analytic expression or nor (Kline, 1972). 
But, as deductive arguments started to become more and more important in the 
epistemological model of mathematics, a logical analysis of function or continuity 
was needed. This is how we ended up with the 𝜀-𝛿 definition which expresses 
continuity in terms of quantifiers, implications, real numbers and inequalities. 
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It is important to notice that the current epistemological model of mathematics shapes 
not only the mathematical praxeologies to be taught in the faculties of mathematics, 
but also the mathematical praxeologies for teaching. Indeed, these last praxeologies 
consider different forms of reconstructing certain works of mathematics, but they 
never question the epistemological model. 
Teaching ends of mathematics in secondary education and the missing of a 
corresponding epistemological model of mathematics 
Primary education aims to provide the very basics of our culture and our knowledge 
of the world, for the students to begin their path towards the status of autonomous 
and suitable citizens and to be able to continue further in their studies. Then, 
secondary education aims to provide with more specialised culture and knowledge 
for the students to become entirely autonomous and suitable citizens, and for them to 
be ready to get involved in some profession or to get into the deep study of some 
disciplines, for instance mathematics.  
But, of course, the institution of the teaching of mathematics in secondary education 
does not intend to raise future mathematicians, and so there is no point in explaining 
to the students of secondary education how mathematical knowledge is officially 
achieved today among professional mathematicians. This entails that teachers in 
secondary education should not frame their teaching within the current 
epistemological model of mathematics of the faculties of mathematics. In particular, 
there is no point in putting the logical analysis of notions and deductive arguments at 
the center of the teaching. But then, how does one explain those notions? What kind 
of arguments should be used? For instance, if there is no point in using set theory 
(ordered pairs, Cartesian products) to define what a funcion is, or the 𝜀-𝛿 statement to 
define what continuity is, how to explain what a continuous function is? And if we do 
not use the logical analysis for the definitions, then we cannot use deductive 
arguments for the theorems. Hence, how to make a non-deductive argument for 
Bolzano’s theorem? Is it possible? Is it needed? These are crucial questions of 
mathematical praxeologies for teaching mathematics in secondary education. 
CONCLUSIONS 
The change from the institution of teaching in the faculty of mathematics to the 
institution of teaching mathematics in secondary education entails a change of 
teaching ends. This, in turn, forces the future teachers of secondary education to look 
for a new epistemological model of mathematics. The one transmitted at the faculty 
of mathematics is not only deeply rooted in those future teachers, but also it is 
received as if it were the faithful account of real mathematics. On the contrast, there 
is no official alternative epistemological model of mathematics at hand.  
This problem could be tackled at university, by posgraduate masters’ degree on 
teacher training in secondary education, but it is far from being the case. On the 
contrary, it seems to be widely assumed that, on the side of mathematics, teachers at 
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secondary education should not find any problem at all, as they already are 
sufficiently well-informed in this discipline.  
The lack of a genuine and coherent alternative epistemological model of mathematics 
for secondary education means a huge field of open problems for the community of 
researchers in didactics of mathematics. 
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We study the relation between research and teaching practices of teachers-researchers 

at university. We examine this issue from the documentational approach point of view 

that focuses on the interactions between resources and mathematicians by considering 

their research activities and teaching practices. We suggest indeed theoretical and 

methodological developments to take into account, from the documentational 

approach to didactics, the interactions with resources during the research activities of 

the mathematicians. The data collection consists in audio-recorded interviews. We 

identify three forms of use of research resources in teaching practices. 

Keywords: resources in university mathematics education, teachers’ practices at 

university level, relation between research activity and teaching practices. 

INTRODUCTION AND CONTEXT OF THE STUDY 

The professional activity of a university teacher usually involves teaching activity and 

research activity. In France, among the university teachers there are teachers-

researchers: they do research and have to teach at different levels (Tertiary level and 

Master’s degree). At the early post-bachelor years, some universities offer to teach the 

basics of classical mathematics. Some of teachers-researchers consider those kinds of 

courses as important and necessary to students but unfortunately too basic regarding 

their field of research. The present paper constitutes a part of our research interest that 

concerns the understanding of the relation between teaching and research activities, 

and this by highlighting the disciplinary specificities. Indeed, we aim to highlight 

aspects that might be considered to characterize the factors underpinning it.  

We are particularly interested in the study of the relation between research activity and 

teaching practices through the lens of interaction with resources. As Adler (2000), we 

give to the “resource” here, a meaning related to the verb “re-source”, to source again 

or differently. We are conducting exploratory studies related to this issue considering 

different aspects:  

- Considering two disciplines mathematics and physics, work that allows us to 

characterize factors determining the relation between research activity and 

teaching practices, either related to the epistemology of the discipline or not 

(Sabra & El Hage, 2018).  

- Setting a contemporary field in mathematics (graph theory) and varying the 

institutions of teaching (Tabchi’s PhD work, in progress) (Tabchi, 2018).  

- Setting an institutional context – Engineering Education – and considering 

teachers of mathematics, coming from different research disciplines (physicist, 
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mathematician, and engineer), study that allows us to characterize factors that 

enhance the design and use of resources in terms of the personal relationship to 

mathematics and his/her (researcher) domain of research (Sabra, 2019).  

The present paper constitutes a contribution to this research work. We provide a case 

study of the research activity of three mathematicians through the lens of the 

interactions with resources. We particularly dwell upon the place of research resources 

and their impacts on the designing and the use of the resources in and for teaching. 

Indeed, our general question is: how do the resources coming from research activity 

are related to the teacher’s capacity to re-design them for his/her teaching work?  

We present some theoretical and methodological development based on the 

Documentational Approach to Didactics (DAD) (Gueudet, Pepin, & Trouche, 2012).  

RELATION BETWEEN RESEARCH ACTIVITY AND TEACHING IN THE 

RESEARCH LITERATURE 

Some researches in science education attempted to find evidence of “positive” or 

“negative” correlations between research and teaching without taking into account a 

specific discipline (Elton, 1986; Neumann, 1992). They tried to characterize the 

relation that may occur between teaching activity and research activity (symbiosis, 

conflict, tension, etc.). Neumann (1992) presents three aspects of what he calls “nexus” 

that can exist between teaching and research: 1) the tangible aspects, generally linked 

to an articulation between content transfer of knowledge from research in teaching; 2) 

intangible aspects, which relate to the actions of the researcher in the teaching activity 

and vice versa); 3) the global aspect, which relates to nexus between teaching 

institution and research institution. In a more recent study, Elton (2001) examined the 

reasons behind the presence or absence of the relation between teaching and research 

in the practice of university teachers. In a perspective of transformation of practice, he 

suggests ways that could reinforce “positive” articulations between the two kinds of 

activities.  

The question of the correlations between the two activities of a university teacher has 

been studied recently depending on the discipline involved. As an example, Madsen 

and Winsløw (2009) emphasize that the relation between research and teaching in the 

case of mathematics significantly differs from the physical geography discipline. In 

their comparative study between teachers in geography and mathematics, they 

emphasized the fact that the forms of relation between teaching and research strongly 

depend on the disciplinary specificities (institutional and epistemological 

characteristics of the discipline). They also stressed that the relation that can take place 

between both teaching and research activities depend on the perception of university 

teachers on the specificities of their disciplines.  

Other comparative study based on the interviews with teachers-researchers in physics 

and mathematics, emphasizes the place of what they called professional identity of 

university professors (Lebrun et al., 2018). They highlight that the professional identity 
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of the teachers-researchers in both disciplines seems to be in tension due to the 

epistemology of the discipline; interviewed professors from both disciplines highlight 

the importance to teach following methods derived from research activities (group 

work, problem solving, modelling, etc.). However, they raise organisational constraints 

that prohibit applying them, particularly the assessment practices and the limited time.  

Therefore, we claim to understand the relation between teaching and research within 

the mathematics discipline through the lens of interaction with resources. This 

interaction can take place at different moments of teaching practices in: the design of 

the classroom sessions, the choice of the contents, the implementation of resources in 

the classroom, and in the evaluation of learning. In addition, university teachers could 

use the same resources in their teaching practices and their research activities (Broley, 

2016).  

DOCUMENTATIONAL WORK IN RESEARCH AND TEACHING 

INSTITUTIONS  

The DAD considers the activity of the teacher as a continuous process. In the DAD, 

there is a distinction between resources and documents. We define here resources as 

all the things that could re-source a university teacher activity (research and teaching). 

The interaction with the resources generates a document, which is the association of 

resources and a scheme of use of these resources. We can assume that in the case of 

university teachers the research resources re-source particularly the research activity. 

However, this dimension is not investigated here. We are interested in how research 

resources influence the design of resources for teaching.  

A scheme is used here as defined by Vergnaud (1998) as the invariant organization of 

conduct for a set of situations having the same aim. According to Vergnaud (1998), a 

scheme is a dynamic structure that has four interacting components: aim, rules of 

actions, operational invariants, and possibilities of inferences. A class of situations 

includes all the situations having the same aim.  

A university teacher develops a professional experience by interacting with the 

teaching institution and the research institution simultaneously (Madsen & Winsløw, 

2009). The interaction with resources in each of the institutions are related on the one 

hand to the specific classes of situations (research classes of situations, teaching classes 

of situations) and on the other hand to the specificities of the discipline. The relation 

between research and teaching could take place as a migration and adaptation of the 

resources between institutions, or also like a dissemination by a university teacher of 

the professional knowledge and mode of teaching (the “operational invariants” 

component of scheme of use resources, Gueudet & Trouche, 2009).  

We distinguish between: 1) the teaching document (aims related to the teaching class 

of situation, resources for teaching, rules of action and operational invariants) in the 

meaning of (Gueudet, 2017); 2) the research document (aims related to research classes 

of situation, resources for research, rules of action and operational invariants). Each 
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kind of document is considered in its institution with corresponding conditions and 

constraints. Gueudet (2017) notices that university teachers develop a resources system 

for research in the research institution and a resources system for teaching in the 

teaching institution. The study of both resources systems and their interaction requires 

new theoretical and methodological developments. Given the background, we have 

explored the process of interaction between both systems from the point of view of 

“pivotal” resources in research activities of the university teacher.  

The concept of “pivotal resources” is characterized in the previous studies using DAD 

since resources that intervene in several classes of situations (Gueudet, 2017). In this 

paper, the “pivotal resources” are considered in the teaching documentation work. In 

our contribution, we define a “pivotal resource” as a resource that contributes for a 

given teacher to the construction of many research documents in an institution. We 

consider that a pivotal resource is used in several class of research situations. Using 

frequently a pivotal resource could influence a part of the research activity. For us, if 

there are relations between research and teaching activities, it will take place in terms 

of the classes of situations where pivotal resources are mobilized.We hypothesized that 

there is at least one pivotal resource in the research work of a given mathematician. It 

could be a software of numerical computation, a founding book in his/her field of 

research, or others. Consequently, our general question turns out to be as follow: How 

do the pivotal resources coming from research institution enrich the teacher’s capacity 

to re-design and use them for his teaching work?  

CONTEXT AND METHODOLOGY OF THE STUDY 

As an exploration of different facets of the issue of relation between research activity 

and teaching practices, we present here a study based on three interviews with French 

teachers-researchers (see Table 1. for the profiles). To keep the anonymity we will call 

them M1, M2 and M3. A university teacher in France must teach at different levels, a 

variety of subjects and topics ranging from the basic level in a discipline to very 

specialized courses in her fields of research. 

 Research 

experience 

Research domain Teaching 

experienc

e 

Teaching level 

M1 16 years  Mathematical 

modelling of 

physical 

phenomena 

16 years  Undergraduate degree 

(Mathematics and computer 

sciences) and Master degree 

(applied Mathematics)  

M2 6 years Mathematical 

modelling of 

scientific 

phenomena 

6 years Undergraduate degree 

(Mathematics) 
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M3 17 years Theorist 

mathematician 

(number theory) 

17 years Undergraduate (Mathematics) 

and Master degree (pure 

Mathematics) 

Table 1: The profiles of the three university teachers. 

We elaborated the interviews guidelines from two distinct parts: research activity part 

and teaching activity part. We did not ask direct questions about resources so that the 

interviewed could express themselves freely about their research and teaching 

activities. This choice allowed us to identify the resources quoted in their answers that 

we considered as a pivotal resource. The interviews lasted between an hour and an hour 

and a half; they were semi-structured; each interview took place in the office of the 

university teachers. All the interviews were recorded and conducted in French.  

The transcripts of the interviews were coded according to the theoretical framework 

and our development/adaptation in order to build for each interview two tables: the 

teaching documents table corresponding to the teaching work, and the research 

documents table corresponding to the research activity (see Table 2). The tables 

allowed us to consider the list of documents in each of both institutions: research 

institution and teaching institution.  

Research documents tables 

Research aims Resources  Rules of action Operational Invariants 

    

Teaching documents tables 

Teaching aims Resources  Rules of action Operational Invariants 

    

Table 2: Presentation of the research documents table and the teaching documents table. 

To build the teaching documents tables, we proceeded in the same way as (Gueudet, 

2017). Actually, we tracked in the transcript of the teaching part of each interview the 

given answer of the aim of the teaching activity mentioned by the university teacher. 

For each aim, we added the resources explicitly mentioned in the transcribed 

declaration. Then, we identified stable elements in the way these resources were used 

(rules of actions). Concerning stability, we relied on the teacher’s declarations (e.g., 

“for …, we always start by…”). Finally, we noted the operational invariants (this 

corresponds to statements in the interview such as: “I do this way …. Because I think 

that …”.  

We proceeded in the same way for the research part of the interview, which concerns 

research in order to build the research documents tables. First, we defined a research 

aim. Then we added resources, we identified rules of actions in the declaration. Finally, 

we noted the operational invariants. 
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Once both tables were built, we first identified the pivotal resources in the research 

documents table (see table 3).  

Research documents table 

 Aims (Ai) Resources Rules of actions 

(RA) 

Operational 

invariants (OI) 

A1 Resource 1 RA1 OI1 

A2 Resource 2 RA2 OI2 

A3 Resource 3, Resource 1 RA3 OI3 

… … … … 

An Resource 4, Resource 1 RAn OIn 

Teaching documents table 

Aims (Ai) Resources Rules of actions 

(RA) 

Operational 

invariants (OI) 

A1 Resource 1 RA1 OI1 

A2 Resource 5 RA2 OI2 

A3 Resource 6, Resource 1 RA3 OI3 

… … … … 

An Resource 7, Resource 8 RAn OIn 

Table 3: Identifying pivotal resource, which is Resource 1 in this research documents 

table. Resource 1 appears also in the teaching documents table. 

Then we checked whether the pivotal resource in the research documents table 

(Resource 1 in table 3) was mentioned or not in the teaching documents table. When it 

was the case, we took into account the teaching document where this resource appears 

(the table line corresponding to the document). If not, we tried to understand the reason 

behind the lack of this resource regarding the operational invariant in research 

institution and/or the consideration of constraints in the teaching institution.  

This methodology enables to question the resource mobilization process from research 

institutions to teaching institutions, by considering a horizontal analysis of each 

document in each institution.  

FORMS OF RELATION BETWEEN RESEARCH AND TEACHING IN 

TERMS OF RESOURCES 

By our analysis, we identified three forms of relation between research and teaching in 

terms of resources.  
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First form: research resource in instantiation processes  

In the case of M1, we identified seven aims in the research institution, in which the 

software (Matlab, Maple, etc.) is fundamental in numerical modelling research (6 aims 

over 7). M1 uses the software to conjecture, validate (a conjecture or a modelling 

method). The place of the software occupies the main line of his research approach. In 

the teaching institution, we identified two teaching documents where the software is 

used. He uses the software with the Master’s degree students in order to sensitize 

students to the characteristics of the software in the activity of mathematical modelling 

(see table 4 for an example of those documents).  

 M1- teaching document 

Aims Sensitizing students to the characteristics of software in 

the activity of mathematical modelling. 

Resources  Software of numerical computing. 

Resources from previous teaching years that contains 

problem to solve. 

Rules of action (way to 

use the resources) 

Choosing software used in the research. 

Choosing and adapting a problem solving that permit a 

manipulation, an observation and the interface of software 

and experiment with it. 

Operational Invariants 

(reasons for using 

them this way) 

The modelling activity in mathematics is exploratory and 

experimental. 

Table 4: Presentation of a teaching document where the pivotal resource is used.  

In this case (table 4), we qualify the use of pivotal research resource in teaching 

institution as an action of instantiation of it. The instantiation of this resource consists 

in the mobilization of the research resource from research institution in the teaching 

institution in, as far as possible, the similar situations and in the similar role in both 

institutions, but in a more restricted domain of validity.  

Second form: research resource to scaffold the learning of a given content  

In the case of M2, we identified six aims related to his research activities, in which the 

software (Matlab, Maple, Scilab, etc.) is fundamental in numerical computation and 

graphical simulations (3 aims over 6). His research activities using a software 

particularly consists in analyzing, modelling biological phenomena, validating the 

experimental results, and communicating results to the biologists he works with. In the 

teaching institution, the software of numerical simulations appears in two teaching 

documents. We develop, in the table 5, one of them which corresponds to the aim 

“designing session to experiment and discover mathematical properties with software”.  
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 M2 – teaching document 

Aims Designing session to experiment and discover mathematical 

properties with software. 

Resources  Software of numerical computation. 

Resources corresponding to the course in question. 

Rules of action 

(way to use the 

resources) 

Select a phenomenon of stability of differential equation. 

Show the stability on a graphical representation. 

Offer the possibility to vary values and parameters in order to 

lead a discussion about hidden properties.  

Operational 

Invariants 

(reasons for using 

them this way) 

A software is a tool that gives the results in a visual way and 

hides the properties. 

We have to stimulate the spirit of imagination to make links 

between representations and mathematical properties 

underpinning.  

Table 5: Presentation a teaching document related to the aim “designing session to 

experiment and discover mathematical properties with software”. 

M2 assigns the same role to the software in the construction knowledge in both 

institutions (research and teaching), while the operational invariants show that M2 uses 

software in teaching institution to scaffold contents, in the design of the resource as 

well as in the implementation. 

Third case: the no relation form in terms of resources 

In the case of M3, there is a pivotal resource in the research documents table; however, 

it is not mentioned in the teaching documents table. This result is strengthened by the 

words of M3 during the interview acknowledging that there is a gap between 

mathematics research activity and mathematics teaching activity. From his point of 

view, if there is a link it will be in the way of teaching (Operational Invariant). He 

teaches the proof following the same process lived in his research: he makes 

hypotheses then he determines the properties to be mobilized. There are no resources 

in common between teaching institution and research institution. He has a perception 

of “divorce” between the two institutions. He does not place his students in research 

situations. According to him, to be able to do this, the whole community of the class 

does not have to know how to solve tasks. The relations that can exist are not tangible 

(Neumann, 1992). They correspond to for instance, the relations between the way of 

teaching “to follow the same approach of research” in the treatment of a proof.  

We can deduce that there is a relation between teaching and research which could be 

seen through the process of using the resource in the classroom and not only as a 
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process of migration of resources from research institution to teaching institution. This 

result meets the ones identified by Tabchi (2018) in the case of teachers-researchers in 

graph theory. We qualify the interactions between research and teaching institutions as 

an action of spreading scientific attitude (research process) in teaching practices.  

FINDINGS, DISCUSSION AND PERSPECTIVES 

It appears mainly that the relation maintained between research and teaching depends 

closely on the university teachers’ perceptions of his/her research resources. We 

remind that our methodological choice requires to identify the pivotal research 

resources of university teachers and then study the relation between research and 

teaching. The analysis results support our hypothesis that the pivotal resources 

influence an important part of the research activity and thus if there are relations 

between research and teaching activity, it might take place in terms of the classes of 

situations where these resources are mobilized.  

The documentational approach offers a possibility to characterize tangible nexus 

(Neumann, 1992) between research and teaching (via the kind of interaction with 

resources), but also intangible nexus (Neumann, 1992) related to the interaction links 

to the specific professional knowledge of the university teachers; the operational 

invariants resulting from the research activity partly determine teaching practices. 

Therefore, schemes (Vergnaud, 1998) in the interactions with resources are challenging 

to infer. One source of complexity of the scheme concept is the component ‘operational 

invariant’, which is invisible and not always conscious to the teacher. From a 

methodological point of view, it is a matter of inferring schemes by cross-referencing 

data from different tools and sources: interviews, observation of teachers, and so forth.  

The study of the relation between the research resources system and the teaching 

resources system deserves further study or even a long-term study that contains 

observations. In addition, A teacher may have two different forms of relation between 

teaching and research depending on the teaching aims (indeed, the associate classes of 

situation). This is a field to explore in order to understand the interactions between the 

teaching resources system and the research resources system.  
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INTRODUCTION AND RESEARCH QUESTION 
In Gueudet et al. (submitted), we discuss how the instrumental approach can contribute 
to our understanding of the activity of university students using programming in the 
context of an authentic mathematical investigation. In particular, we distinguish 
between m-schemes, p-schemes and p+m-schemes, for a goal concerning respectively 
only mathematics, only programming, or both. Each of these three types of schemes is 
illustrated in the case of an undergraduate, Jim, as he engaged in the first of four 
programming-based mathematics investigation project, within a Mathematics 
Integrated with Computers and Applications (MICA) course at Brock University.  
In this poster, we extend the work in Gueudet et al. (submitted) and present a visual 
summary of the complex structure of m-, p-, and p+m-schemes developed by Jim 
through his engagement in the 4 course projects. Our guiding research question is: 
What do we learn about the activity of students using programming in an authentic 
mathematical investigation by using the theoretical frame of the instrumental 
approach, considering programming as an artefact? 

THEORETICAL FRAMEWORK  
Our work is informed by the instrumental genesis approach (Rabardel, 1995) which 
provides a lens to describe how a student, in an activity with a math goal, learns to use 
an artefact (e.g. programming) and learns mathematics at the same time, through the 
development of schemes.	A scheme is a stable organization of the subject’s activity for 
a given goal (Vergnaud, 1998). It comprises four components: i) the goal of the 
activity; ii) rules-of-action (RoA), generating the behaviour according to the features 
of the situation; iii) operational invariants: concepts-in-action and theorems-in-action 
(TiA), which are propositions considered as true; and iv) possibilities of inferences.  
METHODOLOGY AND RESULTS 
Jim was one voluntary student participant (among 6) enrolled in the MICA I course 
(46 students) in the first year of our 2017-2022 research study. Data collected for this 
poster work were generated from: Jim’s 4 MICA I projects and 4 semi-structured 
individual task-based interviews following each project submission; a baseline 
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questionnaire and interview; and 10 online weekly lab reflections. Jim’s early data was 
first analysed for an initial identification and description of schemes, then reorganized 
in m-, p-, and p+m-scheme types, and ordered according to the development process 
(dp) model shown in Fig.1. The whole data was thereafter coded and regrouped in 
themes. Using codes pertaining to perceptions and strategies themes, the initial table 
of schemes was then refined and chronologically extended to the whole data. 
In this poster, we present 9 of Jim’s 21 identified schemes as brief bubble descriptions 
linked to the related 9 steps of the dp model, as partially examplified in Fig 1.  

 
Figure 1: Development process (dp) model of a student engaging in programming for 
an authentic mathematical investigation or application (Buteau et al. 2019), enhanced 
with 3 examples of Jim’s identified schemes (red bubbles). 

IMPLICATIONS 

Using the instrumental approach led i) to elaborate the dp model as a composition of 
goals, highlighting the complex structure of schemes; and ii) to expose how the activity 
of programming-based mathematical investigations is organized (RoA) and why (TiA). 
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The content of this poster will include a brief problem statement, research question, 
theoretical framework, methodology, results, and implications of this study. A portion 
of the poster will also be visual examples of the process of using peer feedback and 
portfolios in online settings to promote mathematics teachers to incorporate problem 
solving in their classroom. 
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RESEARCH TOPIC  
Researchers have documented the difficulties associated with online teaching in 
comparison to face-to-face teaching (Shao & Abaci, 2018). Specifically, “the ability to 
engage with students and encourage and inspire them to reach their full potential 
through online teaching is difficult” (Rossi & Luck, 2011, p. 70). Within mathematics 
teacher education, there is a challenge of providing online graduate education that 
positively impacts teacher practice.  
Promoting mathematics teacher reflection has been linked to productive changes in 
teacher education. Researchers have documented how portfolios can be a tool for 
reflection that helps teachers make productive changes to their classroom practice 
(McIntyre & Dangel, 2009). Furthermore, incorporating peer feedback as an element 
of portfolios can promote teacher reflection in higher education settings.  
Little research exists on how portfolio and peer feedback can be incorporated in online 
mathematics teacher education, but this knowledge is needed to help mathematics  
teacher educators promote reflection and productive changes to classroom practice that 
benefit students. For example, McIntyre and Dangel (2009, p. 82) recommend that 
“teacher candidates should have the opportunity to orally present their portfolio” but it 
is unclear how that might occur in online settings.  
This study addresses this research need by examining the affordances offered by 
portfolios that use peer feedback within an online problem solving graduate course for 
mathematics teachers. The research questions were: (1) In what ways does this online 
problem solving portfolio promote mathematics teacher reflection?; and (2) How does 
online peer feedback impact mathematics teacher reflection in their portfolio?  

METHODOLOGY    
The 23 participants in this study were all in-service U.S. mathematics teachers in an 
online problem solving course. A course requirement was to create a problem solving 
portfolio containing six entries. Four of the entries were problems that the teacher had 
posted on the discussion board, responded to two peers’ postings, and revised based on 
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the peer and instructor feedback. The fifth entry was including a problem one of their 
peers had posted on. The six entry was a reflection that summarized their past, present, 
and future efforts to implement problem solving in the teaching of mathematics. These 
portfolios were the study’s data source.  
The theoretical framework used in this study was Sparks-Langer, Simmons, Pasch, 
Colton & Starko’s (1990) Framework for Reflective Pedagogical Thinking (FRPT). 
This framework was used to code teacher portfolios based on the seven levels of 
reflective thinking. This framework has been used in multiple teacher education 
settings (McIntyre & Dangel, 2009) and provides a basis for which to answer research 
question 1. Research question 2 was answered using open coding on the portfolios to 
determine when and how peer feedback contributed to the participant’s reflection.  

ANTICIPATED RESULTS AND IMPLICATIONS 
Analysis of the teachers’ portfolios revealed at least one entry of each teacher exhibited 
a level 5 or higher FRPT coding due to portfolio requirements to reference research-
based articles when describing the problem solving entry. Several teachers exhibited a 
level 7 with at least one entry of the portfolio, in part due to portfolio requirements to 
include a social justice entry. Peer feedback appears to have been a secondary factor 
following the course materials, with instructor feedback being a tertiary factor in 
teachers’ reflections. Implications for this work include an example for how teacher 
educators can structure online portfolios and peer feedback cycles for in-service 
mathematics teachers.   
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INTRODUCTION 
In the Nordic countries, a focus on the nature of mathematical tasks and how they can 
be used in education has been central (e.g. Bergqvist, 2007). In this poster, I therefore 
explore a new approach to analysing mathematical tasks, where I see tasks as 
instruments in the development of mathematical competence. 
A link between tasks and transition can also be seen in Bergqvist (2007), where tasks 
in early calculus courses are analysed, and Roh and Lee talk about tasks designed to 
“bridge a gap between students’ intuition and mathematical rigor” (Roh & Lee, 2016, 
p. 34). 

THEORETICAL FRAMEWORK 
By seeing tasks as an instrument, I propose to use the instrumental approach (Trouche, 
2004), to describe how a student could be able to develop mathematical competence 
through working with tasks. In the instrumental approach, a tool is just an artefact as 
long as a subject has not yet connected any usage patterns with it. But through the 
process of instrumental genesis, the tool becomes an instrument. The process consists 
of an instrumentalisation, where the artefact becomes an instrument, as the subject 
personalises it and appropriates it into the subject’s activity, and an instrumentation, 
where the subject becomes a tool user.  
The notion of tasks as mediating artefacts in an activity is not in itself new (e.g. 
Johnson, Coles & Clarke, 2017), but describing them as tools, according to the 
instrumental approach, is to my knowledge new. Based on Activity Theory (Leont’ev, 
1978), and using Leont’ev’s three levels of activity, action and operation, I argue that 
this use of the instrumental approach is viable. The task can be seen as a tool in the 
activity, oriented towards the objective of becoming competent in mathematics. 
Solving tasks are then actions in this activity, and the different operations done to solve 
the task corresponds to usage patterns. 

TASKS 
I propose a definition of a formal task. For a task to be a formal task, it must fulfil four 
criteria. It must have a purpose accessible to and possibly benefiting the one performing 
the task. This purpose should also be possible to know before the task has been solved, 
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so that it will be possible to choose a task according to the goal of the learning activity, 
without knowing the solution to the task. It should be possible to finish the task in a 
meaningful way, that is, the task should have a logical and identifiable conclusion. And 
lastly, the solution to the task should be possible to arrive at by some form of logical 
inference. The two last points are connected to the usage patterns. For a task to be an 
instrument, there needs to be a predictable way of learning to know how to use it. As I 
see it, both an identifiable conclusion, and a logical way to arrive at this conclusion, 
adds to this predictability. 

METHODOLOGY 
This is a qualitative study. More specifically, I use a series of task-based interviews, 
where I follow a number of university students through a single variable and a multi 
variable calculus course. They are asked to describe their own thinking process as they 
solve tasks. Further, I plan to analyse tasks found in calculus textbooks both in upper 
secondary and in university, in light of the findings from these interviews. 
Using the instrumental approach combined with my notion of a formal task, I claim 
that it is possible to describe and analyse how students are able to use tasks as 
instruments for developing mathematical competence. This will have implications, not 
only for how tasks are created and selected, but also for how tasks are presented and 
used in education. 
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Mesnil Zoé, 219–228, 378–387, 413–422
Mgombelo Joyce, 443–452, 513, 514
Modeste Simon, 368–377
Muller Eric, 443–452, 513, 514

Nardi Elena, 403–412
Nedaei Mahboubeh, 258–267
Nicolas Pedro, 493–502
Nicolás Pedro, 29–46
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