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Abstract	

We	present	a	theoretical	approach	to	the	problem	of	the	transition	from	Calculus	to	Analysis	
within	the	undergraduate	mathematics	curriculum.	First,	we	formulate	this	problem	using	the	
anthropological	 theory	 of	 the	 didactic,	 in	 particular	 the	 notion	 of	 praxeology,	 along	with	 a		
possible	 solution	 related	 to	 Klein's	 "Plan	 B"	 :	 here,	 re‐linking	 the	 theory	 of	 Analysis	 with	
practical	 knowledge	 from	 Calculus.	We	 explore	 two	 cases	 based	 on	 this	 approach:	 (1)	 the	
contribution	 of	 Vector	 Analysis	 to	 the	 foundations	 of	 trigonometric	 functions,	 and	 (2)	
establishing	 the	 ties	 between	 the	 proof	 of	 a	 basic	 theorem	 in	 Fourier	 Analysis	 and	 the	
computation	 of	 elementary	 infinite	 series.	 These	 two	 cases,	 including	 small‐scale	 trials,	
illustrate	the	necessity,	 importance	and	possibilities	of	new	didactical	approaches	aiming	to	
help	 students	 to	 integrate	mathematical	 theories	 and	 practices	which	 are	 otherwise	 taught	
separately.		

	

Introduction		

An	 evident	 tendency	 of	mass	 university	 education	 is	what	 French	 sociologist	Michel	Verret	
(1975,	140)	 called	 the	desynchretisation	of	knowledge.	The	word	 indicates	 that	 elements	of	
knowledge	 which	 were	 originally	 combined	 and	 united,	 for	 instance	 in	 the	 context	 of	
discovery,	 become	 separated	 again	 as	 they	 are	 taught.	 At	 universities,	 efforts	 to	 enhance	
efficiency	and	economy	of	exposition	have	led	to	still	tighter	and	shorter	modules	of	teaching,	
each	 focusing	on	a	quite	narrow	and	homogenous	domain	of	 knowledge.	 Such	modules	 are	
considered	easier	to	digest	for	students	and	they	can	also	be	easily	combined	with	each	other	
in	different	ways,	to	cater	to	different	programs	or	streams.	The	price	of	that	efficiency	may	be	
a	loss	of	connections	which	are	important	for	the	meaning,	uses	and	further	development	of	
scientific	content.	At	the	extreme,	teaching	leads	students	to	visit	each	element	of	knowledge	
as	a	“monument	that	stands	on	its	own,	that	students	are	expected	to	admire	and	enjoy,	even	
when	 they	 know	 next	 to	 nothing	 about	 its	 raisons	 d’être,	 now	 or	 in	 the	 past”	 (Chevallard,	
2012).			

For	several	years,	we	have	worked	with	a	special	case	of	this	phenomenon,	occurring	in	the	
teaching	 of	 mathematical	 analysis	 at	 undergraduate	 level	 and	 also	 observed	 by	 other	
researchers	 (see	 e.g.	 Nardi,	 Jaworski	 and	 Hegedus,	 2005).	 One	 gross	 symptom	 of	
desynchretisation	 in	 this	 context	 is	 the	 frequent	 separation,	 also	 by	 name,	 of	 courses	 on	
Calculus,	and	subsequent	courses	on	various	branches	of	Analysis.	Calculus	courses	specialize	
in	mathematical	 themes	 indicated	by	 course	 titles	 such	as	 “Integral	Calculus”,	 “Functions	of	
Several	Variables”	or	“Ordinary	Differential	Equations”.	Analysis	courses,	on	the	other	hand,	



treat	 theoretical	 perspectives	 on	 these	 same	mathematical	 themes,	 gradually	 moving	 from	
course	titles	such	as	“Real	Analysis”,	“Fourier	Analysis”	towards	more	abstract	areas	such	as	
Functional	and	Harmonic	Analysis.	In	short,	Calculus	courses	can	be	roughly	characterized	as	
teaching	 students	 certain	 calculation	 practices	 related	 to	 real	 and	 vector	 valued	 functions,	
with	 little	 theoretical	 precision	 or	 justification—while	 Analysis	 courses	 tend	 to	 present	
“formal	theory	with	little	practice”	and	consequently	little	evident	need	for	formalization.	Of	
course,	 there	 are	 practical	 reasons	 for	 the	 separation:	 the	 two	 types	 of	 courses	 cater	 to	
different	student	populations.	While	Calculus	courses	are	studied	by	a	large	cohort	of	students	
in	 the	 natural	 and	 social	 sciences,	much	 fewer	 students	 study	Analysis	 (mainly	 students	 of	
pure	 mathematics,	 theoretical	 physics	 and	 mathematical	 statistics).	 For	 these	 and	 other	
reasons,	it	may	be	difficult	to	change	the	course	structure.		

Our	aim	in	this	paper	is	to	provide	a	theoretical	approach,	supported	by	two	small‐scale	trials,	
to	 the	 problem	 of	 recovering	 some	 of	 the	meaningful	 links	 with	 previous	 courses	 in	 post‐
Calculus	 teaching	on	Analysis.	A	 strong	motivation	 for	 our	work	 is	 that	 the	 transition	 from	
Calculus	 to	Analysis	 is	known	 to	present	mathematics	 students	with	several	 challenges	 (for	
examples,	see	Winsløw	and	Grønbæk,	2014).	Here	is	a	typical	student	formulation	of	some	of	
these	(interview	with	a	student	of	the	first	author,	summer	2016):	

In	Calculus	courses	we	learn	methods,	but	usually	the	why	questions	are	not	explained	or	proved.	(...)	
However,	Analysis	courses	felt	as	separate.	They	were	more	theoretical	than	applied.	I	never	grasped	
them	as	well	as	Calculus.	It	was	often	unclear,	what	it	is	leading	to.	I	wish	we	had	a	better	sense	of	
connection	between	the	theory	we	covered	in	pure	math	courses	and	the	methods	shown	in	applied	
math	courses.		

We	have	 explored	 this	 perceived	 lack	of	 “connection”	 in	 earlier	papers	 (Kondratieva,	 2011,	
2015;	Winsløw,	2007,	2016).	 In	 this	paper,	we	first	present	a	 theoretical	 framework	for	 the	
study	of	this	“connection	problem”,	which	also	guides	our	efforts	to	design	“new	connections”	
to	be	made	in	the	context	of	undergraduate	Analysis	teaching.	We	then	present	two	cases	in	
which	 students	 are	 invited	 to	 explore	 different	 types	 of	 links	 between	 formal	 Analysis	 and	
students’	practical	knowledge	of	Calculus:	Case	1	on	a	 link	between	Vector	Analysis	and	the	
meaning	of	trigonometry	and	angle,	and	Case	2	on	establishing	the	ties	between	the	proof	of	a	
basic	 theorem	 in	 Fourier	 Analysis	 and	 the	 computation	 of	 infinite	 number	 series	 such	 as	
∑ 1/݊ଶ.	 In	Case	1,	we	consider	an	Analysis	course	 in	which	various	elements	could	have	 led	
students	towards	the	mentioned	link,	while	an	interview	with	an	advanced	student,	who	has	
even	worked	as	a	tutor	in	the	course,	shows	that	this	link	was	not	effectively	established.	In	
case	2	we	trial	a	set	of	exercises,	specifically	designed	to	establish	a	link	between	Calculus	and	
Fourier	 Analysis.	 This	 activity	 turns	 out	 quite	 successful,	 as	 demonstrated	 in	 the	 recorded	
experiences	of	a	small	sample	of	students.	
	
Our	intention	with	these	two	cases	is	neither	to	provide	solid	or	‘generic’	empirical	results	nor	
to	 present	 a	 ready‐made,	 teacher‐proof	 set	 of	 teaching	 materials.	 Certainly,	 these	 cases	
indicate	some	challenges	and	potentialities	for	reflective	teachers	of	Analysis,	as	well	as	some	
concrete	ideas	they	might	adapt	to	their	institutional	conditions.	But	our	main	point	with	this	
paper	is	theoretical:	to	present	and	model	a	research	problem	of	the	utmost	importance	to	the	



undergraduate	teaching	of	Analysis,	and	to	exemplify	how	mathematician‐didacticians	could	
approach	 it:	 by	 designing	 tasks	 and	 activities	 through	which	 students	may	 recover	 at	 least	
parts	of	the	meanings	and	links	that	were	lost	in	decades	of	didactical	desynchretisation.	

Theoretical	Background	and	Framework		

Klein’s	Plan	A	and	Plan	B	

Felix	Klein	(1908/1932,	pp.	77‐85)	considered	that,	in	the	history	of	mathematics,	as	well	as	
in	the	discipline	of	school	mathematics,	we	may	identify	two	possible	“Plans”	(one	might	also	
say,	visions	or	strategies)	for	developing	a	subject;	and,	he	used	the	case	of	classical	Analysis	
to	 illustrate	these.	What	Klein	calls	Plan	A	 is	a	compartmentalized	approach	 to	mathematics,	
very	close	to	what	Verret	called	“desynchretisation”,	which	favors	precise	and	purified	work	
within	certain	small	“areas”	of	mathematics,	which	are	hardly	related	with	each	other:	

Plan	A	 is	based	upon	a	more	particularistic	conception	of	 science	which	divides	 the	 total	
field	into	a	series	of	mutually	separated	parts	and	attempts	to	develop	each	part	for	itself,	
with	 a	 minimum	 of	 resources	 and	 with	 all	 possible	 avoidance	 of	 borrowing	 from	
neighbouring	fields	(ibid.,	p.	78).	

The	most	famous	examples	of	“Plan	A”	in	the	history	of	mathematics	itself	include,	of	course,	
Euclid’s	Elements,	with	 its	strict	separation	of	Geometry	and	Arithmetic.	Plan	A	refers	more	
generally	to	an	economy	of	exposition	which	prefers	minimal	paths	of	deduction	towards	key	
results	 in	 each	 	 domain	 of	mathematics,	 with	 little	 affection	 for	 alternative	 (e.g.	 historical)	
routes	and	connections.	

Plan	 B,	 by	 contrast,	 involves	 a	 more	 holistic	 approach	 which	 emphasizes	 and	 exploits	
connections	between	different	domains:	

…	the	supporter	of	Plan	B	lays	the	chief	stress	upon	the	organic	combination	of	the	partial	
fields,	and	upon	the	stimulation	which	these	exert	one	upon	another.	He	prefers,	therefore,	
the	methods	which	open	for	him	an	understanding	of	several	fields	under	a	uniform	point	
of	view.	His	ideal	is	the	comprehension	of	the	sum	total	of	mathematical	science	as	a	great	
connected	whole	(ibid.,	p.	78).		

Klein	observes	that,	in	the	history	of	mathematics,	“Plan	A”	and	“Plan	B”	both	appear	during	
fruitful	 periods	 of	 research,	 in	 Analysis	 as	 well	 as	 in	 other	 areas.	 For	 instance,	 the	 initial	
developments	 of	 the	 Calculus	 took	 place	 much	 according	 to	 Plan	 B,	 led	 by	 Leibniz	 and	
Newton;	 later,	 a	 progressive	 move	 towards	 Plan	 A	 occurred,	 as	 Cauchy	 and	 others	 gave	
classical	Analysis	the	solid	foundations	we	know	today.		

Klein	 strongly	 recommends	 using	 “Plan	 B”	 as	 a	 strategy	 for	 presenting	 mathematics	 to	
students,	and	laments	the	exclusive	use	of	Plan	A.	On	this	point,	little	has	changed	except	that	
perhaps	the	prevalence	of	Plan	A	is	even	stronger	in	present‐day	university	programs	on	pure	
mathematics	than	in	Klein’s	days,	as	we	have	pointed	out	in	the	introduction.	



In	Klein’s	 terms,	 our	 aim	 in	 this	paper	 is	 to	 revitalize	 the	 idea	of	 “Plan	B”	 in	 the	 context	of	
undergraduate	Analysis,	and	to	exemplify	how	it	could	materialise	in	specific	situations,	with	
concrete	 links	 as	 learning	 objectives.	 To	do	 so,	we	now	 introduce	 a	 few	 elements	 from	 the	
anthropological	theory	of	the	didactic	(ATD)	(Chevallard,	2006)	which	serve	as	the	theoretical	
underpinnings	of	our	discussion	of,	and	design	for,	Plan	B.	

Praxeological	analysis	as	guideline	to	design	for	Plan	B	

Chevallard	 (2006)	 defines	 a	praxeology	as	 a	 pair	 ሺܲ, 	ሻܮ consisting	 of	 a	praxis	block	P	 and	 a	
logos	 block	 L.	 A	 praxeology	 is	 a	minimal	 element	 of	 human	 knowledge,	P	 representing	 the	
practical	part—the	 “know	how”	—and	L	 the	 intellectual	part,	 the	 “thinking	and	explaining”.	
The	two	are	interdependent:	

…no	 human	 action	 can	 exist	 without	 being,	 at	 least	 partially,	 “explained”,	 made	 “intelligible”,	
“justified”,	“accounted	for”,	in	whatever	style	of	“reasoning”	such	an	explanation	or	justification	may	
be	 cast.	 Praxis	 thus	 entails	 logos	 which	 in	 turn	 backs	 up	 praxis.	 For	 praxis	 needs	 support	 –	 just	
because,	in	the	long	run,	no	human	doing	goes	unquestioned.	(Chevallard,	2006,	p.	23).	

As	for	mathematical	praxeologies	taught	and	learnt	at	university,	it	is	obvious	that	praxis	(e.g.	
deciding	if	some	infinite	series	converges	or	not)	is	intimately	connected	to	various	forms	of	
logos—from	 ad	 hoc	 explanations	 of	 standard	 techniques	 to	 theories	 involving	 general	
definitions,	theorems	and	proofs.	We	note	here	that	ATD	offers	more	detailed	tools	to	analyse	
praxeologies	 than	 the	 simple	 pairs	 of	 praxis	 and	 logos	 considered	 here,	 but	 we	 have	
deliberately	limited	the	introduction	of	theoretical	tools	to	what	is	strictly	needed	to	present	
our	discussion	of	Klein’s	Plan	B	in	the	context	of	Calculus	and	Analysis.	

There	is	no	shortage	of	logos	in	the	typical	Analysis	course.	The	problem	is	more	the	opposite:	
pursuit	of	intricate	logos	without	praxis—for	instance,	students	are	presented	with	extensive	
logos	 about	 the	 assumptions	 under	which	 an	 infinite	 sum	 of	 continuous	 functions	 is	 again	
continuous,	 but	 not	 with	 serious	 praxis	 where	 such	 logos	 is	 needed.	 Naturally,	 almost	 all	
course	 teaching	 involves	 some	 praxis—but	 it	 is	 often	 exercises	which	 provide	 a	 superficial	
experience	of	“applying”	the	theory	to	simple,	concrete	cases—for	instance,	to	“show”	that	a	
given	infinite	sum	of	functions	is	continuous	on	a	given	interval.	With	that	added	praxis,	one	
thus	gets	a	complete	praxeology,	even	if	the	completion	is	achieved	in	a	minimal	and	artificial	
way.	

To	contrast	such	“artificial	student	praxeologies”	(constructed	for	didactic	purposes)	with	the	
praxeologies	of	present‐day	mathematicians,	we	 shall	 indicate	 the	 first	using	Roman	 letters	
ሺܲ, ,ሺΠ	letters	Greek	with	last	the	and	ሻܮ Λሻ.	As	a	rough	model	of	the	current	situation	is,	then,	
that	the	praxeologies	taught	and	learnt	in	Calculus	courses	are	of	the	form	ሺΠ௜, 	praxis	the	:	௜ሻܮ
blocks,	including	computational	techniques,	are	identical	to	those	used	(for	tasks	of	the	same	
type)	 by	 professional	 mathematicians,	 while	 the	 logos	 blocks	 	௜ܮ are	 limited	 to	 informal	
explanations	 of	 a	 smaller	 collection	 of	 praxis	 blocks	 (such	 as	 the	 various	 techniques	 for	
determining	whether	a	series	is	convergent	or	not).	On	the	other	hand,	Analysis	courses	aim	
to	teach	the	scientific	form	of	logos	blocks.	The	taught	and	learnt	praxeologies	in	such	courses	



are	therefore	of	the	form	ሺ ௜ܲ, Λ௜ሻ	where	each	Λ௜	constitutes	a	logos	block	consistent	with	that	
of	 present‐day	 mathematicians	 while	 the	 praxis	 blocks	 ௜ܲ	 are	 didactic	 “supplements”	
constructed	 to	 consolidate	 the	 acquisition	 of	 	 Λ௜.	 As	 mentioned	 in	 the	 introduction,	 such	
teaching	practices	often	fail	to	motivate	students	for	Λ௜	and	to	provide	them	with	a	coherent,	
autonomous	relationship	with	ሺΠ௜, Λ௜ሻ.	Part	of	our	research	focuses	on	how	this	issue	can	be	
addressed.		

Taken	 together,	 Calculus	 and	 Analysis	 courses	 in	 principle	 could	 provide	 students	 with	
complete	praxeologies	 ሺΠ௜, Λ௜ሻ	 that	 are	 close	 to	 the	 	 standards	of	present‐day	mathematics.	
For	 instance,	 convergence	 tests	 used	 in	 Calculus	 praxis	 on	 series	 are	 now	 supplied	with	 a	
theory	 involving	 precise	 definitions	 and	 proofs	 of	 the	 “criteria”	 for	 convergence.	 However,	
because	 the	 number	 and	 technical	 complexity	 of	 these	 praxeologies	 is	 quite	 high,	 and	 the	
praxis	 blocks	 Π௜	 were	 taught	 in	 other	 courses,	 considerable	 effort	 and	 support	 might	 be	
needed	for	students	to	“assemble”	isolated	praxeologies	ሺΠ௜, Λ௜ሻ;	auxiliary	praxis	blocks	ߏ௜	are	
often	 introduced	 in	 attempts	 to	 achieve	 this.	 Working	 along	 these	 lines	 corresponds	 to	
establishing	complete	praxeologies	which	are	mutually	connected	only	within	different	small	
areas	of	mathematics,	such	as	“infinite	series”.	This	is	indeed	“Plan	A”.	By	contrast,	in	Plan	B,	
the	 connections	 are	 much	 more	 extensive	 and	 go	 beyond	 the	 minimal	 needs	 for	 logical	
coherence	and	praxeological	completeness.	

In	the	two	cases	below,	we	tread	beyond	assembling	isolated	praxeologies.	Namely,	we	aim	to	
investigate	 the	 potential	 links	which	 could	 be	 formed	by	 students	 between	 logos	 blocks	 Λ௜	
from	Analysis	and	seemingly	distant	praxis	blocks	Π௝, known	to	them	from	Calculus,	or	topics	

that	they	learnt	at	earlier	educational	levels	(such	as	trigonometry	and	basic	plane	geometry).	
Our	 overall	 strategy	 for	 realizing	Klein’s	 Plan	B	 is	 thus	 to	 design	 and	 observe	 situations	 in	
which	 students	 experience	 how	 the	 new	 logos	 block	 of	 Analysis	 build	 on—or,	 conversely	
inform—praxis	blocks	which	are	(or	should	be)	familiar	to	them.	

Case	1:	Vector	Analysis	theorizes	pre‐Calculus	and	Calculus				

In	Calculus	 courses,	 students	have	built	 extensive	praxis	blocks	Π௜	based	on	 standard	 tasks	
with	 functions	 in	 closed	 form.	 In	 this	 section,	we	 explore	 the	 special	 case	 of	 trigonometric	
functions:	what	 students	 supposedly	 learn	 about	 them	 up	 to	 (and	 including)	 Calculus,	 and	
how	one	can	revisit	this	topic,	along	with	the	more	elementary	notion	of	angle	measure,	in	a	
first	course	on	rigorous	Vector	Analysis.		

Angles	and	trigonometric	functions	in	pre‐Calculus	

It	is	well	known	that	the	functions	sine	and	cosine	are	often	introduced	progressively,	in	three	
distinct	 and	 quite	 different	 contexts	 (e.g.	 Demir	 &	 Heck,	 2013,	 p.	 120).	 To	 save	 breath	we	
speak	only	of	sine,	given	that	everything	is	similar	for	cosine:	

- First,	 sine	 appears	 as	 a	 “tool”	 for	 solving	 triangle	 problems	 in	 plane	 geometry.	 It	 is	
defined	as	a	certain	ratio	of	sides	in	a	right	triangle,	accompanied	with	something	like	
Figure	 1;	 notice	 how	 the	 ratio	 is	 ascribed,	 through	 the	 notation,	 to	 an	 angle.	



Subsequently,	 calculators	 are	 used	 to	 compute	 this	 “angle‐related	 number”	 and	
occasionally	also	to	find	an	angle	with	a	given	value	of	sine.	

- Then,	in	the	setting	of	analytic	geometry,	sine	is	defined	as	the	second	coordinate	of	the	
intersection	of	a	ray	through	the	unit	circle,	accompanied	with	something	like	Figure	2;	
again,	we	notice	the	link	to	an	angle,	indicated	in	the	figure.	

- Finally,	 sine	 emerges	 as	 a	 function	 through	 tables	 and	 graphs	 like	 Figure	 3,	 with	 a	
discussion	of	function	properties	such	as	domain,	range,	zeros,	period	etc.	Here,	there	
is	 no	 explicit	 link	 to	 angles	 and	 in	 fact,	 the	 passage	 to	 functions	 defined	 on	 all	 of	Թ	
probably	loosens	that	link	for	most	students.	
	

	 	

Figure	1:	Triangle	context.	 Figure	2:	Cartesian	context.	 Figure	3:	Function	context.

	

Viewed	separately,	the	three	contexts	can	be	pursued	following	Plan	A,	with	different	praxis	
and	logos.	But	 in	most	secondary	schools,	some	efforts	are	being	made	to	relate	both	praxis	
and	logos	from	the	three	contexts,	elements	of	plan	B	can	be	seen	in	such	efforts.	Figures	1‐3	
are	 really	 used	 to	 support	 an	 informal	 logos	 block	 	on	஺்ܮ “angles	 and	 trigonometry”,	 to	
explain	and	somehow	justify	a	similar	(adequate	in	a	scholarly	sense)	set	of	practices	Π஺்	for	
solving	 tasks	 related	 to	 angles	 and	 trigonometry.	 The	 postulate	 character	 of	 the	 graphs	 in	
Figure	3	is	the	main	obstacle	addressed	by	Demir	and	Heck	(2013):	

The	sine	and	cosine	functions	may	have	been	defined,	but	the	graphs	of	these	real	functions	remain	
mysterious	or	merely	diagrams	produced	by	a	 graphing	calculator	or	mathematics	 software.	The	
complex	nature	of	 trigonometry	makes	 it	challenging	for	students	to	understand	the	topic	deeply	
and	conceptually.	(Demir	&	Heck,	2013,	p.	119)	

While	we	do	 agree	with	 the	 authors	 that	difficulties	 remain,	 a	 “deep	understanding”	would	
need	to	question	that	“the	sine	and	cosine	 functions	may	have	been	defined”	by	the	various	
explanations	 provided	 by	 	.஺்ܮ In	 fact,	 they	 ultimately	 rely	 on	 the	 informal	 notion	 of	 angle	
which	students	met	already	in	primary	school:	a	numerical	measure	of	the	space	between	two	
crossing	 line	segments	(for	 instance,	sides	 in	a	 triangle).	The	absence	of	a	 firm	definition	of	
angle	may	cause	misinterpretations	and	further	student	confusion	regarding	sine	and	cosine	
functions.	There	is	a	considerable	literature	on	how	secondary	level	students,	their	teachers,	
and	even	university	students		struggle	with	making	sense	of	the	informal	definitions	outlined	
above	 (see	 Weber,	 2005,	 and	 references	 therein).	 Naturally,	 analytic	 definitions	 of	 the	

B C 

A 

B C 

sinሺܤሻ ൌ
݁ݐ݅ݏ݋݌݌݋

݁ݏݑ݊݁ݐ݋݌ݕ݄
  cosሺܤሻ ൌ

ݐ݆݊݁ܿܽ݀ܽ
݁ݏݑ݊݁ݐ݋݌ݕ݄

 

 

o 
p 
p 
o 
s 
i 
t 
e 

adjacent 

x

y



ሺܛܗ܋ી, ીሻܖܑܛ

 



functions	 may	 be	 given	 e.g.	 in	 terms	 of	 power	 series,	 but	 this	 is	 usually	 unrelated	 to	 the	
previous	informal	definitions.	

Among	 the	mysterious	 operations	 which	 usually	 accompany	 the	 passage	 from	 the	 triangle	
context	to	the	Cartesian	context	is	the	unmotivated	change	of	unit	for	this	measure,	as	degrees	
are	 replaced	 by	 radians.	 But	 the	 informal	 definition	 of	 radians	 gives	 a	 clue	 to	 solving	 the	
mystery	 of	 what	 angle	 measures	 are,	 namely:	 the	 length	 of	 a	 specific	 segment	 of	 the	 unit	
circle.	We	now	outline	how	the	foundations	of	angles	and	trigonometry	could	be	approached,	
at	university,	using	more	advanced	elements	from	Analysis—an	approach	which	seems	so	far	
untouched	by	the	mathematics	education	research	literature.	

Plan	B	based	on	Vector	Analysis		

In	the	standard	formal	approach	to	curve	integrals,	the	notions	of	rectifiable	curve	and	natural	
parametrization	 are	 quite	 central.	 We	 take	 as	 available	 logos	 for	 our	 “Plan	 B”	 some	 main	
definitions	and	theorems	 from	a	Danish	 textbook	(Eilers,	Hansen,	&	Madsen,	2015),	written	
for	a	second	semester	course	on	Real	and	Vector	Analysis	at	the	University	of	Copenhagen.		

First	some	notation	is	introduced:	for	a	continuous	curve	ܚ ∶ ሾܽ, ܾሿ → Թ௠	and	a	partition	ܦ	of	
ሾܽ, ܾሿ		consisting	of	points	ܽ ൌ ଴ݐ ൏ ଵݐ ൏ ⋯ ൏ ௞ݐ ൌ ܾ,	we	put	

	ℓሺܦሻ ൌ ∑ ฮܚ൫ݐ௝൯ െ ௝ିଵ൯ฮݐ൫ܚ
௞
௝ୀଵ .	

A	 figure	 in	 the	 text	 illustrates	how	 this	measures	 the	 total	 length	of	 line	segments	between	
points	on	the	curve	corresponding	to	the	partition,	and	how	this	can	be	interpreted	as	a	lower	
bound	 of	 what	 is	 intuitively	 the	 “length”	 of	 the	 curve.	 Then	 follows	 a	 precise	 definition	 of	
curve	length,	ultimately	in	terms	of	the	usual	distance	in	Թ௠:	

Definition	7.14.	For	a	 continuous	 curve	ܚ ∶ ሾܽ, ܾሿ → Թ௠	on	a	bounded,	 closed	parameter	
interval	ሾܽ, ܾሿ,	the	curve	(or	arc)	length	is	given	as	

ℓ ൌ supሼℓሺܦሻ	| ,ሾܽ	of	partition	finite	a	is	ܦ ܾሿሽ	

If	ℓ ൏ ∞,	the	curve	is	said	to	be	rectifiable	(ibid.,	p.	223).	

It	is	then	proved	that	if	ܚ	is	piecewise	C1,	then	it	is	rectifiable,	with	ℓ ൌ ׬ ‖ሻݐᇱሺܚ‖
௕
௔ 	the	Under	.ݐ݀

further	 assumption	 that	 	ܚ is	 smooth	 (i.e.	 ሻݐᇱሺܚ ് ૙	 for	 all	 	,(ݐ it	 is	 proved	 that	 there	 is	 an	
interval	 ሾܿ, ݀ሿ	 and	 a	 strictly	 increasing	 C1‐function	 ߮: ሾܿ, ݀ሿ → ሾܽ, ܾሿ	 such	 that	 ෤ܚ ൌ ܚ ∘ ߮	 is	 a	

natural	 parametrization	 defined	 on	 ሾܿ, ݀ሿ,	 meaning	 that	 ׬ ‖ሻݐ෤ᇱሺܚ‖
௩
௨ ݐ݀ ൌ ݒ െ 	ݑ whenever	

ܿ ൑ ݑ ൑ ݒ ൑ ݀.	In	particular,	݀ െ ܿ ൌ	ℓ	where	ℓ	 is	 the	curve	 length	of	ܚ.	 In	words:	there	is	a	
reparametrization	of	ܚ,	such	that	the	length	of	any	curve	segment	is	simply	the	distance	(in	Թ)	
between	 the	 corresponding	 parameter	 values.	 Together,	 the	 above	 definitions	 and	 results	
form	a	logos	block	Λ஼௅	on	curve	length,	which	is	subsequently	extended	with	definitions	and	
results	on	curve	integrals.	



The	text	offers	 three	“examples”	(praxis)	 for	Λ஼௅.	One	of	these	shows	how	to	piece	together	
two	 function	 graphs	 to	 create	 a	 smooth	C1‐parametrization	 	ܚ of	 ܵଵሺ‖ܚ‖ ൌ 1ሻ,	 traversing	 ܵଵ	
once	 from	ሺ1,0ሻ	 to	ሺ1,0ሻ	 in	 the	positive	direction,	one	can	use	the	above	to	obtain	a	natural	
reparametrization		ܚ෤	of	ܚ.	No	explanation	is	given	on	why	this	example	does	not	start	with	the	
parametrization	of	ܵଵ	which	is	most	familiar	to	students:	ሺcos ݐ , sin ,ሻݐ ݐ ∈ ሾ0,2ߨሿ.	It	is	also	not	
mentioned	that	ܚ෤		has	finite	length,	that	because	ܚ෤	is	natural,	one	might	define	angle	measures	
using	the	parameter	values,	or	that	the	coordinate	functions	of	ܚ෤	may	then	be	used	to	define	
cosine	and	sine	on	these	angles.	All	of	this	can	be	extracted	from	an	appendix	in	the	book	on	
“angle	maps”,	drawing	on	Chapter	7,	but	that	part	of	the	appendix	is	not	covered	in	the	course.	
Together,	 these	elements	of	praxis	 (Π஼௅)	 suffice,	 in	principle,	 to	 create	a	 formal	 logos	block	
Λ஺்	for	the	praxis	on	angles	and	trigonometry	which	is	already	familiar	to	the	students.		

The	second	author	observed	(and	co‐developed,	without	co‐teaching)	a	course	based	on	this	
textbook	in	the	spring	of	2015.	Indeed,	the	overall	emphasis	of	the	course	followed	a	Plan	A,	
laying	 out	 theoretical	 foundations	 for	 Real	 and	Vector	 Analysis,	with	 a	 strong	 emphasis	 on	
definitions,	theorems	and	proofs.	The	above	material	from	Chapter	7	(and	more)	was	covered	
in	 one	 lecture	 during	 the	 sixth	 week.	 No	 exercises	 for	 students	 addressed	 the	 problem	 of	
defining	angles	directly.	However,	 the	students	did	one	exercise	on	 the	map	ܚ෤	above,	which	
asked	them	to	show	that	if	we	name	the	coordinate	functions	ܚ෤ 	ൌ 	 ሺܥ, ܵሻ,	we	can	deduce	that	
෤ᇱܚ ൌ േሺെܵ, 	:from	follows	this	Indeed,	ሻ.ܥ

‖෤ܚ‖ ൌ 1 ⟹ ᇱܥܥ2 ൅ 2ܵܵᇱ ൌ 0		and	න ‖ሻݐ෤ᇱሺܚ‖
்

଴
ݐ݀ ൌ ܶ ⟹ ᇱଶܥ ൅ ܵᇱଶ ൌ 1.		ሺ∗ሻ	

So,	the	book	and	its	material	hold	potential	for	a	complementary	Plan	B	to	explain	and	justify	
the	“old”	praxis	blocks	(Π஺்)	on	angles	and	trigonometric	functions	by	incorporating	the	new	
logos	block	Λ஼௅	from	Chapter	7.	It	links	specifically	to	the	logos	block	corresponding	to	Fig.	2	
above,	showing	how	to	define	the	angle	as	the	inverse	of	a	natural	parametrization,	and	cosine	
and	sine	as	the	coordinate	functions	of	this	parametrization.	

An	informal	trial	

To	 gauge	 if	 the	 relations	 between	 trigonometry	 and	 natural	 parametrizations	 had	 been	
established	 by	 students	 in	 the	 course	 considered	 above,	 we	 interviewed	 a	 masters	 level	
student	 (advanced	 student,	 thereafter	 AS)	 who	 had	 served	 as	 a	 teaching	 assistant	 in	 this	
course	twice.	We	expected	that	this	student’s	knowledge	would	be	an	upper	bound	of	the	new	
foundations	of	 angles	 and	 trigonometry	 that	 students	 in	 the	 course	 could	 have	 constructed	
from	 the	 theory	 surrounding	 natural	 parametrizations	 and	 the	 exercises	mentioned	 above.	
The	interview	was	semi‐structured	and	based	on	the	following	questions:	

- What	is	your	favorite	definition	of	the	sine	function?	
o Follow‐up	questions	according	to	the	definition	chosen,	leading	to:	

- What	is	your	favorite	definition	of	an	angle?	How	does	it	relate	to	sine?	



o Follow‐up	questions	for	instance	on	arc	length,	if	referring	to	circle	arc.	
- What	mathematical	resources	does	the	course	(described	above)	provide	to	elucidate	

the	previous	questions?	(textbook	at	hand,	to	look	up	details).	

Notice	that	the	tasks	were	formulated	in	a	very	open	way,	as	the	intention	was	to	examine	the	
praxeological	links	which	the	course	in	question	had	led	the	students	to	establish.		

The	interview	was	audio	recorded	and	transcribed.	Below	we	just	outline	the	main	exchanges	
pertaining	 to	 the	 above	 points,	 to	 conclude	with	 some	 observations	 relating	 to	 our	 overall	
questions.	

AS	begins	answering	the	first	question	by	tracing	the	graph	of	sine	(Fig.	4),	then	enumerates	
“a	 lot	 of	 properties”	 of	 the	 function	 (Fig.	 5),	 all	 from	 Calculus.	 AS	 realizes	 that	 they	 are	
“certainly	not	a	definition”.	The	interviewer	(IN)	insists	on	AS	giving	one	definition.	AS	then	
gives	the	Cartesian	description	from	pre‐Calculus	(Fig.	6).	After	slight	confusion,	AS	identifies	
		.triangle	the	in	angle	appropriate	the	as	(6	Fig.	in)	ݔ

	
	

Figure	4:	A	graph.	 Figure	5:	Properties.	 Figure	6:	Diagram.	

Then	follows	the	dialogue	below	(some	redundancies	are	left	out,	marked	by	//):	

IN:	Then,	 the	question	arises,	 the	angle,	what	mathematical	 object	 is	 that?	//	Can	you	give	 like	a	
mathematical	definition	of	that?	

AS:	It	determines	like	how	far	two	lines	are	from	each	other.	//	[AS	draws	two	crossing	lines	and	
says	there	are	four	angles,	two	different,	and	IN	repeats	the	previous	question].	

AS:	In	the	old	days,	you	used	your	compass	and	your	protractor,	and	then	later	when	you	have	to	
compute	 them,	 there	were,	 you	had	 these	 smart	 things	where	you	get	hold	of	 cosine	and	sine	 to	
compute	them,	the	angles…	

IN:	Yes,	but	you	have	just	used	angles	to	define	sine	and	cosine…	

AS:	Oh	yes,	precisely,	then	it	comes	backwards	again,	so	that	it	not	so	good…	

IN:	So,	my	thousand	dollar	question,	could	[name	of	the	course]	help	us	with	that?	

So	 far,	 AS	 has	 only	 reproduced	 logos	 from	 pre‐university	 mathematics,	 essentially	
corresponding	to	Figures	2	and	3	above,	together	with	one	formula	from	Calculus.	Explicitly	
asked	to	draw	on	the	Analysis	course,	AS	immediately	recalls	this	“fantastic	exercise”	where	
you	had	two	functions,	and	it	turns	out	they	are	cosine	and	sine.	After	a	few	minutes,	AS	finds	
it	 in	 the	 section	 on	 curve	 integrals;	 the	 exercise	 begins	 with	 “a	 natural	 parametrization”	



ሻݐሺܚ ൌ ሺܥሺݐሻ, ܵሺݐሻሻ	 of	 the	 unit	 circle,	 and	 calls	 for	 (*)	 to	 prove	 that	 ሺܥᇱሺݐሻ, ܵ′ሺݐሻሻ ൌ
േሺെܵሺݐሻ, 	and	natural,	being	ܚ	of	assumption	the	first,	at	notice,	not	does	AS	However,	ሻሻ.ݐሺܥ
when	 IN	points	 it	out	and	asks	what	 it	means,	AS	 looks	 it	up	 in	 the	 index	of	 the	book.	This	
leads	her	to	the	definition	mentioned	above	(Eilers	et	al.,	2015,	p.	226).	AS	reads	the	definition	
for	a	while,	and	then	says:	

AS:	 the	 parameter	 values,	 they	 should,	 if	we	 subtract	 them	 from	 each	 other	 //	 the	 curve	 length	
should	 be	 like	 one	minus	 the	 other	 //	 the	 curve	 cannot	make	 like	 strange	 crossings,	 that	 must	
create	a	mess,	I	think…	

IN:	//	you	get	such	a	length	preserving	map	from	an	interval	onto	the	curve.	How	could	that	help	us	
with	the	question	about	sine,	cosine	and	angles?	

AS:	That’s	a	good	question.	

IN	points	to	the	appendix	on	trigonometric	functions.	AS	recalls	that	they	did	do	an	exercise	
from	there	but	“otherwise	we	did	not	look	at	it”.	AS	does	not	recall	the	part	on	the	“angle	map”	
	the	and	text	main	the	to	reference	the	out	points	IN	from.	comes	ߛ	where	idea	no	has	and	ߛ
explicit	mention	that	ߛ	is	a	natural	parametrization.	AS	returns	to	the	main	text	and	looks	at	
Definition	7.14.	After	turning	a	few	pages	for	a	bit,	AS	finds	the	theorem	on	the	existence	of	
natural	parametrizations	of	smooth	ܥଵ‐curves.	IN	asks	if	AS	could	verify	the	conditions	for	the	
circle.	Supported	by	a	hint	(“could	you	parametrize	the	circle	without	using	sine	and	cosine?”),	

AS	comes	up	with	the	parametrization	ሺ√1 െ ,ଶݐ 	says	AS	quadrant.	first	the	in	circle	the	for	ሻ,ݐ
this	can	be	differentiated	many	times,	so	it	is	ܥଵ.	AS	does	not	recall	the	definition	of	“smooth”,	
but	quickly	looks	it	up,	and	then	verifies	 it	 for	the	parametrization	above.	Going	back	to	the	
theorem,	AS	concludes	that	then	we	can	construct	the	angle	map.	

IN:	Using	that,	can	you	give	a	precise	definition	of	what	an	angle	is?	

AS:	Not	immediately…	

IN:	What	should	it	be,	if	you	look	at	the	unit	circle?	//	

AS:	It	has	something	to	do	with	the	arc	length	//		

AS	tries	to	find	out	what	the	arc	length	is	for	ߛ	and	writes	down	the	formula	׬ ݐ݀‖ሻݐሺ′ߛ‖
௫
଴ .	As	

seen	 above,	 the	meaning	 of	 “natural	 parametrization”	 is	 not	 familiar	 to	 AS.	 AS	 also	 seems	
confused	that	the	values	of	ߛ	are	clearly	not	angles	(but	points),	 in	spite	of	 the	name	“angle	
map”.	 After	 some	 dead‐end	 circling	 around	 these	matters,	 IN	 asks	 AS	 if	 we	 could	make	 “a	
function	from	points	on	the	circle	to	arc	length”.	AS	suggests	that	ߛሺݐሻ	should	be	mapped	to	ݐ	
in	some	sense.	As	this	is	very	close	to	a	satisfactory	answer	and	as	the	agreed	time	is	almost	
up,	IN	briefly	shows	how	to	formalize	this	last	point,	and	wraps	up	the	conversation.		

The	above	conversation	indicates	that	the	angle	question	is	likely	to	be	challenging	for	many	
students	as	answering	it	requires	more	than	what	the	course	offers:	meeting	Λ஼௅	along	with	
some	“examples”	which,	together,	suffice	in	principle	to	create	Λ஺்.	Indeed,	AS	initially	repeats	



the	 informal	 logos	ܮ஺்	and	has	evidently	not	realized	how	Λ஼௅	allows	one	 to	replace	 it	with	
Λ஺்	 (passing	 through	Π஼௅).	We	conclude	 that	a	more	explicit	and	detailed	work	with	Π஼௅	 is	
needed	than	what	was	offered	in	the	course.	

Case	2:	Calculus	praxis	supporting	Fourier	Analysis	theory		

In	 Fourier	Analysis,	 trigonometric	 functions	 play	 the	 role	 of	 “basis	 elements”	which	 can	 be	
used	to	“build”	all	common	functions	on	an	interval.	Our	second	case	is	about	the	fundamental	
result	 underlying	 that	 theory,	 and	 the	 extent	 to	 which	 students	 can	 relate	 it	 to	 Calculus.		
Namely,	we	consider	the	important	case	of	Fourier	series,	defined	for	a	2π‐periodic,	piecewise	
continuous	function	݂ ∶ 	Թ	 → 	ԧ,	as		

ሻݔሾ݂ሿሺܨ ≝ ଵ

ଶ
ܽ଴ ൅ ∑ ܽ௡ஶ

௡ୀଵ cos ݔ݊ ൅ ∑ ܾ௡ஶ
௡ୀଵ sin 		,ݔ݊

where		

ܽ௡ ൌ
ଵ

஠
׬ ݂ሺݔሻ cos ݔ݊ ݔ݀
஠
ି஠ 			and			ܾ௡ ൌ

ଵ

஠
׬ ݂ሺݔሻ sin ݔ݊ ݊					,ݔ݀ ൌ 0,1,2…
஠
ି஠ .	

In	general	the	two	infinite	series	may	not	converge	at	a	point	ݔ.	In	1829,	Dirichlet	gave	one	of	
the	first	sufficient	conditions	for	pointwise	convergence	of	a	Fourier	series.	Following	
common	practice,	we	refer	to	the	statement	below	as	Dirichlet’s	theorem,	although	we	don’t	
use	his	original	formulation.		

Theorem.	 If	 ݂ ∶ 	Թ	 → 	ԧ	 is	 a	 continuous	2π‐periodic	 function	 with	 piecewise	 continuous	
derivative,	the	Fourier	series	of		݂		is	pointwise	convergent	to	݂ሺݔሻ	at	every		ݔ ∈ Թ.	

When	students	meet	Dirichlet’s	 theorem	 in	an	Analysis	 course,	 they	are	often	given	a	more	
general	version,	with	a	proof	based	on	Hilbert	space	techniques.	After	that,	applications	that	
are	intended	as	simple	are	introduced	in	examples	and	exercises.	For	instance,	students	may	
be	asked	to	compute	the	Fourier	series	of	݂ሺݔሻ ൌ ,ሾെπ	from	periodically	extended	ଶ,ݔ πሿ	to	Թ,	
and	then	use	Dirichlet’s	theorem	to	conclude	that	the	Fourier	series	of	݂	converges	to	݂	for	all	
ݔ ∈ Թ.	They	may	also	be	asked	to	develop	the	case	ݔ ൌ 0		:		

0 ൌ ݂ሺ0ሻ ൌ 	
஠మ

ଷ
൅ 4∑

ሺିଵሻ೙

௡మ
ஶ
௡ୀଵ 	 	so	that		∑ ሺିଵሻ೙శభ

௡మ
ஶ
௡ୀଵ ൌ

஠మ

ଵଶ
	.											(**)	

In	this	approach	the	praxis	block	( ஽்ܲ	:	computation	of	the	Fourier	series	for	a	given	function	
and	use	of	Dirichlet’s	theorem	on	such	a	case)	does	not	support	the	logos	block	Λ஽்	involved	
in	the	general	proof	of	the	theorem;	it	just	applies	the	statement,	which	itself	could	have	come	
out	of	nowhere	(and	does	in	many	courses).		

Plan	B	based	on	Calculus	

Note	that	the	value	of	the	infinite	sum	(**)	obtained	above	could	be	derived	by	other	means,	
as	a	variant	of	 the	 famous	Basel	problem	(see	e.g.	 Shoenthal,	2014	and	Kondratieva,	2016).	
One	 such	means	 is	 at	 the	 root	 of	 the	 design	 presented	 below.	 The	 aim	 of	 our	 design	 is	 to	



highlight	 the	 fact	 that	 the	general	proof	 (Λ஽்)	 is	 essentially	 linked	 to	 familiar	praxis	blocks	
from	Calculus.	Thus,	we	propose	that	before	meeting		Λ஽்	and		 ஽்ܲ	students	could	work	with	
an	activity	which	we	now	describe.		

Part	 1	 of	 the	 activity	 begins	 with	 posing	 the	 problem	 of	 determining	 the	 value	 of	 ܵ ≝

∑ ሺെ1ሻ݊൅1

݊2
∞
݊ൌ1 .	 The	 praxis	 blocks	 acquired	 in	 Calculus	 courses	 do	 not	 provide	 ready‐made	

techniques	 to	 solve	 this	 problem.	 Instead,	 students	 are	 invited	 to	 do	 so	 through	 several	
preliminary	problems.	Below,	 in	addition	 to	 stating	 the	problems	 for	 students,	we	note	and	
name	the	praxis	blocks	from	Calculus	which	are	needed	to	solve	these	problems:	

1.1 Compute	 the	 integral	 ׬ ଶݔ cos݉ݔ ݔ݀
஠
ି஠ 	 	 for	 any	 natural	 number	 ݉	 (Πଵ	 :	 integration	

rules).		
1.2 Show	that		ଵ

ଶ
൅ ∑ cos ௠ݔ݊

௡ୀଵ ൌ 	 ୱ୧୬	ሺ௠ାଵ/ଶሻ௫

ଶୱ୧୬	ሺ௫/ଶሻ
							(Πଶ	:	trigonometric	formulae).	

1.3 Show	that		ݑሺݔሻ ≝	൛
	
	
/ଶݔ sin ݔ ݔ	 ് 0

0 ݔ	 ൌ 0
			defines	a	continuous	function	on	ሾ0, π/2ሿ.	

					(Πଷ	:	techniques	to	compute	limits,	including	the	special	result	lim௫→଴ ଵିݔ sin ݔ ൌ 1).	
1.4 Find	ݑ′	and	show	that	this	function	is	bounded	on	ሾ0, π/2ሿ			

								(Πଷ,	and	Πସ:	differentiation	from	first	principles).	

1.5 Show	׬ ଶݔ
஠
ି஠

ୱ୧୬ሺ௠ାଵ/ଶሻ௫

ଶ ୱ୧୬௫/ଶ
ݔ݀ ൌ ׬8 ଶݕ

஠/ଶ
଴

ୱ୧୬ሺଶ௠ାଵሻ௬

ୱ୧୬௬
ݕ݀ ൌ 	8 ׬

ୡ୭ୱሺଶ௠ାଵሻ௬

ଶ௠ାଵ
ሻݕሺ′ݑ

஠/ଶ
଴ 	.(Πଵ)	ݕ݀

1.6 Show	that	the	integral	in	1.5	converges	to	0	as	݉ → ∞		(Πଵ	and	Πଷ).	
1.7 Finally,	combine	the	results	above	to	find	ܵ		(Πଵ).		

In	Part	2	of	the	activity,	students	are	asked	to	solve	another	couple	of	tasks,	which	essentially	
present	a	simple	proof	of	Dirichlet’s	theorem	in	the	special	case	݂ሺݔሻ ൌ 	as	runs	proof	That	ଶ.ݔ
follows:	

I.	 First,	 rewrite	 the	Nth	 partial	 Fourier	 sum,	 given	 by	ܨேሾ݂ሿሺݔሻ ≝
ଵ

ଶ
ܽ଴ ൅ ∑ ܽ௡ cos ேݔ݊

௡ୀଵ ൅

∑ ܾ௡ sin ேݔ݊
௡ୀଵ ,	as:	ܨேሾ݂ሿሺݔሻ ൌ ׬ ݂ሺݔ ൅ ݕሻ݀ݕேሺܭሻݕ

஠
ି஠ ,	where	the	Dirichlet	kernel	is	defined	

as	ܭேሺݔሻ ≝
ଵ

஠
ሺଵ
ଶ
൅ ∑ cos ሻݔ݊ ൌ ଵ

஠

ୱ୧୬ሺேାଵ/ଶሻ௫

ଶ ୱ୧୬௫/ଶ	
ே
௡ୀଵ ,	and		׬ ݔሻ݀ݔேሺܭ ൌ 1

஠
ି஠ .		

II.	 Show	 that	 for	 all	 	ݔ the	 “tail”	 of	 the	 Fourier	 series	 Δேሺݔሻ ≝ ሻݔேሾ݂ሿሺܨ െ ݂ሺݔሻ ൌ
׬ ሾ݂ሺݔ ൅ ሻݕ െ ݂ሺݔሻሿܭேሺݕሻ݀ݕ
஠
ି஠ 		tends	to	zero	as	ܰ	approaches	infinity.		

Accomplishing	I	and	II	in	the	specific	case	݂ሺݔሻ ൌ 	part	from	‐1.6	1.2	tasks	to	similar	very	is	ଶݔ
1	described	above.	The	last	exercises	of	Part	2	ask	students	to	construct	the	Fourier	series	for	
݂ሺݔሻ ൌ 	ଶݔ and	 use	 its	 convergence	 in	 order	 to	 find	 the	 sum	 ܵ	 as	 in	 (**).	 Through	 a	 final	
reflection,	 the	 students	 are	 expected	 to	 realize	 that	 the	 proof	 (from	 Λ஽்)	 amounts	 to	 little	
more	 than	 a	 generalization	 of	 the	 sequence	 of	 Calculus	 techniques	 drawn	 upon	 in	 part	 1.	
Indeed,	 the	 proof	 Λ஽்	 has	 both	 a	 “strategy”	 and	 an	 “implementation”	 aspect.	 The	 strategy	
follows	 from	 the	 notion	 of	 series	 convergence:	 whenever	 the	 partial	 sum	 	ேݏ of	 an	 infinite	
series	 	can	ஶݏ be	 written	 as	 ேݏ ൌ ߶ ൅ 	,ே߂ where	 ߶	is	 a	 number	 and	 the	 “tail”	 ே߂ ൌ ேݏ െ ߶	
vanishes	 as	 ܰ → ∞,	we	 say	 that	 	ஶݏ converges	 to	 ߶.	 The	 pointwise	 convergence	 of	 Fourier	



series	is	a	very	straightforward	generalization	of	the	notion	of	a	number	series	convergence,	
with	ݏே ൌ ߶	and	ሻݔேሾ݂ሿሺܨ ൌ ݂ሺݔሻ	because	at	each	point	ݔ	a	Fourier	series	is	a	number	series.	
The	 implementation	 of	 the	 strategy	 in	 the	 proof	 Λ஽்	 may	 be	 reduced	 to	 Calculus‐like	
computations	in	some	very	special	cases.		

Our	design	takes	advantage	of	considering	one	such	case.	When	students	understand	the	main	
strategy	 and	 the	 structure	 of	 the	 proof	 in	 the	 simple	 case,	 they	 have	 a	 better	 chance	 to	
incorporate	 the	 elements	 needed	 to	 achieve	 greater	 generality.	 In	 the	 general	 proof	 of	
Dirichlet’s	 theorem,	 step	 II	 above	 cannot	 be	 done	 by	 direct	 computation.	 Instead,	 a	 more	
sophisticated	argument	is	used	(Folland,	1992,	45‐46):	one	shows	that	Δேሺݔሻ	can	be	rewritten	
as	the	sum	of	ܰth	Fourier	coefficients	of	two	functions,	each	of	which	is	square	integrable	and	
2π‐periodic.	It	follows	from	a	separate	result	(Bessel’s	inequality)	that	the	Fourier	coefficients	
ܽ௡	 	 and	 ܾ௡	 tend	 to	 zero	 as	 n	 tends	 to	 infinity	 (ibid.,	 30‐31).	 Thus,	 it	 is	 concluded	 that	
Δேሺݔሻ → 0	for	ܰ → ∞.	This	general	argument,	 together	with	certain	 technicalities	related	 to	
the	possible	non‐continuity	of	݂,	seems	to	give	students	the	impression	that	the	proof	is	way	
beyond	 simple	 techniques	 from	 Calculus.	 Our	 hope	 is	 that	 the	 activity	 described	 above	
establishes	a	strong	relation	Λ஽் ⟷ ⋃ Π௞

ସ
௞ୀଵ 	between	logos	and	praxes.	

Informal	trials	

The	above	design	was	trialled	with	five	students	interested	and	capable	in	mathematics	who	
have	 completed	 at	 least	 3	 years	 of	 the	 undergraduate	 program	 at	 Memorial	 University	 of	
Newfoundland.	They	were	asked	to	do	parts	1	and	2	of	the	activity	(with	no	firm	restrictions	
in	time	or	access	to	any	materials),	followed	by	30‐60	minutes	interviews	that	were	recorded	
and	outlined	below,	as	in	Case	1.	The	interviews	were	semi‐structured,	based	on	the	following	
questions:	

- Did	 you	 find	 the	 individual	 problems	 from	 part	 1	 familiar/accessible/engaging?	 Did	
you	know	the	sum	of	this	infinite	series	before?	Which	methods	(if	any)	to	prove	this	
result	are	known	to	you?		

- Do	you	 see	 any	 similarities	 between	problems	 in	 part	 1	 and	part	 2?	Do	 you	know	a	
statement	about	Fourier	 series	 convergence	and	 its	proof?	Do	you	 think	 that	 solving	
problems	from	part	2	helps	to	understand	this	result	better?	

- What	is	your	overall	experience	in	taking	Calculus	and	Analysis	courses?	Do	you	see	if	
and	 when	 an	 activity	 similar	 the	 above	 could	 be	 helpful	 in	 making	 connections	
between	the	subjects?	

All	students	said	that	the	tasks	1.1‐1.6	were	relying	on	familiar	techniques	from	their	Calculus	
courses,	but	that	they	had	not	been	combined	in	the	way	required	in	task	1.7.		They	found	this	
combination	engaging	and	thought	that	the	“entire	part	1	would	be	accessible	and	desirable	for	
a	Calculus	student	who	is	interested	in	mathematics”.	Here	is	a	student’s	comment	on	problem	
1.7:		

As	I	was	going	through	I	was	fairly	confident	that	I	was	going	to	derive	the	result.	From	
Problem	1.1	I	know	this	(points	to	line	1	in	Fig.	7).	So	I	just	rearranged	to	isolate	the	value	that	



is	in	the	series.	As	soon	as	I	got	that		(points	to	line	2	in	Fig.	7)	I	knew	I	am	on	the	right	track.	
Then	I	took	the	finite	sum	of	both	sides	and	integrated.	Then	I	knew	from	1.2	that	the	sum	of	
cosines	and	a	half	equals	to	that	ratio	of	sinuses	(line	6	in	Fig.	7)….	Then	I	took	the	limit	and	got	

this	value	here	[points	to		
ଵ

ସగ
׬

௫మ

ଶ
ݔ݀

గ
ିగ ],		and	that	other	term	is	zero	from	1.6.”	

Here	we	see	that	the	student	does	exactly	what	we	were	hoping	for:	he	considers	a	partial	
sum	of	the	series		(line	3	in	Fig.	7)	and	rewrites	it	as	a	sum	of	a	number	and	a	“tail”	(last	line	in	
Fig.	7),	where	the	“tail”	vanishes	in	the	limit	ܰ → ∞.	Note	that	the	design	of	the	problems	
helps	to	reinforce	this	approach	to	series	convergence.	For	instance,	problem	1.2	deals	with	a	
finite	sum	related	to	the	partial	sum	of	the	series;	problem	1.6	gives	the	necessary	property	of	
the	series’	“tail”.		When	it	comes	to	part	2,	students	see	not	only	calculations	similar	to	part	1,	
but	they	also	realise	that	the	concept	of	convergence	of	Fourier	series	could	be	treated	in	a	
similar	fashion.		According	to	the	same	student’s	comments	on	part	2,	“task	1.2	is	used	in	the	
step	I	again,	while	the	result	of	task	1.6	is	directly	related	to	step	II”	(in	the	special	case	
݂ሺݔሻ ൌ 	:wrote	student	another	2,	part	and	1	part	between	analogy	direct	for	asked	When	ଶ).ݔ

In	part	1,	∑
ሺିଵሻ೙శభ

௡మ
௠
௡ୀଵ ൌ

గమ

ଵଶ
൅ Δ௠;	in	part	2,	ܨ௠ሾݔଶሿ ൌ ଶݔ ൅ Δ௠ሺݔሻ;	in	both	cases	Δ௠ → 0	as	݉ → ∞.		

This	passage	indicates	the	student’	grasp	of	the	structure	of	the	proofs	and	of	their	similarity	
in	the	two	cases.		

	

Figure	7.	A	fragment	of	a	student’s	solution	of	1.7.	

However,	 these	 students	 never	 studied	 a	 formal	 proof	 of	 Dirichlet’s	 theorem	 (only	 its	
statement	and	applications).	So,	we	also	interviewed	a	more	advanced	student	(AS2)	who	had	
recently	 studied	Dirichlet’s	 theorem	 and	 its	 proof.	 AS2	 actually	 knew	 the	 value	 of	 the	 sum	

∑ ሺିଵሻ೙శభ

௡మ
ஶ
௡ୀଵ 	before	doing	the	activity,	and	AS2	believes	to	have	seen	a	derivation	in	Analysis	

using	“high‐powered	stuff	from	Analysis,	not	using	these	like	(…)	lower	level	Calculus	tools”,		



and	 he	 thinks,	 “this	 was	 an	 interesting	 alternative”.	 Later,	 we	 ask	 AS2	 about	 the	 activity	
described	above,	and	just	done	by	AS2:		

IN:	Based	on	your	 experience,	 do	 you	 think	 this	project	might	be	 accessible	 at	 the	 earlier	 stages	
or…?	

AS2:	(…)	it	could	be	a	good	project	but	I	think	it	would	not	be	a	quick	one	(…)	The	whole	thing	is	
doable,	sure.	Once	you	get	into	some	of	the	more	Analysis	stuff…	I	mean	I	don’t	know,	I	just	know	
when	I	walked	into	Analysis	on	my	first	day,	I	was	like:	what	the	heck	is	going	on?	[laughing]	It	took	
me	about	half	a	semester	to	really	understand	what	the	heck	was	going	on	in	Analysis,	personally…	
so	maybe	some	more	examples	(…)	I	had	a	hard	time	like	grasping	how	to	like	prove		(…)	

AS2	thinks	that	the	activity	could	be	useful	in	the	beginning	of	Real	Analysis,	even	if	more	time	
consuming	to	students	at	that	level	than	it	was	to	him:	

AS2:	This	would	be	a	great	project	in	the	beginning	of	an	Analysis	course.	(…)	In	particular,	I	think,	
if	you’re	at	a	university	that	was	big	enough	to	have	a	Fourier	Analysis	course,	I	think	this	would	be	
a	great,	 like,	 first	assignment.	(…)	there	can	be	a	 lot	of	physicists	(…)	who	have	never	really	seen	
proof	based	mathematics	(…)	so	I	think	this	would	be	a	good	bridge	for	something	like	that	for	sure.	

In	the	experience	of	AS2,	assignments	in	Analysis	classes	are	altogether	of	a	different	nature:	

AS2:	The	assignments	would	be	in	abstract,	typically,	so	like	prove	that	this	class	of	functions	does	
this	thing	on	this	interval	(…)	the	exams	would	mostly	take	the	general	things	we	proved	in	class	
and	apply	it	to	more	specific	functions.	

Thus,	while	 theory	 is	 covered	 extensively	 in	 classes,	 the	 practices	ultimately	 engaged	 in	by	
students	 are	 typically	much	 simpler	 (applications	 of	 general	 theorems	 to	 specific	 cases,	 or	
sometimes	construction	of	short	proofs).	Part	2	alone	is	by	itself	similar	to	such	tasks.	When	
asked	about	the	connection	between	Part	1	and	Part	2,	AS2	explains:	

AS2:	A	lot	of	the	stuff	I	did	in	part	1,	was	stuff	I	would	have	to	play	around	with	to	really	prove	this	
limit	(points	to	the	expression	for	Δேሺݔሻ → 0		as	→ ∞	).	

Here	again	we	have	evidence	that	the	student	articulates	the	main	strategy	of	the	proof	in	part	
2	 and	 refers	 to	 concrete	 results	 from	part	 1	 to	 fulfil	 this	 strategy.	The	 complete	 50‐minute	
conversation	with	the	more	advanced	student	backs,	in	these	and	other	ways,	our	hypothesis	
that	the	transition	from	Calculus	to	Analysis	 is	not	adequately	supported	by	the	typical	 first	
Analysis	 courses,	 and	 that	 activities	 such	 as	 the	 one	 trialled	 here	 can	 possibly	 fill	 a	 gap.	
Indeed,	helping	students	to	identify	shared	Calculus‐Analysis	logos	blocks,	such	as	the	concept	
of	series	convergence,	makes	the	proof	of	Dirichlet	theorem	accessible	(in	the	special	case)	to	
students	 possessing	 praxis	 skills	 learned	 in	 Calculus.	 For	 them,	 concrete	 calculations	 do	
appear	 as	 “technical	 details”	 in	 the	 general	 proof.	 Clearly,	 Analysis	 instructors	 want	 their	
students	to	be	able	to	work	also	with	general	arguments	which	do	not	rely	on	Calculus	type	
calculations.	 So,	 at	 some	 point,	 students	 need	 to	 be	 shown	 the	 advantages	 and	 realize	 the	



power	of	general	argumentation	in	Analysis‐level	proofs,	but	there	is	no	need	to	present	it	as	
a	completely	different	kind	of	mathematical	reasoning.	

IN:		Looking	back	at	your	undergraduate	education	(…)	did	it	come	together	in	the	end?	

AS2	:	 I	 think	 in	the	early	courses	 it	(…)	was	much	more	compartmentalized.	But	once	I	got	to	the	
higher	level	classes,	like,	they	were	constantly	talking	to	each	other,	for	example(…)	you	can	prove	
some	results	in	number	theory,	using	abstract	algebra,	and	(…)	like	Analysis,	 it’s	all	Topology	(…)	
maybe	not,	like,	by	the	explicit	efforts	of	the	professors,	but,	just,	me	personally,	like,	I	noticed	a	lot	
of	deeper	connections	between	the	courses.		

Thus,	 successful	 students	 in	current	undergraduate	mathematics	programs	may	 indeed	end	
up	with	some	experience	close	to	Klein’s	Plan	B,	basically	by	their	own	informal	efforts.	Such	
experiences	 may	 be	 fuelled	 in	 particularly	 by	 establishing	 explicit	 links	 between	 different	
solutions	to	the	same	interconnecting	problem	(Kondratieva,	2011),	as	it	was	the	case	with	the	
activity	we	trialled.	

Conclusions		

While	 Calculus	 courses	 include	 praxis	 blocks	 Π௜	 compatible	 with	 those	 of	 professional	
mathematicians,	 their	 theoretical	 components	 are	more	 informal	 and	 focused	 on	 algebraic	
computation	 rules.	Moreover,	 the	 praxis	 blocks	 are	 often	 isolated	 from	 each	 other,	 as	 they	
occur	 within	 separate	 sections	 of	 textbooks	 and	 courses,	 and	 students	 typically	 are	 not	
offered	opportunities	to	apply	them	in	combinations.	When	students	move	towards	Analysis	
courses,	 they	 experience	 a	 sharp	 focus	 on	 theoretical	 blocks	 Λ௜.	 While	 these	 are	 certainly	
related	to	the	praxis	blocks	Π௜	within	the	field	of	professional	mathematics,	 the	connections	
Π௜ ↔ Λ௜		between	praxis	and	logos	are	not	necessarily	obvious	for	the	learners,	and	thus	need	
to	be	explicitly	established	(let	alone	less	evident	“cross	cutting	relations”	of	the	form		Π௜ ↔
Λ௝).	

In	 this	 paper,	 we	 considered	 two	 cases	 where	 one	 could	 help	 students	 to	 establish	 such	
connections.	 In	 the	 first	 case,	 the	 fundamental	 notion	 of	 angle	 and	 its	 measure	 (in	
trigonometry)	 can	be	 revisited	 from	 the	 viewpoint	 of	 the	 general	 construct	 of	 curve	 length	
and	 natural	 parametrization	 of	 a	 curve	 in	 Թ௠.	 Judged	 by	 the	 interview,	 students	 did	 not	
succeed	in	doing	so	based	on	the	activities	proposed	in	the	Analysis	course.	Thus,	we	propose	
to	redevelop	the	praxis	block	Π஼௅on	curve	length	(informed	by	the	logos	block	Λ஼௅)	in	order	to	
recover	a	direct	link	and	to	support	the	theory	Λ஺்	related	to	the	notion	of	angle.	In	this	way,	a	
relation	Π஼௅ ↔ Λ஺்	could	be	established	(see	Fig.	8,	right).	



	

Figure	8:	Relations	between	praxis	and	logos	blocks	established	in	two	cases.	

In	 the	 second	 case,	 it	 is	 an	 explicit	 derivation	 of	 the	 value	 for	 an	 infinite	 series	 in	 Calculus	
which	 is	 employed	 to	 emphasize	 how	 Calculus	 techniques	 are	 crucial	 in	 the	 proof	 of	
Dirichlet’s	theorem.	Specifically,	several	praxis	blocks	from	Calculus	are	combined	to	produce	
an	 “infinite	 series	 summation”	 block	 of	 praxes	 ⋃ Π௞

ସ
௞ୀଵ ,	which	 is	 then	 related	 to	 the	 logos	

block	 Λ஽்	 via	 a	 proof	 of	 this	 theorem	 in	 the	 special	 case	݂ሺݔሻ ൌ 	.ଶݔ This	 way,	 a	 relation	
Λ஽் ⟷ ⋃ Π௞

ସ
௞ୀଵ 	 is	 established	 (see	 Fig.	 8,	 left),	 not	 only	 as	 a	 fingertip	 “application”	 of	 the	

result	(Λ஽் → ஽்ܲ),	but	as	a	link	between	the	proof	and	previous	praxis	blocks.	According	to	
our	 small	 scale	 trial,	 this	 project	 seems	 to	 be	 not	 only	 feasible	 but	 also	 enjoyable	 and	
beneficial	for	students	equipped	with	Calculus	techniques.		

Finally,	we	emphasise	that	the	goal	of	this	paper	is	to	call	attention	to	the	issue	of	knowledge	
desynchretisation	 in	undergraduate	mathematics	 in	 general,	 and	 to	propose	 reviving	Klein’s	
idea	of	“Plan	B”	in	order	to	provide	early	resynchretization	experiences.	 	We	have	illustrated	
this	 with	 situations	 which	 could	 enable	 students	 to	 reconstruct	 “cross	 cutting	 relations”	
Π௜ ↔ Λ௝,	 as	 precise	 interpretations	 of	 Klein’s	 “Plan	 B”.	 At	 the	 same	 time,	 constructing	

integrated	 praxis	 blocks	 such	 as	 Π஼௅	 or	 ⋃ Π௞
ସ
௞ୀଵ 	 described	 above,	 constitutes	 an	 essential	

complement	 to	 “Plan	 A”	 type	 courses.	 The	 point	 of	 this	 paper	 is	 that	 the	 construction	 and	
implementations	of	situations	which	enable	links	of	these	types	is	a	promising	but	demanding	
direction	for	enhancing	the	teaching	of	Calculus	and	Analysis.	

To	construct	such	situations	clearly	necessitates	a	careful	analysis	of	(central)	theory	blocks	
of	more	advanced	courses,	and	of	resources	found	in	praxis	blocks	of	previous	courses;	small	
scale	trials,	such	as	the	ones	reported	here,	can	clearly	be	helpful	to	support	and	correct	the	
details	of	such	constructions.	An	implementation	of	the	situations	in	actual	teaching	naturally	
constitutes	a	second	set	of	challenges	which	we	have	not	addressed	here.	While	doing	so,	one	
would—in	most	universities—have	to	confront	the	institutional	mechanisms	that	have	led	to	
the	 desynchretisation	 of	 university	mathematics	 curricula.	 Dealing	with	 such	 challenges	 in	
teaching	practice	clearly	goes	beyond	both	Klein’s	idealistic	vision	for	mathematics	teaching,	
and	the	praxeological	analysis	provided	in	this	paper.	

	



Note	

This	paper	draws	on	our	contributions	for	the	conferences	INDRUM2016	(Montpellier,	2016)	
and	CERME10	(Dublin,	2017),	listed	in	the	references.	
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